Lagrange Multipliers \& the Kernel Trick

Nicholas Ruozzi
University of Texas at Dallas

The Strategy So Far...

- Choose hypothesis space
- Construct loss function (ideally convex)
- Minimize loss to "learn" correct parameters

General Optimization

A mathematical detour, we'll come back to SVMs soon!

$$
\min _{x \in \mathbb{R}^{n}} f_{0}(x)
$$

subject to:

$$
\begin{array}{ll}
f_{i}(x) \leq 0, & i=1, \ldots, m \\
h_{i}(x)=0, & i=1, \ldots, p
\end{array}
$$

General Optimization

subject to:

$$
\begin{aligned}
& f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& h_{i}(x)=0, \quad i=1, \ldots, p
\end{aligned}
$$

General Optimization

$$
\min _{x \in \mathbb{R}^{n}} f_{0}(x)
$$

subject to:

$$
\begin{aligned}
& f_{i}(x) \leq 0, \\
& h_{i}(x)=0,
\end{aligned} \quad \begin{aligned}
& i=1, \ldots, m \\
& i=1, \ldots, p
\end{aligned}
$$

Constraints do not need to be linear

Lagrangian

$$
L(x, \lambda, v)=f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)+\sum_{i=1}^{p} v_{i} h_{i}(x)
$$

- Incorporate constraints into a new objective function
- $\lambda \geq 0$ and v are vectors of Lagrange multipliers
- The Lagrange multipliers can be thought of as soft constraints

Duality

- Construct a dual function by minimizing the Lagrangian over the primal variables

$$
g(\lambda, v)=\inf _{x} L(x, \lambda, v)
$$

- $g(\lambda, v)=-\infty$ whenever the Lagrangian is not bounded from below for a fixed λ and v

The Primal Problem

$$
\min _{x \in \mathbb{R}^{n}} f_{0}(x)
$$

subject to:

$$
\begin{array}{ll}
f_{i}(x) \leq 0, & i=1, \ldots, m \\
h_{i}(x)=0, & i=1, \ldots, p
\end{array}
$$

Equivalently,

$$
\inf _{x} \sup _{\lambda \geq 0, v} L(x, \lambda, v)
$$

The Dual Problem

$$
\sup _{\lambda \geq 0, v} g(\lambda, v)
$$

Equivalently,

$$
\sup _{\lambda \geq 0, v} \inf _{x} L(x, \lambda, v)
$$

- The dual problem is always concave, even if the primal problem is not convex

Primal vs. Dual

$$
\sup _{\lambda \geq 0, v} \inf _{x} L(x, \lambda, v) \leq \inf _{x} \sup _{\lambda \geq 0, v} L(x, \lambda, v)
$$

- Why?
$-g(\lambda, v) \leq L(x, \lambda, v)$ for all x
$-L\left(x^{\prime}, \lambda, v\right) \leq f_{0}\left(x^{\prime}\right)$ for any feasible $x^{\prime}, \lambda \geq 0$
- x is feasible if it satisfies all of the constraints
- Let x^{*} be the optimal solution to the primal problem and $\lambda \geq 0$

$$
g(\lambda, v) \leq L\left(x^{*}, \lambda, v\right) \leq f_{0}\left(x^{*}\right)
$$

Simple Examples

- Minimize $x^{2}+y^{2}$ subject to $x+y=1$
- Minimize $x+y+z$ subject to $x^{2}+y^{2}+z^{2} \geq 1$
- Minimize $x \log x+y \log y+z \log z$ subject to $x+y+$ $z=1$ and $x, y, z \geq 0$

Duality

- Under certain conditions, the two optimization problems are equivalent

$$
\sup _{\lambda \geq 0, v} \inf _{x} L(x, \lambda, v)=\inf _{x} \sup _{\lambda \geq 0, v} L(x, \lambda, v)
$$

- This is called strong duality
- If the inequality is strict, then we say that there is a duality gap
- Size of gap measured by the difference between the two sides of the inequality

Slater's Condition

For any optimization problem of the form

$$
\min _{x \in \mathbb{R}^{n}} f_{0}(x)
$$

subject to:

$$
\begin{gathered}
f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
A x=b
\end{gathered}
$$

where f_{0}, \ldots, f_{m} are convex functions, strong duality holds if there exists an x such that

$$
\begin{gathered}
f_{i}(x)<0, \quad i=1, \ldots, m \\
A x=b
\end{gathered}
$$

Dual SVM

$$
\min _{w} \frac{1}{2}\|w\|^{2}
$$

such that

$$
y_{i}\left(w^{T} x^{(i)}+b\right) \geq 1, \text { for all } i
$$

- Note that Slater's condition holds as long as the data is linearly separable

Dual SVM

$$
L(w, b, \lambda)=\frac{1}{2} w^{T} w+\sum_{i} \lambda_{i}\left(1-y_{i}\left(w^{T} x^{(i)}+b\right)\right)
$$

Convex in w, so take derivatives to form the dual

$$
\begin{gathered}
\frac{\partial L}{\partial w_{k}}=w_{k}+\sum_{i}-\lambda_{i} y_{i} x_{k}^{(i)}=0 \\
\frac{\partial L}{\partial b}=\sum_{i}-\lambda_{i} y_{i}=0
\end{gathered}
$$

