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Course Info.

• Instructor:  Nicholas Ruozzi

– Office:  ECSS 2.203

– Office hours:  Tues.  10am-11am

• TA:  ?

– Office hours and location ?

• Course website:  www.utdallas.edu/~nrr150130/cs7301/2016fa/
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Prerequisites

• “Mathematical sophistication”

– Basic probability

– Linear algebra

• Eigenvalues, eigenvectors, matrices, vectors, etc.

– Multivariate calculus

• Derivatives, integration, gradients, Lagrange multipliers, etc.

• I’ll review some concepts as we come to them, but you should 

brush up in areas that you aren’t as comfortable
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Grading

• 5-6 problem sets (50%) 

– See collaboration policy on the web

– Mix of theory and programming (in MATLAB)

– Available and turned in on eLearning

– Approximately one assignment every two weeks

• Midterm Exam (20%)

• Final Exam (30%)

-subject to change-
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Course Topics

• Dimensionality reduction
– PCA

– Matrix Factorizations

• Learning
– Supervised, unsupervised, active, reinforcement, …

– Learning theory:  PAC learning, VC dimension

– SVMs & kernel methods

– Decision trees, k-NN, … 

– Parameter estimation:  Bayesian methods, MAP estimation, maximum likelihood estimation, 
expectation maximization, …

– Clustering:  k-means & spectral clustering

• Graphical models
– Neural networks

– Bayesian networks:  naïve Bayes

• Statistical methods
– Boosting, bagging, bootstrapping

– Sampling

• Ranking & Collaborative Filtering
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What is ML?
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What is ML?

“A computer program is said to learn from experience E with 

respect to some task T and some performance measure P, if 

its performance on T, as measured by P, improves with 

experience E.” 

- Tom Mitchell
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Basic Machine Learning Paradigm

• Collect data

• Build a model using “training” data

• Use model to make predictions
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Supervised Learning

• Input:  𝑥(1), 𝑦(1) , … , (𝑥(𝑛), 𝑦(𝑛))

– 𝑥(𝑖) is the 𝑖𝑡ℎ data item and 𝑦(𝑖) is the 𝑖𝑡ℎ label

• Goal:  find a function 𝑓 such that 𝑓 𝑥(𝑖) is a “good 

approximation” to 𝑦(𝑖)

– Can use it to predict 𝑦 values for previously unseen 𝑥 values
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Examples of Supervised Learning

• Spam email detection

• Handwritten digit recognition

• Stock market prediction

• More?
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Supervised Learning

• Hypothesis space:  set of allowable functions 𝑓: 𝑋 → 𝑌

• Goal:  find the “best” element of the hypothesis space

– How do we measure the quality of 𝑓?

11



Types of Learning

• Supervised

– The training data includes the desired output

• Unsupervised

– The training data does not include the desired output

• Semi-supervised

– Some training data comes with the desired output

• Active learning

– Semi-supervised learning where the algorithm can ask for the correct 
outputs for specifically chosen data points

• Reinforcement learning

– The learner interacts with the world via allowable actions which change 
the state of the world and result in rewards

– The learner attempts to maximize rewards through trial and error
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Regression

𝑥

𝑦
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Regression

𝑥

𝑦

Hypothesis class:  linear functions 𝑓 𝑥 = 𝑎𝑥 + 𝑏

How do we measure the quality of the approximation?
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Linear Regression

• In typical regression applications, measure the fit using a 
squared loss function

𝐿 𝑓, 𝑦𝑖 = 𝑓 𝑥(𝑖) − 𝑦(𝑖)
2

• Want to minimize the average loss on the training data

• For 2-D linear regression, the learning problem is then

min
𝑎,𝑏

1

𝑛
෍

𝑖

𝑎𝑥(𝑖) + 𝑏 − 𝑦(𝑖)
2

• For an unseen data point, 𝑥, the learning algorithm 
predicts 𝑓(𝑥)
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Linear Regression

min
𝑎,𝑏

1

𝑛
෍

𝑖

𝑎𝑥(𝑖) + 𝑏 − 𝑦(𝑖)
2

• How do we find the optimal 𝑎 and 𝑏?
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Linear Regression

min
𝑎,𝑏

1

𝑛
෍

𝑖

𝑎𝑥(𝑖) + 𝑏 − 𝑦(𝑖)
2

• How do we find the optimal 𝑎 and 𝑏?

