Neural Networks

Nicholas Ruozzi
University of Texas at Dallas

Handwritten Digit Recognition

* Given a collection of handwritten digits and
their corresponding labels, we’d like to be
able to correctly classify handwritten digits

— A simple algorithmic technique can
solve this problem with 95% accuracy

* This seems surprising, in fact, state-
of-the-art methods can achieve near
99% accuracy (you’ve probably seen
these in action if you've deposited a Digits from the MNIST
check recently) data set

—fJj 4L
N R JwlS

Neural Networks
_

» The basis of neural networks was developed in the 1940s -1960s

— The idea was to build mathematical models that might “compute”
in the same way that neurons in the brain do

— As aresult, neural networks are biologically inspired, though
many of the algorithms developed for them are not biologically
plausible

— Perform surprisingly well for the handwritten digit recognition task

Neural Networks

* Neural networks consist of a collection of artificial neurons

* There are different types of neuron models that are commonly studied
— The perceptron (one of the first studied)
— The sigmoid neuron (one of the most common, but many more)
— Rectified linear units

* Aneural network is typically a directed graph consisting of a
collection of neurons (the nodes in the graph), directed edges (each
with an associated weight), and a collection of fixed binary inputs

UT D

The Perceptron
e

» A perceptron is an artificial neuron that takes a collection of binary
inputs and produces a binary output

— The output of the perceptron is determined by summing up the
weighted inputs and thresholding the result: if the weighted sum
is larger than the threshold, the output is one (and zero otherwise)

11 wyxg + wyx, +wixg > threshold
Y 0 otherwise

The Perceptron

11 wyxqy +wyxy +wixg > threshold
Y 0 otherwise

* The weights can be both positive and negative

* Many simple decisions can be modeled using perceptrons

Perceptron for NOT

x_.@_.y

 Choosew = —1, threshold = —.5

. _ 1 —x>-.5
Y 0 —x<-5

Perceptron for OR
I

Perceptron for OR

* Choosew; = w, = 1, threshold = 0

. _ 1 X1+x2>0
Y = 0 X1+XZSO

Perceptron for AND

10

Perceptron for AND

* Choose w; = w, = 1, threshold = 1.5

. _ 1 X1+XZ>1.5
Y= 0 X1+x2S1.5

11

Perceptron for XOR

12

Perceptron for XOR

* Need more than one perceptron!

BN O 0O
’ |
L L)

* Weights forincoming edges are chosen as before

— Networks of perceptrons can encode any circuit!

13

Perceptrons
I

* Perceptrons are usually expressed in terms of a collection of input
weights and a bias b (which is the negative threshold)

X9 E }—-}y
X

3

_J1 wixg +wax, +wixz +0 >0
Y 0 otherwise

* Asingle node perceptron is just a linear classifier

— This is actually where the “perceptron algorithm” comes from

14

Neural Networks
I

* Gluing a bunch of perceptrons together gives us a neural network

* In general, neural nets have a collection of binary inputs and a
collection of binary outputs

Inputs Outputs

15

Beyond Perceptrons
-

* Given a collection of input-output pairs, we’d like to learn the weights
of the neural network so that we can correctly predict the ouput of an
unseen input

— We could try learning via gradient descent (e.g., by minimizing the
Hamming loss)

* This approach doesn’t work so well: small changes in the
weights can cause dramatic changes in the output

* This is a consequence of the discontinuity of sharp
thresholding (same problem we saw in SVMs)

16

The Sigmoid Neuron
|

* Asigmoid neuron is an artificial neuron that takes a collection of
inputs in the interval [0,1] and produces an output in the interval
[0,1]

— The output is determined by summing up the weighted inputs plus
the bias and applying the sigmoid function to the result

y = o(wyixy + wyXxy + wixs + b)

where o is the sigmoid function

17

The Sigmoid Function

* The sigmoid function is a continuous function that approximates a
step function

o) =1 /7

—10 -5 5 10

18

Rectified Linear Units

* The sigmoid neuron approximates a step function as a smooth
function

 The relu approximates a hinge loss max (0, x) as a smooth
continuous function In(1 + e*)

Monlinearities

1 1
— Softplus

a(x)

19

Multilayer Neural Networks
[——

input layer <

from Neural Networks and Deep Learning by Michael Nielson

20

Multilayer Neural Networks
[——

NO intralayer connections

input layer <

from Neural Networks and Deep Learning by Michael Nielson

21

Neural Network for Digit Classification
I ——

Ilil] I.] e IH.}' er

output layer

[=% w b -

Input layver

(TRB4 neurons)

=] il =1 =} o

from Neural Networks and Deep Learning by Michael Nielson

22

Neural Network for Digit Classification

, Why 10
= A instead of 47

from Neural Networks and Deep Learning by Michael Nielson

23

Expressiveness of NNs
e

* Boolean functions

* Every Boolean function can be represented by a network with a
single hidden layer consisting of possibly exponentially many

hidden units

e Continuous functions

* Every bounded continuous function can be approximated up to
arbitrarily small error by a network with one hidden layer

 Any function can be approximated to arbitrary accuracy with two
hidden layers

24

Training Neural Networks

To do the learning, we first need to define a loss function to minimize

1
Cw,b) =5) [ly™ = a(x™ w, b1
m

The training data consists of input output pairs
(chyt), e, M, ™M)

a(x™,w, b) is the output of the neural network for the m*" sample

w and b are the weights and biases

25

Gradient of the Loss

* The derivative of the loss function is calculated as follows

acwb) 1. . da(x™,w, b)
== [y™ = a@x™,w, b)] -
m

aWk

— To compute the derivative of a, use the chain rule and the
derivative of the sigmoid function

do(z)
dz

=0(2) - (1-0(2))

