Bayesian Networks

Nicholas Ruozzi

University of Texas at Dallas

Structured Distributions

- We've seen two types of simple probability models that can be learned from data
- Naive Bayes: assume attributes are independent given the label
- Hidden Markov Models: assumes the hidden variables form a Markov chain and each observation is conditionally independent of the remaining variables given the corresponding latent variable
- Today: Bayesian networks
- Generalizes both of these cases

Structured Distributions

- Consider a general joint distribution $p\left(X_{1}, \ldots, X_{n}\right)$ over binary valued random variables
- If X_{1}, \ldots, X_{n} are all independent given a different random variable Y, then

$$
p\left(x_{1}, \ldots, x_{n} \mid y\right)=p\left(x_{1} \mid y\right) \ldots p\left(x_{n} \mid y\right)
$$

and

$$
p\left(y, x_{1}, \ldots, x_{n}\right)=p(y) p\left(x_{1} \mid y\right) \ldots p\left(x_{n} \mid y\right)
$$

- How much storage is needed to represent this model?

Structured Distributions

- Consider a different joint distribution $p\left(X_{1}, \ldots, X_{n}\right)$ over binary valued random variables
- Suppose, for $i>2, X_{i}$ is independent of X_{1}, \ldots, X_{i-2} given X_{i-1}

$$
\begin{aligned}
p\left(x_{1}, \ldots, x_{n}\right) & =p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) \ldots p\left(x_{n} \mid x_{1}, \ldots, x_{n-1}\right) \\
& =p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{2}\right) \ldots p\left(x_{n} \mid x_{n-1}\right)
\end{aligned}
$$

- How much storage is needed to represent this model?
- This distribution corresponds to a Markov chain

Bayesian Network

- A Bayesian network is a directed graphical model that captures independence relationships of a given probability distribution
- Directed acyclic graph (DAG), $G=(V, E)$
- One node for each random variable
- One conditional probability distribution per node
- Directed edge represents a direct statistical dependence

Bayesian Network

- A Bayesian network is a directed graphical model that captures independence relationships of a given probability distribution
- Encodes local Markov independence assumptions that each node is independent of its non-descendants given its parents
- Corresponds to a factorization of the joint distribution

$$
p\left(x_{1}, \ldots, x_{n}\right)=\prod_{i} p\left(x_{i} \mid x_{\text {parents }(i)}\right)
$$

Directed Chain

$$
p\left(x_{1}, \ldots, x_{n}\right)=p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{2}\right) \ldots p\left(x_{n} \mid x_{n-1}\right)
$$

Example:

- Local Markov independence relations?
- Joint distribution?

MLE for Bayesian Networks

- Given samples $x^{(1)}, \ldots, x^{(M)}$ from some unknown Bayesian network that factors over the directed acyclic graph G
- The parameters of a Bayesian model are simply the conditional probabilities that define the factorization
- For each $i \in G$ we need to learn $p\left(x_{i} \mid x_{\text {parents(} i)}\right)$, create a variable $\theta_{x_{i} \mid x_{\text {parents }(i)}}$

$$
\log l(\theta)=\sum_{m} \sum_{i \in V} \log \theta_{x_{i}^{(m)} \mid x_{\text {parents }(i)}^{(m)}}
$$

MLE for Bayesian Networks

$$
\begin{aligned}
\log l(\theta) & =\sum_{m} \sum_{i \in V} \log \theta_{x_{i}^{(m)} \mid x_{\text {parents }(i)}^{(m)}} \\
& =\sum_{i \in V} \sum_{m} \log \theta_{x_{i}^{(m)} \mid x_{\text {parents }(i)}^{(m)}} \\
& =\sum_{i \in V} \sum_{x_{\text {parents }(i)}} \sum_{x_{i}} \mathrm{~N}_{x_{\mathrm{i}}, x_{\text {parents }(\mathrm{i})}} \log \theta_{x_{i} \mid x_{\text {parents }(i)}}
\end{aligned}
$$

MLE for Bayesian Networks

$$
\begin{aligned}
\log l(\theta) & =\sum_{m} \sum_{i \in V} \log \theta_{x_{i}^{(m)} \mid x_{\text {parents }(i)}^{(m)}} \\
& =\sum_{i \in V} \sum_{m} \log \theta_{x_{i}^{(m)} \mid x_{\text {parents }(i)}^{(m)}} \\
& =\sum_{i \in V} \sum_{x_{\text {parents }(i)}} \sum_{x_{i}} \mathrm{~N}_{x_{\mathrm{i}}, x_{\text {parents }(\mathrm{i})}} \log \theta_{x_{i} \mid x_{\text {parents }(i)}}
\end{aligned}
$$

