Latent/Missing Variables \& Hidden Markov Models

Nicholas Ruozzi
University of Texas at Dallas

Unobserved Variables

- Latent or hidden variables in the model are never observed
- We may or may not be interested in their values, but their existence is crucial to the model
- Some observations in a particular sample may be missing
- Missing information on surveys or medical records (quite common)
- We may need to model how the variables are missing

Missing Data

- Data can be missing from the model in many different ways
- Missing completely at random: the probability that a data item is missing is independent of the observed data and the other missing data
- Missing at random: the probability that a data item is missing can depend on the observed data
- Missing not at random: the probability that a data item is missing can depend on the observed data and the other missing data

Modelling Missing Data

- Add additional binary variable m_{i} to the model for each possible observed variable x_{i} that indicates whether or not that variable is observed

$$
p\left(x_{o b s}, x_{m i s}, m\right)=p\left(m \mid x_{o b s}, x_{m i s}\right) p\left(x_{o b s}, x_{m i s}\right)
$$

Modelling Missing Data

- Add additional binary variable m_{i} to the model for each possible observed variable x_{i} that indicates whether or not that variable is observed

$$
p\left(x_{o b s}, x_{m i s}, m\right)=p\left(m \mid x_{o b s}, x_{m i s}\right) p\left(x_{o b s}, x_{m i s}\right)
$$

Explicit model of the missing data (missing not at random)

Modelling Missing Data

- Add additional binary variable m_{i} to the model for each possible observed variable x_{i} that indicates whether or not that variable is observed

$$
p\left(x_{o b s}, x_{m i s}, m\right)=p(\underbrace{m \mid x_{o b s}}) p\left(x_{o b s}, x_{m i s}\right)
$$

Missing at random

Modelling Missing Data

- Add additional binary variable m_{i} to the model for each possible observed variable x_{i} that indicates whether or not that variable is observed

$$
p\left(x_{o b s}, x_{m i s}, m\right)=\underbrace{p(m)} p\left(x_{o b s}, x_{m i s}\right)
$$

Missing
completely at
random

Modelling Missing Data

- Add additional binary variable m_{i} to the model for each possible observed variable x_{i} that indicates whether or not that variable is observed

$$
p\left(x_{o b s}, x_{m i s}, m\right)=p(m) p\left(x_{o b s}, x_{m i s}\right)
$$

How can you model latent variables in this framework?

Learning with Missing Data

- In order to design learning algorithms for models with missing data, we will make two assumptions
- The data is missing at random
- The model parameters corresponding to the missing data (δ) are separate from the model parameters of the observed data (θ)
- That is

$$
p\left(x_{o b s}, m \mid \theta, \delta\right)=p\left(m \mid x_{o b s}, \delta\right) p\left(x_{o b s} \mid \theta\right)
$$

- Derivation of the algorithm in this case then follows similarly to the previous discuss

Learning with Latent Variables

- Log-likelihood with latent variables:

$$
\begin{aligned}
\log l(\theta) & =\sum_{i=1}^{N} \log p\left(x^{(i)} \mid \theta\right) \\
& =\sum_{i=1}^{N} \log \sum_{y} p\left(x^{(i)}, y \mid \theta\right)
\end{aligned}
$$

- Again, this is typically not a concave function of θ
- We will apply the same trick that we did with GMMs last lecture

Expectation Maximization

$$
\begin{aligned}
\log l(\theta) & =\sum_{i=1}^{N} \log p\left(x^{(i)} \mid \theta\right) \\
& =\sum_{i=1}^{N} \log \sum_{y} p\left(x^{(i)}, y \mid \theta\right) \\
& =\sum_{i=1}^{N} \log \sum_{y} q_{i}(y) \cdot \frac{p\left(x^{(i)}, y \mid \theta\right)}{q_{i(y)}} \\
& \geq \sum_{i=1}^{N} \sum_{y} q_{i}(y) \log \frac{p\left(x^{(i)}, y \mid \theta\right)}{q_{i(y)}}
\end{aligned}
$$

Expectation Maximization

$$
F(q, \theta) \equiv \sum_{i=1}^{N} \sum_{y} q_{i}(y) \log \frac{p\left(x^{(i)}, y \mid \theta\right)}{q_{i}(y)}
$$

