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Announcements
-

* Homework 1 is available soon

* Piazza discussion group?

* Reminder: my office hours are 10am-11am on Tuesdays




Binary Classification
e

o Input (x®,yD), ., (x™, y™) with xDe R™ and y© €
{—1,+1}

* We can think of the observations as points in R"* with an associated
sign (either +/- correspondingto 0/1)

wix+b>0
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What If the Data Isn‘t Separable?
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Adding Features

* Theidea:

— Given the observations x(1, ..., x(™ construct a feature vectors

d(xD), ..., p(x™)
— Use p(xD), ..., p(x™) instead of xV, ..., x(™ in the learning algorithm
— Goal is to choose ¢ so that p(x 1)), ..., p(x (™) are linearly separable

— Learn linear separators of the form w’ ¢ (x) (instead of w’ x)

» Warning: more expressive features can lead to overfitting!




Support Vector Machines
I

* How can we decide between perfect classifiers?
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Support Vector Machines
I

* Define the margin to be the distance of the closest data
point to the classifier
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Support Vector Machines
I

e Support vector machines (SVMs)

* Choose the classifier with the largest margin
— Has good practical and theoretical performance
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Some Geometry
N

wix+b=0

2!

* Inn dimensions, a hyperplane is a solution to the equation
wlix+b=0
withw € R, b € R

* The vector w is sometimes called the normal vector of the
hyperplane
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Some Geometry
e

wix+b=0

2!

* Inn dimensions, a hyperplane is a solution to the equation
wlix+b=0
* Note that this equation is scale invariant for any scalar ¢

c-(wlx+b)=0
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Some Geometry
e

wix+b=0

* The distance between a point y and a hyperplane w! +
b = 0 is the length of the segment perpendicular to the

line to the point y
W
—z=ly -zl —
Y LTI
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Scale Invariance

wix+b=c

e Byscale invariance, we can assume thatc = 1

* The maximum margin is always attained by choosing
wlx + b = 0 so that it is equidistant from the closest
data point classified as +1 and the closest data point
classified as -1
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Scale Invariance

wix+b=c wix+b=0 wix+b=—c

* We want to maximize the margin subject to the constraints
that

yO(wTx® +p) > 1

* But how do we compute the size of the margin?
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Some Geometry

Putting it all together wli(y—2z)=1
w
A T — Tty — 2 = lly  Zllwl
w'(y —z) = |ly —zll|lw
and which gives
'y+b=1 £
Wy ly —z|| = 1/][w]|

wlz+b=0
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SVMs

 This analysis yields the following optimization problem

1
max
w lwli

such that
y@ (WTx(i) +b) > 1,forall i

* Or, equivalently,
min||w||?
w
such that
yO(wTx® +p) > 1,forall i
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SVMs

min||w||?
w

such that
yO(wTx® +p) > 1,forall i

* This is a standard quadratic programming problem
— Falls into the class of convex optimization problems

— Can be solved with many specialized optimization tools (e.g.,
quadprog() in MATLAB)
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 Where does the name come from?

— The set of all data points such that y & (wTx® + b) = 1 are
called support vectors
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SVMs

* What if the data isn’t linearly separable?
— Use feature vectors

— Relax the constraints (coming soon)

* What if we want to do more than just binary classification
(i.e.,ify € {1,2,3})?
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Multiclass Classification
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One-Versus-All SVMs




One-Versus-All SVMs

Regions correctly classified by exactly one classifier
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One-Versus-All SVMs

» Compute a classifier for each label versus the remaining labels (i.e.,
and SVM with the selected label as plus and the remaining labels
changed to minuses)

e Let f*(x) = w®" x + b e the classifier for the k" label

* Foranew datapoint x, classify it as
k' € argmax; f*(x)
* Drawbacks:

— Ifthere are L possible labels, requires learning L classifiers over the entire
data set

— Doesn’t make sense if the classifiers are not comparable
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One-Versus-All SVMs

Regions in which points are classified by highest value of wTx + b
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One-Versus-One SVMs

* Alternative strategy is to construct a classifier for all possible pairs of
labels

» Given a new data point, can classify it by majority vote (i.e., find the
most common label among all of the possible classifiers)

 |fthere are L labels, requires computing (;‘) different classifiers

each of which uses only a fraction of the data

* Drawbacks: Can overfit if some pairs of labels do not have a
significant amount of data
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One-Versus-One SVMs

Regions determined by majority vote over the classifiers
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