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Unobserved Variables
_

e Latent or hidden variables in the model are never observed

* We may or may not be interested in their values, but their
existence is crucial to the model

* Some observations in a particular sample may be missing

» Missing information on surveys or medical records (quite
common)

* We may need to model how the variables are missing




Missing Data

 Data can be missing from the model in many different ways

— Missing completely at random: the probability that a
data item is missing is independent of the observed
data and the other missing data

— Missing at random: the probability that a data item is
missing can depend on the observed data

— Missing not at random: the probability that a data item
Is missing can depend on the observed data and the
other missing data




Modelling Missing Data

* Add additional binary variable m; to the model for each
possible observed variable x; that indicates whether or not
that variable is observed

P (Xops) Xmis, M) = p(M|x,ps, xmis)p(xobs» Xmis)
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Modelling Missing Data

* Add additional binary variable m; to the model for each
possible observed variable x; that indicates whether or not
that variable is observed

D (Xops) Xmis, M) = p(M|x0ps) P (Xobs) Xmis)
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Modelling Missing Data

* Add additional binary variable m; to the model for each
possible observed variable x; that indicates whether or not
that variable is observed

P (Xobs) Xmisy M) = p(M)P(Xops) Xmis)
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Modelling Missing Data

* Add additional binary variable m; to the model for each
possible observed variable x; that indicates whether or not
that variable is observed

D (Xops) Xmis, M) = P(M)DP(Xops) Xmis)

How can you model latent
variables in this framework?




Learning with Missing Data
e

* In orderto design learning algorithms for models with missing data,
we will make two assumptions

— The data is missing at random

— The model parameters corresponding to the missing data (J) are
separate from the model parameters of the observed data ()

 Thatis
p(xobs» m|8, 5) — p(mlxobs: 6)p(xobs|9)

 Derivation of the algorithm in this case then follows similarly to the
previous discuss




Learning with Latent Variables

* Log-likelihood with latent variables:

N
logl(0) = z log p(x®]6)
i=1
N
= 2 1ogz p(xV,y16)
=1 y

— Again, this is typically not a concave function of 6

* We will apply the same trick that we did with GMMs last lecture
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Expectation Maximization
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Expectation Maximization

RN p(xD,y|0)
F(q,0) = Z ; 0 log—_—=>

* Maximizing F is equivalent to the maximizing the log-likelihood

e Maximize it using coordinate ascent

t

gt*t! = arg max F(q, 0%
ql,...,

dK

gttt = argmax F(qtt,0)
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Expectation Maximization

N]=

q:(y)

=1
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» Maximized when q;(y) = p(y|x®, 6)

e Canreformulate the EM algorithm as

N

ottt = argmgxzzp(ylx(”,@t) logp(x®,y[6)
=1 vy
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Latent Variable Models

* Many real-world models contain latent variables

* Because we will need to marginalize out over the latent variables in
MLE, the presence of latent variables in the model can make
performing MLE much harder

— As before, we will make simplifying assumptions about the
probability distribution of the latent variables
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Markov Chains

* A Markov chain is a sequence of random variables X4, ..., X+ € S
such that

P(X41lx1, oy x7) = P(regalx: )

« The set S is called the state space, and p(X;,; = j|X; = i) isthe
probability of transitioning from state i to state j at step ¢
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Markov Chains
S

* When the probability of transitioning between two states does not
depend on time, we call it a time homogeneous Markov chain

— Representitbya |S| X |S| transition matrix A
Ajj = P(Xip1 = JjlX: = 1)

* A is a stochastic matrix (all rows sum to one)
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Hidden Markov Models

p(xq, o, X7, Y1, 0, Y1) = (V)0 (X1 1Y1) np(}’t|)’t—1)P(xt|Yt)
t

» X’s are observed variables, Y’s are latent/hidden

* Time homogenous: p(y; = jly;—1 = 1) = p(yy = jlyp_1 = 1)

* For learning, we are given sequences of observations




Hidden Markov Models

* Well suited to problems/models that evolve over time
* Examples:

— Observations correspond sizes of tree growth rings for
one year, the latent variables correspond to average
temperature

— Observations correspond to noisy missile location,
latent variables correspond to true missile locations




Learning HMMs

* Abit of notation:
—m; =p(Yp = 1)
— A = p(Y: =jlYemq =10)
— bj(xt) =p(X; = x¢|Y: =)
* These parameters describe an HMM, 8 = {m, A, b}

— We'll derive the updates in the case that the observations X, are
discrete random variables

19




Learning HMMs
I

> p01x,6%) logp(x, y10) =
y

T
= p0Ix, 69 log <p(y1>p(x1|y1> Hp(ytm_l)p(xtm))
y t=2

T
= Z p(y|x,6°)log| m,, by (x1) 1_[ Ay y._ by (x¢)
y t=2
T T
=) P06 logmy, + ) pOlx,6) (Z log byt(xa) + D P, 69) (Z logAyt,yt_1>
y y t=1 y t=2

Zp(yl = ilx,6°) log; +ZZp(Yt = ilx,0%) log by (x,) +Zzzpm = i,Y,y = j|x,0%) log Ay,

t=1 i t=2 i
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Learning HMMs

w; = p(Y; = i|x, 65)

Z=1 p(Y; = ilx,0°)5(x; = k)
Z=1 p(Y; = i|x, 6°)

by (k) =

45— {=2 p(Yy =1,Y_1 =jlx,0°)
Y Z:=2 p(Ye—1 = jlx,0°)
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Prediction in HMMs

* Once we learn the model, given a new sequence of
observations, x4, ..., x7, we want to predict y

— In the tree application, this corresponds to finding the
temperature at a specific time given the rings of a tree

— In the missile tracking example, this corresponds to
finding the position of the missile at a particular time

* Wantto compute p(yr|x, 0)
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Prediction in HMMs

* Wantto compute p(yr|x, 8) = p(x,yr|0)/p(x|0)

— Direct approach:

p(xr YT — l|9) — z p(x'ylr ""yT—erT = l|9)
Y1,YT-1

— Dynamic programming approach:

p(x, Yy =i|0) = ZP(X, Yr=1,Yr_1 =)
J
= Zp(xp v Xr—1, Yo = PDper, Yr = 0%, o, Xp21, Yroq =)
J

B ZP(Xl, vy Xr—1, Yr—1 = PDplxrlYr = Dp(Yr = i|Yr—1 =)
J
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Prediction in HMMs

» Wantto compute p(yr|x, 8) = p(x,yr|0)/p(x)

— Direct approach:

p(xr YT — l|9) — z p(x'ylr ""yT—erT = l|9)
Y1,YT-1

_ Dynamlc programming approaCh: Called filtering: easy to implement

using dynamic programming

p(x, Yy =i|0) = ZP(X, Yr=1,Yr_1 =)
J
= Zp(xp v Xr—1, Yo = PDper, Yr = 0%, o, Xp21, Yroq =)
J

B ZP(xl, vy Xr—1, Yr—1 = PDplxrlYr = Dp(Yr = i|Yr—1 =)
J
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Latent Variables & EM

* Previous updates derived for a single observation (to
simplify)

— Can get the general updates for multiple sequences by
adding sums in the appropriate places

e Same principle as EM for mixture models

— Also suffers from the existence of lots of local optima
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