- Maximizing F is equivalent to the maximizing the log-likelihood
- Maximize it using coordinate ascent

$$
\begin{aligned}
& q^{t+1}=\arg \max _{q_{1}, \ldots, q_{K}} F\left(q, \theta^{t}\right) \\
& \theta^{t+1}=\underset{\theta}{\operatorname{argmax}} F\left(q^{t+1}, \theta\right)
\end{aligned}
$$

Expectation Maximization

$$
\sum_{i=1}^{N} \sum_{y} q_{i}(y) \log \frac{p\left(x^{(i)}, y \mid \theta^{t}\right)}{q_{i}(y)}
$$

- Maximized when $q_{i}(y)=p\left(y \mid x^{(i)}, \theta^{t}\right)$
- Can reformulate the EM algorithm as

$$
\theta^{t+1}=\underset{\theta}{\operatorname{argmax}} \sum_{i=1}^{N} \sum_{y} p\left(y \mid x^{(i)}, \theta^{t}\right) \log p\left(x^{(i)}, y \mid \theta\right)
$$

Latent Variable Models

- Many real-world models contain latent variables
- Because we will need to marginalize out over the latent variables in MLE, the presence of latent variables in the model can make performing MLE much harder
- As before, we will make simplifying assumptions about the probability distribution of the latent variables

Markov Chains

- A Markov chain is a sequence of random variables $X_{1}, \ldots, X_{T} \in S$ such that

$$
p\left(x_{t+1} \mid x_{1}, \ldots, x_{T}\right)=p\left(x_{t+1} \mid x_{t}\right)
$$

- The set S is called the state space, and $p\left(X_{t+1}=j \mid X_{t}=i\right)$ is the probability of transitioning from state i to state j at step t

Markov Chains

- When the probability of transitioning between two states does not depend on time, we call it a time homogeneous Markov chain
- Represent it by a $|S| \times|S|$ transition matrix A
- $A_{i j}=p\left(X_{t+1}=j \mid X_{t}=i\right)$
- A is a stochastic matrix (all rows sum to one)

Hidden Markov Models

- X's are observed variables, Y 's are latent/hidden
- Time homogenous: $p\left(y_{t}=j \mid y_{t-1}=i\right)=p\left(y_{t^{\prime}}=j \mid y_{t^{\prime}-1}=i\right)$
- For learning, we are given sequences of observations

Hidden Markov Models

- Well suited to problems/models that evolve over time
- Examples:
- Observations correspond sizes of tree growth rings for one year, the latent variables correspond to average temperature
- Observations correspond to noisy missile location, latent variables correspond to true missile locations

Learning HMMs

- A bit of notation:

$$
\begin{aligned}
& -\pi_{i}=p\left(Y_{1}=i\right) \\
& -A_{i j}=p\left(Y_{t}=j \mid Y_{t-1}=i\right) \\
& -b_{j}\left(x_{t}\right)=p\left(X_{t}=x_{t} \mid Y_{t}=j\right)
\end{aligned}
$$

- These parameters describe an HMM, $\theta=\{\pi, A, b\}$
- We'll derive the updates in the case that the observations X_{t} are discrete random variables

Learning HMMs

$$
\begin{aligned}
& \sum_{y} p\left(y \mid x, \theta^{s}\right) \log p(x, y \mid \theta)= \\
& =\sum_{y} p\left(y \mid x, \theta^{s}\right) \log \left(p\left(y_{1}\right) p\left(x_{1} \mid y_{1}\right) \prod_{t=2}^{T} p\left(y_{t} \mid y_{t-1}\right) p\left(x_{t} \mid y_{t}\right)\right) \\
& =\sum_{y} p\left(y \mid x, \theta^{s}\right) \log \left(\pi_{y_{1}} b_{y_{1}}\left(x_{1}\right) \prod_{t=2}^{T} A_{y_{t}, y_{t-1}} b_{y_{t}}\left(x_{t}\right)\right) \\
& =\sum_{y} p\left(y \mid x, \theta^{s}\right) \log \pi_{y_{1}}+\sum_{y} p\left(y \mid x, \theta^{s}\right)\left(\sum_{t=1}^{T} \log b_{y_{t}}\left(x_{t}\right)\right)+\sum_{y} p\left(y \mid x, \theta^{s}\right)\left(\sum_{t=2}^{T} \log A_{y_{t}, y_{t-1}}\right) \\
& =\sum_{i} p\left(Y_{1}=i \mid x, \theta^{s}\right) \log \pi_{i}+\sum_{t=1}^{T} \sum_{i} p\left(Y_{t}=i \mid x, \theta^{s}\right) \log b_{i}\left(x_{t}\right)+\sum_{t=2}^{T} \sum_{i} \sum_{j} p\left(Y_{t}=i, Y_{t-1}=j \mid x, \theta^{s}\right) \log A_{i, j}
\end{aligned}
$$

