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The Strategy So Far...

* Choose hypothesis space

* Construct loss function (ideally convex)

* Minimize loss to “learn” correct parameters




General Optimization
I

A mathematical detour, we’ll come back to SVMs soon!

min X
min fo(x)

subject to:

fi(x) <0, i=1,..m
h;(x) =0, i=1,..,p




General Optimization
—

. fo is not necessarily convex
min
xERM

fi(x) <0, i=1,..,m
hi(x) =0, i=1,..,p

subject to:




General Optimization
I

min X
XERMN fO( ) Constraints do not need to
. be li
subject to: e near
i1=1,...,m




Lagrangian

vih;(x)

N

=1

LGt AY) = folO) + ) Aifil) +
1=1

* Incorporate constraints into a new objective function
A = 0and v are vectors of Lagrange multipliers

* The Lagrange multipliers can be thought of as soft
constraints




Duality

e Construct a dual function by minimizing the Lagrangian
over the primal variables

g4, v) =infL(x,A,v)
X

* g(A,v) = —oo whenever the Lagrangian is not bounded
from below for a fixed A and v




The Primal Problem
IS

min fo(x)
subject to:
fi(x) <0, i=1,..,m
h;(x) =0, i=1,..,p
Equivalently,

inf sup L(x,A,v)

X A1=20,v




The Dual Problem

sup g(4,v)
A=0,v

Equivalently,
sup infL(x, A,v)

A=0,v X

* The dual problem is always concave, even if the primal
problem is not convex




Primal vs. Dual
e

sup infL(x,A,v) < inf sup L(x, A, v)

A=0,v X X A=20,v

 Why?
— g4, v) < L(x,4,v) forall x

— L(x'",A,v) < f,(x") foranyfeasible x', A > 0
e x is feasible if it satisfies all of the constraints

— Let x™ be the optimal solution to the primal problemand A > 0

g4, v) S L(x", 4 v) < fo(x7)
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Simple Examples

* Minimize x* + y* subjecttox +y = 1
 Minimize x + y + z subjectto x? + y% + z% > 1

* Minimize x logx + ylogy + zlog z subjectto x + y +
z=1landx,y,z=>0




Duality

-
* Under certain conditions, the two optimization problems
are equivalent

sup infL(x,A,v) =inf sup L(x,4,v)

A=0,v X X A=20,v

— This is called strong duality

 Ifthe inequality is strict, then we say that there is a duality
gap

— Size of gap measured by the difference between the two sides of
the inequality

S UT D




Slater’s Condition
[

For any optimization problem of the form

min X
min fo(x)

subject to:

fi(x) <0, i=1,..,m
Ax =D

where f,, ..., f;,, are convex functions, strong duality holds if
there exists an x such that

fi(x) <0, i=1,..,m
Ax =b




Dual SVM

: 2
min — ||W
in = [w

such that
yi(wTx® +b) > 1,forall i

* Note that Slater’s condition holds as long as the data is
linearly separable




Dual SVM

1 |
Lw,b,2) = Sw"w + Z 2,1 =y, (wTx® + b))
[

Convex in w, so take derivatives to form the dual

dL

m = Wy + Z —/L-yixlgl) =0
l

oL
ob

i

—Aiy; =0




Dual SVM

1 |
Lw,b,2) = Sw"w + Z 2,1 =y, (wTx® + b))
[

Convex in w, so take derivatives to form the dual

w = 2 Ayix®
:
ZAiYi =0
i




Dual SVM
1 PYP PVNING L) B N
max —- A iAjYiyixs XY+ e

A i

such that
zﬂiyl' =0
i

* By strong duality, solving this problem is equivalent to
solving the primal problem

— Given the optimal A, we can easily construct w (b can be found by

complementary slackness)
.