Dual SVM

$$
L(w, b, \lambda)=\frac{1}{2} w^{T} w+\sum_{i} \lambda_{i}\left(1-y_{i}\left(w^{T} x^{(i)}+b\right)\right)
$$

Convex in w, so take derivatives to form the dual

$$
\begin{gathered}
w=\sum_{i} \lambda_{i} y_{i} x^{(i)} \\
\sum_{i} \lambda_{i} y_{i}=0
\end{gathered}
$$

Dual SVM

$$
\max _{\lambda \geq 0}-\frac{1}{2} \sum_{i} \sum_{j} \lambda_{i} \lambda_{j} y_{i} y_{j} x^{(i)^{T}} x^{(j)}+\sum_{i} \lambda_{i}
$$

such that

$$
\sum_{i} \lambda_{i} y_{i}=0
$$

- By strong duality, solving this problem is equivalent to solving the primal problem
- Given the optimal λ, we can easily construct w (b can be found by complementary slackness)

Complementary Slackness

- Suppose that there is zero duality gap
- Let x^{*} be an optimum of the primal and $\left(\lambda^{*}, v^{*}\right)$ be an optimum of the dual

$$
\begin{aligned}
f_{0}\left(x^{*}\right) & =g\left(\lambda^{*}, \nu^{*}\right) \\
& =\inf _{x}\left[f_{0}(x)+\sum_{i=1}^{m} \lambda_{i}^{*} f_{i}(x)+\sum_{i=1}^{p} v_{i}^{*} h_{i}(x)\right] \\
& \leq f_{0}\left(x^{*}\right)+\sum_{i=1}^{m} \lambda_{i}^{*} f_{i}\left(x^{*}\right)+\sum_{i=1}^{p} v_{i}^{*} h_{i}\left(x^{*}\right) \\
& =f_{0}\left(x^{*}\right)+\sum_{i=1}^{m} \lambda_{i}^{*} f_{i}\left(x^{*}\right) \\
& \leq f_{0}\left(x^{*}\right)
\end{aligned}
$$

Complementary Slackness

- This means that

$$
\sum_{i=1}^{m} \lambda_{i}^{*} f_{i}\left(x^{*}\right)=0
$$

- As $\lambda \geq 0$ and $f_{i}\left(x_{i}^{*}\right) \leq 0$, this can only happen if $\lambda_{i}^{*} f_{i}\left(x^{*}\right)=$ 0 for all i
- Put another way,
- If $f_{i}\left(x^{*}\right)<0$ (i.e., the constraint is not tight), then $\lambda_{i}^{*}=0$
- If $\lambda_{i}^{*}>0$, then $f_{i}\left(x^{*}\right)=0$
- ONLY applies when there is no duality gap

Dual SVM

$$
\max _{\lambda \geq 0}-\frac{1}{2} \sum_{i} \sum_{j} \lambda_{i} \lambda_{j} y_{i} y_{j} x^{(i)^{T}} x^{(j)}+\sum_{i} \lambda_{i}
$$

such that

$$
\sum_{i} \lambda_{i} y_{i}=0
$$

- By complementary slackness, $\lambda_{i}^{*}>0$ means that $x^{(i)}$ is a support vector (can then solve for b using w)

Dual SVM

$$
\max _{\lambda \geq 0}-\frac{1}{2} \sum_{i} \sum_{j} \lambda_{i} \lambda_{j} y_{i} y_{j} x^{(i)^{T}} x^{(j)}+\sum_{i} \lambda_{i}
$$

such that

$$
\sum_{i} \lambda_{i} y_{i}=0
$$

- Takes $O\left(n^{2}\right)$ time just to evaluate the objective function
- Active area of research to try to speed this up

The Kernel Trick

$$
\max _{\lambda \geq 0}-\frac{1}{2} \sum_{i} \sum_{j} \lambda_{i} \lambda_{j} y_{i} y_{j} x^{(i)^{T}} x^{(j)}+\sum_{i} \lambda_{i}
$$

such that

$$
\sum_{i} \lambda_{i} y_{i}=0
$$

- The dual formulation only depends on inner products between the data points
- Same thing is true if we use feature vectors instead

The Kernel Trick

- For some feature vectors, we can compute the inner products quickly, even if the feature vectors are very large
- This is best illustrated by example

$$
\begin{aligned}
& \text { - Let } \phi\left(x_{1}, x_{2}\right)=\left[\begin{array}{c}
x_{1} x_{2} \\
x_{2} x_{1} \\
x_{1}^{2} \\
x_{2}^{2}
\end{array}\right] \\
& \begin{aligned}
-\phi\left(x_{1}, x_{2}\right)^{T} \phi\left(z_{1}, z_{2}\right)= & x_{1}^{2} z_{1}^{2}+2 x_{1} x_{2} z_{1} z_{2}+x_{2}^{2} z_{2}^{2} \\
& =\left(x_{1} z_{1}+x_{2} z_{2}\right)^{2} \\
& =\left(x^{T} z\right)^{2}
\end{aligned}
\end{aligned}
$$