Learning HMMs

$$
\begin{gathered}
p\left(y \mid x, \theta^{s}\right)=\pi_{y_{1}}^{s-1} b_{y_{1}}^{s-1}\left(x_{1}\right) \prod_{t=2}^{T} A_{y_{t}, y_{t-1}}^{s-1} b_{y_{t}}^{s-1}\left(x_{t}\right) \\
\pi_{i}^{s}=p\left(Y_{1}=i \mid x, \theta^{s}\right) \\
b_{i}^{s}(k)=\frac{\sum_{t=1}^{T} p\left(Y_{t}=i \mid x, \theta^{s}\right) \delta\left(x_{t}=k\right)}{\sum_{t=1}^{T} p\left(Y_{t}=i \mid x, \theta^{s}\right)} \\
A_{i j}^{s}=\frac{\sum_{t=2}^{T} p\left(Y_{t}=i, Y_{t-1}=j \mid x, \theta^{s}\right)}{\sum_{t=2}^{T} p\left(Y_{t-1}=j \mid x, \theta^{s}\right)}
\end{gathered}
$$

Prediction in HMMs

- Once we learn the model, given a new sequence of observations, x_{1}, \ldots, x_{T}, we want to predict y_{T}
- In the tree application, this corresponds to finding the temperature at a specific time given the rings of a tree
- In the missile tracking example, this corresponds to finding the position of the missile at a particular time
- Want to compute $p\left(y_{T} \mid x, \theta\right)$

Prediction in HMMs

- Want to compute $p\left(y_{T} \mid x, \theta\right)=p\left(x, y_{T} \mid \theta\right) / p(x \mid \theta)$
- Direct approach:

$$
p\left(x, Y_{T}=i \mid \theta\right)=\sum_{y_{1}, \ldots, y_{T-1}} p\left(x, y_{1}, \ldots, y_{T-1}, Y_{T}=i \mid \theta\right)
$$

- Dynamic programming approach:

$$
\begin{aligned}
p\left(x, Y_{T}=i \mid \theta\right) & =\sum_{j} p\left(x, Y_{T}=i, Y_{T-1}=j\right) \\
& =\sum_{j} p\left(x_{1}, \ldots, x_{T-1}, Y_{T-1}=j\right) p\left(x_{T}, Y_{T}=i \mid x_{1}, \ldots, x_{T-1}, Y_{T-1}=j\right) \\
& =\sum_{j} p\left(x_{1}, \ldots, x_{T-1}, Y_{T-1}=j\right) p\left(x_{T} \mid Y_{T}=i\right) p\left(Y_{T}=i \mid Y_{T-1}=j\right)
\end{aligned}
$$

Prediction in HMMs

- Want to compute $p\left(y_{T} \mid x, \theta\right)=p\left(x, y_{T} \mid \theta\right) / p(x)$
- Direct approach:

$$
p\left(x, Y_{T}=i \mid \theta\right)=\sum_{y_{1}, \ldots, y_{T-1}} p\left(x, y_{1}, \ldots, y_{T-1}, Y_{T}=i \mid \theta\right)
$$

- Dynamic programming approach:

Called filtering: easy to implement

$$
\begin{aligned}
p\left(x, Y_{T}=i \mid \theta\right) & =\sum_{j} p\left(x, Y_{T}=i, Y_{T-1}=j\right) \quad \text { using dynamic programming } \\
& =\sum_{j} p\left(x_{1}, \ldots, x_{T-1}, Y_{T-1}=j\right) p\left(x_{T}, Y_{T}=i \mid x_{1}, \ldots, x_{T-1}, Y_{T-1}=j\right) \\
& =\sum_{j} p\left(x_{1}, \ldots, x_{T-1}, Y_{T-1}=j\right) p\left(x_{T} \mid Y_{T}=i\right) p\left(Y_{T}=i \mid Y_{T-1}=j\right)
\end{aligned}
$$

Latent Variables \& EM

- Previous updates derived for a single observation (to simplify)
- Can get the general updates for multiple sequences by adding sums in the appropriate places
- Same principle as EM for mixture models
- Also suffers from the existence of lots of local optima

