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Generative vs. Discriminative Models

• Generative models:  we can think of the observations as being 

generated by the latent variables

– Start sampling at the top and work downwards

– Examples?
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Generative vs. Discriminative Models

• Generative models:  we can think of the observations as being 

generated by the latent variables

– Start sampling at the top and work downwards

– Examples:  HMMs, naïve Bayes, LDA
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Topic Models

• Methods for discovering themes (topics) from a collection 

(e.g., books, newspapers, etc.)

• Annotates the collection according to the discovered 

themes

• Use the annotations to organize, search, summarize, etc.
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Models of Text Documents

• Bag-of-words models:  assume that the ordering of words in a 

document do not matter

– This is typically false as certain phrases can only appear together

• Unigram model:  all words in a document are drawn uniformly at 

random from categorical distribution

• Mixture of unigrams model:  for each document, we first choose a 

topic 𝑧 and then generate words for the document from the 

conditional distribution 𝑝(𝑤|𝑧)

– Topics are just probability distributions over words
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Topic Models
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Latent Dirichlet Allocation (LDA)
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• Each topic is a distribution over words

• Each document is a mixture of topics

• Each word is drawn from the mixture



Latent Dirichlet Allocation (LDA)
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• Only documents are observed

• Topics, mixtures, etc. are all hidden and need to be 
learned/predicted from data



Latent Dirichlet Allocation (LDA)

• 𝛼 and 𝜂 are parameters of the prior distributions over 𝜃 and 𝛽 respectively

• 𝜃𝑑 is the distribution of topics for document 𝑑 (real vector of length 𝐾)

• 𝛽𝑘 is the distribution of words for topic 𝑘 (real vector of length 𝑉)

• 𝑧𝑑,𝑛 is the topic for the 𝑛𝑡ℎ word in the 𝑑𝑡ℎ document

• 𝑤𝑑,𝑛 is the 𝑛th word of the 𝑑𝑡ℎ document
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Latent Dirichlet Allocation (LDA)

• Plate notation

– There are 𝑁 ⋅ 𝐷 different variables that represent the observed 

words in the different documents

– There are 𝐾 total topics (assumed to be known in advance)

– There are 𝐷 total documents 
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Latent Dirichlet Allocation (LDA)

• The only observed variables are the words in the documents

– The topic for each word, the distribution over topics for each 

document, and the distribution of words per topic are all latent 

variables in this model
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Latent Dirichlet Allocation (LDA)

• The model contains both continuous and discrete random variables

– 𝜃𝑑 and 𝛽𝑘 are vectors of probabilities

– 𝑧𝑑,𝑛 is an integer in {1, … , 𝐾} that indicates the topic of the 𝑛𝑡ℎ

word in the 𝑑𝑡ℎ document

– 𝑤𝑑,𝑛 is an integer in 1,… , 𝑉 which indexes over all possible 

words
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Latent Dirichlet Allocation (LDA)

• 𝜃𝑑~𝐷𝑖𝑟(𝛼) where 𝐷𝑖𝑟(𝛼) is the Dirichlet distribution with 

parameter vector 𝛼 > 0

• 𝛽𝑘~𝐷𝑖𝑟(𝜂) with parameter vector 𝜂 > 0

• Dirichlet distribution over 𝑥1, … , 𝑥𝐾 such that 𝑥1, … , 𝑥𝐾 ≥ 0 and 

σ𝑖 𝑥𝑖 = 1

𝑓(𝑥1, … , 𝑥𝐾; 𝛼1, … , 𝛼𝐾) ∝ෑ

𝑖

𝑥𝑖
𝛼𝑖−1

– The Dirichlet distribution is a distribution over probability 

distributions over 𝐾 elements

• 𝛼 controls sparsity:  lower 𝛼’s make sparse distributions more 

likely
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Latent Dirichlet Allocation (LDA)

• The discrete random variables are distributed via the corresponding 
probability distributions