$N_{x_{i}, x_{\text {parents(i) }}}$ is the number of times ($x_{i}, x_{\text {parents }(i)}$) was observed in the training set

MLE for Bayesian Networks

$$
\begin{aligned}
\log l(\theta) & =\sum_{m} \sum_{i \in V} \log \theta_{x_{i}^{(m)} \mid x_{\text {parents }(i)}^{(m)}} \\
& =\sum_{i \in V} \sum_{m} \log \theta_{x_{i}^{(m)} \mid x_{\text {parents }(i)}^{(m)}} \\
& =\sum_{i \in V} \sum_{x_{\text {parents }(i)}} \sum_{x_{i}} N_{x_{\mathrm{i}}, x_{\text {parents }(\mathrm{i})}} \log \theta_{x_{i} \mid x_{\text {parents }(i)}}
\end{aligned}
$$

Fix $x_{\text {parents(i) }}$ solve for $\theta_{x_{i} \mid x_{\text {parents(i) }}}$ for all x_{i} (on the board)

MLE for Bayesian Networks

$$
\theta_{x_{i} \mid x_{\text {parents }(i)}}=\frac{\mathrm{N}_{x_{i}, x_{\mathrm{parents}(i)}}}{\sum_{x_{i}^{\prime}} \mathrm{N}_{x_{i}^{\prime}, x_{\text {parents }(i)}}}=\frac{\mathrm{N}_{x_{i}, x_{\text {parents }(i)}}}{\mathrm{N}_{x_{\text {parents }(i)}}}
$$

- This is just the empirical conditional probability distribution
- Worked out nicely because of the factorization of the joint distribution
- Same as MLE for naive Bayes and HMMs (which are both BNs)

MLE for Bayesian Networks

- The previous slides have assumed that we are essentially given the structure (i.e., the DAG) of the network that we would like to learn
- This may not be the case in practice: we may only be given samples and must learn both the parameters and the structure of the underlying network
- But how do we decide which structures are better than others?

BN Structure Learning

- The MLE of the conditional probability tables was given by the empirical probabilities

BN Structure Learning

- The MLE of the conditional probability tables was given by the empirical probabilities

A	$P(A)$
0	$4 / 5$
1	$1 / 5$

A	B	$P(B \mid A)$
0	0	$3 / 4$
0	1	$1 / 4$
1	0	1
1	1	0

B	D	$P(D \mid B)$
0	0	$1 / 4$
0	1	$3 / 4$
1	0	1
1	1	0

A	C	$P(C \mid A)$
0	0	$1 / 4$
0	1	$3 / 4$
1	0	1
1	1	0

BN Structure Learning

- The MLE of the conditional probability tables was given by the empirical probabilities

A	$P(A)$
0	$4 / 5$
1	$1 / 5$

\mathbf{A}	\mathbf{B}	$\mathrm{P}(\mathrm{B} \mid \mathrm{A})$
0	0	$3 / 4$
0	1	$1 / 4$
1	0	1
1	1	0

A	D	$P(D \mid A)$
0	0	$1 / 2$
0	1	$1 / 2$
1	0	0
1	1	1

A	C	$P(C \mid A)$
0	0	$1 / 4$
0	1	$3 / 4$
1	0	1
1	1	0

BN Structure Learning

- Which model should be preferred?

BN Structure Learning

- Which model should be preferred?

Which one has the highest log-likelihood given the data?

BN Structure Learning

- Which model should be preferred?

Which one has the highest log-likelihood given the data?

BN Structure Learning

- Determining the structure that maximizes the log-likelihood is not too difficult
- A complete DAG always maximizes the log-likelihood!
- This almost certainly results in overfitting
- Alternative is to attempt to learn simple structures
- Optimize the log-likelihood over simple networks

Chow-Liu Trees

- Suppose that we want to find the best tree-structured BN that represents a given joint probability distribution
- Find the tree-structured BN that maximizes the likelihood
- Let's consider the log-likelihood of a fixed tree T
- Assume that the edges are directed so that each node has exactly one parent

