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Announcements

• Homework 1 is available soon

• Piazza discussion group?

• Reminder:  my office hours are 10am-11am on Tuesdays
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Binary Classification

• Input 𝑥 1 , 𝑦(1) , … , (𝑥 𝑛 , 𝑦(𝑛)) with 𝑥(𝑖)∈ ℝ𝑚 and 𝑦(𝑖) ∈

{−1,+1}

• We can think of the observations as points in ℝ𝑚 with an associated 

sign (either +/- corresponding to 0/1)
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𝑤𝑇𝑥 + 𝑏 = 0

𝑤𝑇𝑥 + 𝑏 < 0

𝑤𝑇𝑥 + 𝑏 > 0
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𝑤𝑇𝑥 + 𝑏 = 0

𝑤𝑇𝑥 + 𝑏 < 0

𝑤𝑇𝑥 + 𝑏 > 0

𝑤 is called the 
vector of 
weights and 𝑏 is 
called the bias



What If the Data Isn‘t Separable?

• Input 𝑥 1 , 𝑦(1) , … , (𝑥 𝑛 , 𝑦(𝑛)) with 𝑥(𝑖)∈ ℝ𝑚 and 𝑦(𝑖) ∈

{−1,+1}

• We can think of the observations as points in ℝ𝑚 with an associated 

sign (either +/- corresponding to 0/1)
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hypothesis space for 

this problem?
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Adding Features

• The idea:

– Given the observations 𝑥(1), … , 𝑥(𝑛), construct a feature vectors 

𝜙 𝑥 1 , … , 𝜙(𝑥(𝑛))

– Use 𝜙 𝑥(1) , … , 𝜙 𝑥(𝑛) instead of 𝑥(1), … , 𝑥(𝑛) in the learning algorithm

– Goal is to choose 𝜙 so that 𝜙 𝑥(1) , … , 𝜙 𝑥(𝑛) are linearly separable

– Learn linear separators of the form 𝑤𝑇𝜙 𝑥 (instead of 𝑤𝑇𝑥)

• Warning: more expressive features can lead to overfitting!
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Support Vector Machines
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• How can we decide between perfect classifiers?
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Support Vector Machines
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• Define the margin to be the distance of the closest data 

point to the classifier
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• Support vector machines (SVMs)

• Choose the classifier with the largest margin

– Has good practical and theoretical performance

Support Vector Machines
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• In 𝑛 dimensions, a hyperplane is a solution to the equation

𝑤𝑇𝑥 + 𝑏 = 0

with 𝑤 ∈ ℝ𝑛, 𝑏 ∈ ℝ

• The vector 𝑤 is sometimes called the normal vector of the 

hyperplane

Some Geometry

𝑤𝑇𝑥 + 𝑏 = 0

𝑤
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• In 𝑛 dimensions, a hyperplane is a solution to the equation

𝑤𝑇𝑥 + 𝑏 = 0

• Note that this equation is scale invariant for any scalar 𝑐

𝑐 ⋅ 𝑤𝑇𝑥 + 𝑏 = 0

Some Geometry

𝑤𝑇𝑥 + 𝑏 = 0

𝑤
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• The distance between a point 𝑦 and a hyperplane 𝑤𝑇 +
𝑏 = 0 is the length of the segment perpendicular to the 

line to the point 𝑦

𝑦 − 𝑧 = 𝑦 − 𝑧
𝑤

𝑤

Some Geometry

𝑤𝑇𝑥 + 𝑏 = 0

𝑧

𝑦
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• By scale invariance, we can assume that 𝑐 = 1

• The maximum margin is always attained by choosing 

𝑤𝑇𝑥 + 𝑏 = 0 so that it is equidistant from the closest 

data point classified as +1 and the closest data point 

classified as -1

Scale Invariance

𝑤𝑇𝑥 + 𝑏 = 0

𝑧

𝑦

𝑤𝑇𝑥 + 𝑏 = 𝑐
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• We want to maximize the margin subject to the constraints 

that

𝑦(𝑖) 𝑤𝑇𝑥 𝑖 + 𝑏 ≥ 1

• But how do we compute the size of the margin?

Scale Invariance

𝑤𝑇𝑥 + 𝑏 = 0

𝑧

𝑦

𝑤𝑇𝑥 + 𝑏 = 𝑐 𝑤𝑇𝑥 + 𝑏 = −𝑐
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Putting it all together

𝑦 − 𝑧 = 𝑦 − 𝑧
𝑤

𝑤

and

𝑤𝑇𝑦 + 𝑏 = 1
𝑤𝑇𝑧 + 𝑏 = 0

Some Geometry

𝑤𝑇 𝑦 − 𝑧 = 1

and

𝑤𝑇 𝑦 − 𝑧 = 𝑦 − 𝑧 𝑤

which gives

𝑦 − 𝑧 = 1/ 𝑤

𝑤𝑇𝑥 + 𝑏 = 0

𝑧

𝑦

𝑤𝑇𝑥 + 𝑏 = 1 𝑤𝑇𝑥 + 𝑏 = −1
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SVMs

• This analysis yields the following optimization problem

max
𝑤

1

𝑤

such that

𝑦(𝑖) 𝑤𝑇𝑥 𝑖 + 𝑏 ≥ 1, for all 𝑖

• Or, equivalently,

min
𝑤

𝑤 2

such that

𝑦(𝑖) 𝑤𝑇𝑥 𝑖 + 𝑏 ≥ 1, for all 𝑖
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SVMs

min
𝑤

𝑤 2

such that

𝑦(𝑖) 𝑤𝑇𝑥 𝑖 + 𝑏 ≥ 1, for all 𝑖

• This is a standard quadratic programming problem

– Falls into the class of convex optimization problems

– Can be solved with many specialized optimization tools (e.g., 

quadprog() in MATLAB)
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SVMs

• Where does the name come from?

– The set of all data points such that 𝑦(𝑖)(𝑤𝑇𝑥(𝑖) + 𝑏) = 1 are 

called support vectors

𝑤𝑇𝑥 + 𝑏 = 0

𝑧

𝑦

𝑤𝑇𝑥 + 𝑏 = 1 𝑤𝑇𝑥 + 𝑏 = −1

20



SVMs

• What if the data isn’t linearly separable?

– Use feature vectors

– Relax the constraints  (coming soon)

• What if we want to do more than just binary classification 

(i.e., if 𝑦 ∈ {1,2,3})?
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Multiclass Classification
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One-Versus-All SVMs
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One-Versus-All SVMs
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One-Versus-All SVMs

• Compute a classifier for each label versus the remaining labels (i.e., 

and SVM with the selected label as plus and the remaining labels 

changed to minuses)

• Let 𝑓𝑘 𝑥 = 𝑤 𝑘 𝑇
𝑥 + 𝑏(𝑘) be the classifier for the 𝑘𝑡ℎ label

• For a new datapoint 𝑥, classify it as

𝑘′ ∈ argmax𝑘𝑓
𝑘(𝑥)

• Drawbacks:

– If there are 𝐿 possible labels, requires learning 𝐿 classifiers over the entire 

data set

– Doesn’t make sense if the classifiers are not comparable
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One-Versus-All SVMs
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One-Versus-One SVMs

• Alternative strategy is to construct a classifier for all possible pairs of 

labels

• Given a new data point, can classify it by majority vote (i.e., find the 

most common label among all of the possible classifiers)

• If there are 𝐿 labels, requires computing 
𝐿
2

different classifiers 

each of which uses only a fraction of the data

• Drawbacks:  Can overfit if some pairs of labels do not have a 

significant amount of data
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One-Versus-One SVMs
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