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Last Time
e

* Supervised learning via naive Bayes

— Use MLE to estimate a distribution p(x, y) =
p(Y)p(x|y)

— Classify by looking at the conditional distribution,
p(y|x)

* Today: logistic regression




Logistic Regression
-

* Learn p(Y|X) directly from the data

— Assume a particular functional form, e.g., a linear
classifierp(Y = 1|x) = 1 on one side and O on the

other p(Y = 1|x) = 0
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Logistic Regression

* Learn p(y|x) directly from the data

— Assume a particular functional

form
(¥ = ~1lx) = ———
A= = =T exp(wTx + b) % osf
exp(wlx + b)
Y = 1lx) =
p( %) 1+ exp(wTx + b)




Logistic Function in . Dimensions

1

Y = —1 =
P %) 1+ exp(wTx + b)

Can be applied to
| discrete and
i P, LR continuous features

x | -10.0000 ' 10.0000

y | -10.0000 | 10.0000
z -0.499119  1.49970




Functional Form: Two classes
-

* Given some w and b, we can classify a new point x by
assigning the label 1 if p(Y = 1]|x) > p(Y = —1]|x) and
— 1 otherwise

— This leads to a linear classification rule:
* Classifyasalifw/x +b > 0

e Classifyasa—1ifw’x +b <0




Learning the Weights

* To learn the weights, we maximize the conditional
likelihood

N
(w*,b*) = arg max 1_[ p(yP|xD, w, b)
w,
i=1

* This is the not the same strategy that we used in the case of
naive Bayes

— For naive Bayes, we maximized the log-likelihood, not
the conditional log-likelihood




Generative vs. Discriminative Classifiers
,ee e

Generative classifier: Discriminative classifiers:
(e.g., Naive Bayes) (e.g., Logistic Regression)
* Assume some functional form for « Assume some functional form for
p(x|y), p(¥) p(y|x)
* Estimate parameters of p(x|y), * Estimate parameters of p(y|x)
p(y) directly from training data directly from training data
 Use Bayes rule to calculate p(y|x) | ¢ Thisis the discriminative model
* This is a generative model + Directly leam p(y|x)
* Indirect computation of p(Y|X)
through Bayes rule  But cannot obtain a sample of the

data as p(x) is not available
* Asaresult, can also generate a

sample of the data, « Useful for discriminating labels
p(x) = 2, p()p(x]y)
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Learning the Weights

N
¢wb)  =In Hp(y(i)|x(i),w, b)
i=1

@ +1 . @ +1 .
- zy Inp(Y = 1|x®,w, b) + (1 _Y : >lnp(Y = _1|xD, w, b)

N , .
@ 41 Y =1|x®,w, b :
— Zy p(Y =1 ) | Inp(Y = —1|x®,w, b)
=1

2 p(Y = —1|x(i),w,b)

N 4
= z 4 2+ (wTx® + b) —In(1 + exp(wTx® + b))




Learning the Weights

¢w,b)  =In Hp(y(l)|x(l) w, b)

lnp(y(‘)lx(‘) w, b)

y@®+1

Inp(Y = 1|x®,w, b) + (1 — >lnp(Y = —1|x®,w, b)

N , .
@ 41 Y =1|x®,w, b :
— Zy p(v =1 ) | Inp(Y = —1|x®,w, b)
=1

2 p(Y = —1|x(i),w,b)

N 4
= zy b (wTx® + b) —In(1 + exp(wTx® + b))

This is concave in w and b: take
derivatives and solve!

10




Learning the Weights

¢w,b)  =In Hp(y(l)|x(l) w, b)

lnp(y(‘)lx(‘) w, b)

y@®+1

Inp(Y = 1|x®,w, b) + (1 — >lnp(Y = —1|x®,w, b)

N , .
@ 41 Y =1|x®,w, b :
— Zy p(v =1 ) | Inp(Y = —1|x®,w, b)
=1

2 p(Y = —1|x(i),w,b)

N 4
= zy b (wTx® + b) —In(1 + exp(wTx® + b))

No closed form solution ®
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Learning the Weights

e (Can apply gradient ascent to maximize the conditional likelihood

N .
0¢ y® 41 .
%=ZI 5 —pY = 1Ix(‘),Wrb)]
=1

d0¢f _ A (i) y(l) +1 _ (M)
a_Wj_ij 5 —p(Y =1|x,w,b)
l=
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Priors

» (Can define priors on the weights and bias to prevent
overfitting

— Normal distribution, zero mean, identity covariance

2

1 w
p(w) = UWeXP (— 27’2>

— “Pushes” parameters towards zero

* Regularization

— Helps avoid very large weights and overfitting
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Priors as Regularization
-

* The log-MAP objective with this Gaussian prior is then

N N
1—[ 1 . A
i=1 i

— Quadratic penalty: drives weights towards zero
— Adds a negative linear term to the gradients

— Different priors can produce different kinds of regularization
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Priors as Regularization
-

* The log-MAP objective with this Gaussian prior is then

A
— 5 (wli3 +5?)

f

Somtimes called an ¢,
regularizer

N N
lnnp(y(i)|x(i),w, b) p(w)p(b) = lz Inp(y®@|x®,w,b)
i=1 i

— Quadratic penalty: drives weights towards zero
— Adds a negative linear term to the gradients

— Different priors can produce different kinds of regularization
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Naive Bayes vs. Logistic Regression
.
* (Generative vs. Discriminative classifiers

* Non-asymptotic analysis (for Gaussian NB)

— Convergence rate of parameter estimates,
(m = # of attributes in X)

* Size of training data to get close to infinite data solution
* Naive Bayes needs O (log m) samples

— NB converges quickly to its (perhaps less helpful)
asymptotic estimates

* Logistic Regression needs O () samples

— LR converges slower but makes no independence
assumptions (typically less biased)

Y [Ng & Jordan, 2002]




NB vs. LR (on UCI datasets)
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LR in General
_

» Supposethaty € {1, ..., R}, i.e., thatthere are R different
class labels

» (Can define a collection of weights and biases as follows

— Choose a vector of biases and a matrix of weights such
thatfory # R

exp(by + X WkiX;)

p(Y =klx) =
1+ Z]-<R exp(bj + Wjix,;)
and
1
p(Y =R|x) =

1+ Zj<R exp(b] + Zi Wjix,;)
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