Complementary Slackness

* Suppose that there is zero duality gap

* Letx”™ be an optimum of the primal and (1%, v™) be an optimum
of the dual

fO(x*) — g(A*IV*) - .
= inf |fo00) + ) Aifi(x) + vz‘hioc)]
o S §
< fole) + ) Zifix) + ) Vil
=1 =1

= folr) + ) Aifix)
=1

< fo(x®)




Complementary Slackness

e This means that

=1

— AsA = 0and f;(x;") < 0, this can only happen if A f;(x*) =
O forall i

— Put another way,
* If f;(x*) < 0 (i.e., the constraint is not tight), then A = 0
* IfA7 > 0,then f;(x*) =0

* ONLY applies when there is no duality gap
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Dual SVM
1 PYP PVNING L) B N
max — - L iAjYiyixs XY+ e

I i

such that
zﬂiyl' =0
i

* By complementary slackness, 1} > 0 means that x(!) is a
support vector (can then solve for b using w)
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Dual SVM

1 T
1832, 2 o+ )
i i

such that
zﬂiyl' =0
i

» Takes O (n?) time just to evaluate the objective function

— Active area of research to try to speed this up
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The Kernel Trick
1 O ()
r/rllgg(—EZZAiAjyiij XY’ + Zli
I J i

such that
zﬂiyl' =0
i

* The dual formulation only depends on inner products
between the data points

— Same thing is true if we use feature vectors instead




The Kernel Trick

* For some feature vectors, we can compute the inner products
quickly, even if the feature vectors are very large

* Thisis bestillustrated by example
" X1X27
X2X1
— Let¢(x1, xz) — x12

— Oy, %)T P (21, 2,) = xF27 + 2x1%,2175 + X525

= (X121 + Xx32,)*

= (x"2)*




The Kernel Trick

* For some feature vectors, we can compute the inner products
quickly, even if the feature vectors are very large

* Thisis bestillustrated by example
" X1X27
X2X1
— Let¢(x1, xz) — x12

— Oy, %)T P (21, 2,) = xF27 + 2x1%,2175 + X525

= ) + x2Z2)2

Reduces to a dot
product in the original

space
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The Kernel Trick

* The same idea can be applied for the feature vector ¢ of all
polynomials of degree (exactly) d

- ¢()"¢p(2) = (x"2)*

* More generally, a kernel is a function
k(x,z) = ¢p(x)! ¢p(2) for some feature map ¢

* Rewrite the dual objective

1 . .
_ = 1 7.7, (D) +U) .
103X ZZZMWJW X ”Z 4
] l

l
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Examples of Kernels
e

* Polynomial kernel of degree exactly d
— k(x,z) = (xT2)4
* General polynomial kernel of degree d for some ¢

—k(x,2) = (xTz 4+ )4

e (Gaussian kernel for some o
_ _ 2
—k(x,z) = exp( lx—z] )

202

— The corresponding ¢ is infinite dimensional!

* Many more...




Gaussian Kernels
S

e (Considerthe Gaussian kernel

—|lx — z||? —(x—2)" (x — 2)
exp( 252 ) - exp( 207 )

_ (Dl 4 2xTz — 2]
- ©XP 207

XT

= exp(—|lx[|*) exp(—|lz]|*) exp (a_22>

* Use the Taylor expansion for exp()

co

xTz (xTz)"
eXp o2 - Z g2nhn!

n=0




Gaussian Kernels
.

e (Considerthe Gaussian kernel

—|lx — z||? —(x—2)" (x — 2)
exp( 252 ) - exp( 207 )

_ (Dl 4 2xTz — 2]
- ©XP 207

XT

= exp(—|lx[|*) exp(—|lz]|*) exp (0_22>

* Use the Taylor expansion for exp()

Polynomial kernels of
every degree!

- (D




Kernels
-

* Bigger feature space increases the possibility of overfitting

— Large margin solutions should still generalize reasonably well

 Alternative: add “penalties” to the objective to
disincentivize complicated solutions

minz lwl||? + ¢ - (# of misclassifications)
w

— Not a quadratic program anymore (in fact, it's NP-hard)

— Similar problem to Hamming loss, no notion of how badly the
data is misclassified
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