𝑝(𝑧𝑑,𝑛 = 𝑘 𝜃𝑑 = 𝜃𝑑 𝑘

𝑝 𝑤𝑑,𝑛 = 𝑣 𝑧𝑑,𝑛, 𝛽1, … , 𝛽𝐾 = 𝛽𝑧𝑑,𝑛 𝑣

– Here, 𝜃𝑑 𝑘 is the 𝑘𝑡ℎelement of the vector 𝜃𝑑 which 
corresponds to the percentage of document 𝑑 corresponding to 
topic 𝑘

• The joint distribution is then

𝑝 𝑤, 𝑧, 𝜃, 𝛽 𝛼, 𝜂 =ෑ

𝑘

𝑝(𝛽𝑘|𝜂)ෑ

𝑑

𝑝(𝜃𝑑|𝛼)ෑ

𝑛

𝑝(𝑧𝑑,𝑛 𝜃𝑑 𝑝 𝑤𝑑,𝑛 𝑧𝑑,𝑛, 𝛽
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Latent Dirichlet Allocation (LDA)

• LDA is a generative model

– We can think of the words as being generated by a probabilistic 

process defined by the model

– How reasonable is the generative model?
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Latent Dirichlet Allocation (LDA)

• Inference in this model is NP-hard

• Given the 𝐷 documents, want to find the parameters that best 

maximize the joint probability 

– Can use an EM based approach called variational EM
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Variational EM

• Recall that the EM algorithm constructed a lower bound using 

Jensen’s inequality
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Variational EM

• Performing the optimization over 𝑞 is equivalent to computing 
𝑝(𝑥|𝑦, 𝜃)

• This can be intractable in practice

– Instead, restrict 𝑞 to lie in some restricted class of distributions 𝑄

– For example, could make a mean-field assumption

𝑞𝑖 𝑦 =ෑ

𝑗

𝑞𝑖𝑗(𝑦𝑗)

• The resulting algorithm only yields an approximation to the log-
likelihood
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EM for Topic Models

𝑝 𝑤 𝛼, 𝜂 = නෑ

𝑘

𝑝(𝛽𝑘|𝜂)න

𝑧

ෑ

𝑑

𝑝(𝜃𝑑|𝛼)ෑ

𝑛

𝑝(𝑧𝑑,𝑛 𝜃𝑑 𝑝 𝑤𝑑,𝑛 𝑧𝑑,𝑛, 𝛽 𝑑𝜃 𝑑𝛽

• To apply variational EM, we write

log 𝑝 𝑤 𝛼, 𝜂 = logනන

𝑧

𝑝 𝑤, 𝑧, 𝜃, 𝛽 𝛼, 𝜂 𝑑𝜃𝑑𝛽

≥ නන

𝑧

𝑞 𝑧, 𝜃, 𝛽 log
𝑝 𝑤, 𝑧, 𝜃, 𝛽 𝛼, 𝜂

𝑞 𝑧, 𝜃, 𝛽
𝑑𝜃𝑑𝛽

where we restrict the distribution 𝑞 to be of the following form

𝑞 𝑧, 𝜃, 𝛽 =ෑ

𝑘

𝑞(𝛽𝑘|𝜂)ෑ

𝑑

𝑞 𝜃𝑑 𝛼 ෑ

𝑛

𝑞(𝑧𝑑,𝑛)
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Example of LDA
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Example of LDA
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Extensions of LDA

• Author– Topic model

– 𝑎𝑑 is the group of authors for 

the 𝑑th document

– 𝑥𝑑,𝑛 is the author of the 𝑛th

word of the 𝑑th document

– 𝜃𝑎 is the topic distribution for 

author 𝑎

– 𝑧𝑑,𝑛 is the topic for the 𝑛th

word of the 𝑑th document
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The Author-Topic Model for Authors and Documents 
Rosen-Zvi et al.



Extensions of LDA
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• Label 𝑌𝑑 for each document represents a value to be predicted from 

the document

– E.g., number of stars for each document in a corpus of movie 

reviews



Research in LDA & Topic Models

• Better inference & learning techniques

• More expressive models
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