Chow-Liu Trees

For a fixed tree:

$$
\begin{aligned}
\max _{\theta} \log l(\theta, T) & =\sum_{i \in V(T)} \sum_{x_{\text {parent }(i)}} \sum_{x_{i}} \mathrm{~N}_{x_{\mathrm{i}}, x_{\text {parent }(i)}} \log \frac{\mathrm{N}_{x_{i}, x_{\text {parent }(i)}}}{N_{x_{\text {parent}(i)}}} \\
& =\sum_{i \in V(T)}\left[\sum_{x_{i}} N_{x_{i}} \log N_{x_{i}}+\sum_{x_{\text {parent }(i)}} \sum_{x_{i}} \mathrm{~N}_{x_{\mathrm{i}}, x_{\text {parent }(\mathrm{i})}} \log \frac{\mathrm{N}_{x_{i}, x_{\text {parent }(i)}}}{N_{x_{i}} N_{x_{\text {parent }(i)}}}\right] \\
& =\left[\sum_{i \in V} \sum_{x_{i}} N_{x_{i}} \log N_{x_{i}}\right]+\left[\sum_{(i, j) \in E(T)} \sum_{x_{i}, x_{j}} \mathrm{~N}_{x_{\mathrm{i}}, x_{j}} \log \frac{\mathrm{~N}_{x_{\mathrm{i}}, x_{j}}}{N_{x_{i}} N_{x_{j}}}\right]
\end{aligned}
$$

Chow-Liu Trees

For a fixed tree:

$$
\max _{\theta} \log l(\theta, T)=\sum_{i \in V(T)} \sum_{x_{\text {parent }(i)}} \sum_{x_{i}} \mathrm{~N}_{x_{\mathrm{i}}, x_{\text {parent }(i)}} \log \frac{\mathrm{N}_{x_{i}, x_{\text {parent }(i)}}}{N_{x_{\text {parent }(i)}}}
$$

Doesn't depend on the selected tree!

Chow-Liu Trees

For a fixed tree:

$$
\begin{aligned}
\max _{\theta} \log l(\theta, T) & =\sum_{i \in V(T)} \sum_{x_{\text {parent }(i)}} \sum_{x_{i}} \mathrm{~N}_{x_{\mathrm{i}}, x_{\text {parent }(i)}} \log \frac{\mathrm{N}_{x_{i}, x_{\text {parent }(i)}}}{N_{x_{\text {parent }(i)}}} \\
& =\sum_{i \in V(T)}\left[\sum_{x_{i}} N_{x_{i}} \log N_{x_{i}}+\sum_{x_{\text {parent }(i)}} \sum_{x_{i}} \mathrm{~N}_{x_{\mathrm{i}}, x_{\text {parent }(\mathrm{i})}} \log \frac{\mathrm{N}_{x_{i}, x_{\text {parent }(i)}}}{N_{x_{i}} N_{x_{\text {parent }(i)}}}\right] \\
& =\left[\sum_{i \in V} \sum_{x_{i}} N_{x_{i}} \log N_{x_{i}}\right]+\left[\sum_{(i, j) \in E(T}\left(\sum_{x_{i}, x_{j}} N_{x_{\mathrm{i}}, x_{j}} \log \frac{\mathrm{~N}_{x_{\mathrm{i}}, x_{j}}}{N_{x_{i}} N_{x_{j}}}\right]\right.
\end{aligned}
$$

This is the (empirical) mutual information, usually denoted $I\left(x_{i} ; x_{j}\right)$

Chow-Liu Trees

- To maximize the log-likelihood, it then suffices to choose the tree T that maximizes

$$
\max _{T} \sum_{i, j} I\left(x_{i} ; x_{j}\right)
$$

- This problem can be solved by finding the maximum weight spanning tree in the complete graph with edge weight $w_{i j}$ given by the mutual information over the edge (i, j)
- Greedy algorithm works: at each step, pick the largest remaining edge that does not form a cycle when added to the already selected edges

Chow-Liu Trees

- To use this technique for learning, we simply compute the mutual information for each edge using the empirical probability distributions and then find the max-weight spanning tree
- As a result, we can learn tree-structured BNs in polynomial time
- Can we generalize this to all DAGs?

Chow-Liu Trees: Example

- Edge weights correspond to empirical mutual information for the earlier samples

Chow-Liu Trees: Example

- Edge weights correspond to empirical mutual information for the earlier samples

Chow-Liu Trees: Example

- Any directed tree (with one parent per node) over these edges maximizes the log-likelihood
- Why doesn't the direction matter?