– Solution 1:  take derivatives and solve (there is a closed form 

solution!)

– Solution 2:  use gradient descent
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Linear Regression

min
𝑎,𝑏

1

𝑛
෍

𝑖

𝑎𝑥(𝑖) + 𝑏 − 𝑦(𝑖)
2

• How do we find the optimal 𝑎 and 𝑏?

– Solution 1:  take derivatives and solve (there is a closed form 

solution!)

– Solution 2:  use gradient descent

• This approach is much more likely to be useful for general loss functions
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Gradient Descent

Iterative method to minimize a differentiable function 𝑓

• Pick an initial point 𝑥0

• Iterate until convergence

𝑥𝑡+1 = 𝑥𝑡 − 𝛾𝑡𝛻𝑓(𝑥𝑡)

where 𝛾𝑡 is the 𝑡𝑡ℎ step size
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Gradient Descent

source: Wikipedia20



Gradient Descent

min
𝑎,𝑏

1

𝑛
෍

𝑖

𝑎𝑥(𝑖) + 𝑏 − 𝑦(𝑖)
2

• What is the gradient of this function?

• What does the gradient descent iteration look like for this 

simple regression problem?
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Linear Regression

• In higher dimensions, the linear regression problem is 

essentially the same only 𝑥(𝑖) ∈ ℝ𝑚

min
𝑎∈ℝ𝑚,𝑏

1

𝑛
෍

𝑖

𝑎𝑇𝑥(𝑖) + 𝑏 − 𝑦(𝑖)
2

• Can still use gradient descent to minimize this

– Not much more difficult than the 𝑚 = 1 case
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Gradient Descent

• Gradient descent converges under certain technical 

conditions on the function 𝑓 and the step size 𝛾𝑡

– If 𝑓 is convex, then any fixed point of gradient descent must 

correspond to a global optimum of 𝑓

– In general, convergence is only guaranteed to a local optimum
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Regression

• What if we enlarge the hypothesis class?

– Quadratic functions

– 𝑘 degree polynomials

• Can we always learn better with a larger hypothesis class?
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Regression

• What if we enlarge the hypothesis class?

– Quadratic functions

– 𝑘 degree polynomials

• Can we always learn better with a larger hypothesis class?
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Regression

• What if we enlarge the hypothesis class?

– Quadratic functions

– 𝑘 degree polynomials

• Can we always learn better with a larger hypothesis class?

– Larger hypothesis space always decreases the cost function, but 

this does NOT necessarily mean better predictive performance

– This phenomenon is known as overfitting 

• Ideally, we would select the simplest hypothesis consistent with the 

observed data
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Binary Classification

• Regression operates over a continuous set of outcomes

• Suppose that we want to learn a function 𝑓: 𝑋 → {0,1}

• As an example:

How do we pick the hypothesis 
space?

How do we find the best 𝑓 in this 
space?

𝒙𝟏 𝒙𝟐 𝑥3 𝑦

1 0 0 1 0

2 0 1 0 1

3 1 1 0 1

4 1 1 1 0
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Binary Classification

• Regression operates over a continuous set of outcomes

• Suppose that we want to learn a function 𝑓: 𝑋 → {0,1}

• As an example:

𝒙𝟏 𝒙𝟐 𝑥3 𝑦

1 0 0 1 0

2 0 1 0 1

3 1 1 0 1

4 1 1 1 0

How many functions with three 
binary inputs and one binary 
output are there?
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Binary Classification

𝒙𝟏 𝒙𝟐 𝑥3 𝑦

0 0 0 ?

1 0 0 1 0

2 0 1 0 1

0 1 1 ?

1 0 0 ?

1 0 1 ?

3 1 1 0 1

4 1 1 1 0

28 possible functions

24 are consistent with the 
observations

How do we choose the best one?

What if the observations are noisy?

29



Challenges in ML

• How to choose the right hypothesis space?

– Number of factors influence this decision:  difficulty of learning 

over the chosen space, how expressive the space is

• How to evaluate the quality of our learned hypothesis?

– Prefer “simpler” hypotheses (to prevent overfitting)

– Want the outcome of learning to generalize to unseen data
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Challenges in ML

• How do we find the best hypothesis?

– This can be an NP-hard problem!

– Need fast, scalable algorithms if they are to be applicable to real-

world scenarios
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