The Kernel Trick

- For some feature vectors, we can compute the inner products quickly, even if the feature vectors are very large
- This is best illustrated by example

$$
\begin{aligned}
& \text { - Let } \phi\left(x_{1}, x_{2}\right)=\left[\begin{array}{c}
x_{1} x_{2} \\
x_{2} x_{1} \\
x_{1}^{2} \\
x_{2}^{2}
\end{array}\right] \\
& -\phi\left(x_{1}, x_{2}\right)^{T} \phi\left(z_{1}, z_{2}\right)=x_{1}^{2} z_{1}^{2}+2 x_{1} x_{2} z_{1} z_{2}+x_{2}^{2} z_{2}^{2} \\
&
\end{aligned}=\left(x_{1} z_{1}+x_{2} z_{2}\right)^{2} \quad \begin{aligned}
& \text { Reduces to a dot } \\
& \text { product in the original } \\
& \text { space }
\end{aligned}
$$

The Kernel Trick

- The same idea can be applied for the feature vector ϕ of all polynomials of degree (exactly) d

$$
-\phi(x)^{T} \phi(z)=\left(x^{T} z\right)^{d}
$$

- More generally, a kernel is a function

$$
k(x, z)=\phi(x)^{T} \phi(z) \text { for some feature } \operatorname{map} \phi
$$

- Rewrite the dual objective

$$
\max _{\lambda \geq 0, \sum_{i} \lambda_{i} y_{i}=0}-\frac{1}{2} \sum_{i} \sum_{j} \lambda_{i} \lambda_{j} y_{i} y_{j} k\left(x^{(i)}, x^{(j)}\right)+\sum_{i} \lambda_{i}
$$

Examples of Kernels

- Polynomial kernel of degree exactly d
$-k(x, z)=\left(x^{T} z\right)^{d}$
- General polynomial kernel of degree d for some c
$-k(x, z)=\left(x^{T} z+c\right)^{d}$
- Gaussian kernel for some σ
$-k(x, z)=\exp \left(\frac{-\|x-z\|^{2}}{2 \sigma^{2}}\right)$
- The corresponding ϕ is infinite dimensional!
- Many more...

Gaussian Kernels

- Consider the Gaussian kernel

$$
\begin{aligned}
\exp \left(\frac{-\|x-z\|^{2}}{2 \sigma^{2}}\right) & =\exp \left(\frac{-(x-z)^{T}(x-z)}{2 \sigma^{2}}\right) \\
& =\exp \left(\frac{-\|x\|^{2}+2 x^{T} z-\|z\|^{2}}{2 \sigma^{2}}\right) \\
& =\exp \left(-\|x\|^{2}\right) \exp \left(-\|z\|^{2}\right) \exp \left(\frac{x^{T} z}{\sigma^{2}}\right)
\end{aligned}
$$

- Use the Taylor expansion for $\exp ()$

$$
\exp \left(\frac{x^{T} z}{\sigma^{2}}\right)=\sum_{n=0}^{\infty} \frac{\left(x^{T} z\right)^{n}}{\sigma^{2 n} n!}
$$

Gaussian Kernels

- Consider the Gaussian kernel

$$
\begin{aligned}
\exp \left(\frac{-\|x-z\|^{2}}{2 \sigma^{2}}\right) & =\exp \left(\frac{-(x-z)^{T}(x-z)}{2 \sigma^{2}}\right) \\
& =\exp \left(\frac{-\|x\|^{2}+2 x^{T} z-\|z\|^{2}}{2 \sigma^{2}}\right) \\
& =\exp \left(-\|x\|^{2}\right) \exp \left(-\|z\|^{2}\right) \exp \left(\frac{x^{T} z}{\sigma^{2}}\right)
\end{aligned}
$$

- Use the Taylor expansion for $\exp ()$

$$
\exp \left(\frac{x^{T} z}{\sigma^{2}}\right)=\sum_{n=0}^{\infty} \frac{\left(x^{T} z\right)^{n}}{\sigma^{2 n} n!} \quad \begin{aligned}
& \text { Polynomial kernels of } \\
& \text { every degree! }
\end{aligned}
$$

Kernels

- Bigger feature space increases the possibility of overfitting
- Large margin solutions should still generalize reasonably well
- Alternative: add "penalties" to the objective to disincentivize complicated solutions

$$
\min _{w} \frac{1}{2}\|w\|^{2}+c \cdot(\# \text { of misclassifications })
$$

- Not a quadratic program anymore (in fact, it's NP-hard)
- Similar problem to Hamming loss, no notion of how badly the data is misclassified

Kernels

- Bigger feature space increases the possibility of overfitting
- Large margin solutions should still generalize reasonably well
- Alternative: add "penalties" to the objective to disincentivize complicated solutions

$$
\min _{w} \frac{1}{2}\|w\|^{2}+c \cdot(\# \text { of misclassifications })
$$

- Not a quadratic program anymore (in fact, it's NP-hard)
- Similar problem to Hamming loss, no notion of how badly the data is misclassified