— This gets complicated quickly with lots of layers of neurons

26

Stochastic Gradient Descent

* To make the training more practical, stochastic gradient descent is
used instead of standard gradient descent

* Recall, the idea of stochastic gradient descent is to approximate the
gradient of a sum by sampling a few indices and averaging

n 1 K
7,) fid) =7) Vef k()
=1 k=1
here, for example, each i is sampled uniformly at random from
{1,..,n}

27

Computing the Gradient
I
* We'll compute the gradient for a single sample
C(w,b) = |ly — a(x,w, b)||?

e Some definitions:

— L is the number of layers

— aj is the output of the j*" neuron on the I*" layer

— ij is the input of the j¢"* neuron on the It" layer
I _ L 1-1 3l
Zj = 2 ijak + b]
K

_ slis defi oc
6] is defined to be az]l.

28

Computing the Gradient

For the output layer, we have the following partial derivative

oc NG
a_ZjL = —(y,- — 4)a_sz
aO'(Z-L)
=0y~)=,
J)
= —(y —a7) o(z) (1 — U(ZJ'L))
— 5L

J

* Forsimplicity, we will denote the vector of all such partials for each node in
the ['" layer as &*

29

UT D

Computing the Gradient

Forthe L — 1 layer, we have the following partial derivative

E(a - y;)o(z}) (1 o(z})

) azk
) '+ bf

azk

Z<a -y a(zh) (1-a(z})
Z(a -y o(z}) (1-0(zf)) o(2k™) (1 - o (™)) wh
((SL)T)(1 o(zk~ 1)) o(zk™1)

30

Computing the Gradient

I —
» We can think of w' as a matrix
* This allows us to write
511 = (69 wh)(1 - o(z-"1))o(zE 1)
where o(zL~1) is the vector whose k‘"* componentis o(zf 1)

* Applying the same strategy, for [< L
sl = ((51+1)TW1+1) (1 _ O.(Zl)) o(z)

31

Computing the Gradient

* Now, for the partial derivatives that we care about

ac ac 0z
anl Al apl Y
ob! 9z! b

oc aC 0z

I — a1]
E)ij 0Zj (’)ij

_ ol -1
= 0jay

* We can compute these derivatives one layer at a time!

32

Backpropagation: Putting it all together
-

e Compute the inputs/outputs for each layer by starting at the input layer and
applying the sigmoid functions

« Compute 5 for the output layer

s = ~(—) o(s) (1- o(#))
e Starting from [= L — 1 and working backwards, compute
5t = (8)TwH) o(2') (1 - o(2h))
* Perform gradient descent

I _ 1.1 l
bj = bj =y 9;

L _ ol el o1-1
Wi = Wji =V * 0jay

33

Backpropagation

* Backpropagation converges to a local minimum (loss is not convex in the
weights and biases)

— Like EM, can just run it several times with different initializations

— Training can take a very long time (even with stochastic gradient
descent)

— Prediction after learning is fast

— Sometimes include a momentum term « in the gradient update

wit)=wt—-1) -y -V,Ct—1)+a(—y-V,C(t —2))

34

Overfitting

Error versus weight updates (example 1)

o 7]

0.01
Training set error % 4

0.009
Validation set error +
0.008 r -

0.007
0.006
0.005
0.004
0.003
0.002

Error

0 5000 10000 15000 20000
Number of weight updates

35

UT D

Overfitting
e

Error versus weight updates (example 2)

0.08 Mg . l . \
007 | * Training seterror ¢ -
e, Validation set error +
0.06 ++t|- _

++_|+H.|-+-FH"'I’|+HH""*H-H.|=|_+

005 B . +|‘|=|=|.|=H_|++|=H+ -
2 004 r ° M

m *
0.03 [. 1
0.02 | A]

¢
001 F " _

O |
0 1000 2000 3000 4000 5000 6000

Number of weight updates

36

UT D

Neural Networks in Practice
_

* Many ways to improve weight learning in NNs
— Use a regularizer! (better generalization)
— Try other loss functions
— Initialize the weights of the network more cleverly
* Random initializations are likely to be far from optimal
— etc.

* The learning procedure can have numerical difficulties if there are a
large number of layers

UT D

37

Regularized Loss

Penalize learning large weights

1 A
r(w,b) — m _ m 2 4 2
C 7 E |y a(x™, w,b)|| +2IIWII2
m

Can still use the backpropagation algorithm in this setting
£, regularization can also be useful

Regularization can significantly help with overfitting, but A will often
need to be quite large as the size of the training set is typically much
larger than what we have been working with

— How to choose A1?

38

Dropout

* Aheuristic bagging-style approach applied to neural networks to
counteract overfitting

— Randomly remove a certain percentage of the neurons from the
network and then train only on the remaining neurons

— The networks are recombined using an approximate averaging
technique (keeping around too many networks and doing proper
bagging can be costly in practice)

39

Other Techniques
-

 Early stopping
— Stop the learning early in the hopes that this prevents overfitting
* Parametertying

— Assume some of the weights in the model are the same to reduce
the dimensionality of the learning problem

— Also a way to learn “simpler” models

40

Other Ideas

e (Convolutional neural networks

— Instead of the output of every neuron at layer [being used as an
input to every neuron at layer [+ 1, the edges between layers are
chosen more locally

— Many tied weights and biases (i.e., convolution nets apply the
same process to many different local chunks of neurons)

— Often combined with pooling layers (i.e., layers that, say, half the
number of neurons by replacing small regions of neurons with
their maximum output)

— Used extensively in neural nets for image classification tasks

41

UT D

