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The Strategy So Far...

• Choose hypothesis space

• Construct loss function (ideally convex)

• Minimize loss to “learn” correct parameters
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General Optimization

min
𝑥∈ℝ𝑛

𝑓0(𝑥)

subject to:

𝑓𝑖 𝑥 ≤ 0, 𝑖 = 1,… ,𝑚
ℎ𝑖 𝑥 = 0, 𝑖 = 1,… , 𝑝

A mathematical detour, we’ll come back to SVMs soon!
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General Optimization

min
𝑥∈ℝ𝑛

𝑓0(𝑥)

subject to:

𝑓𝑖 𝑥 ≤ 0, 𝑖 = 1,… ,𝑚
ℎ𝑖 𝑥 = 0, 𝑖 = 1,… , 𝑝

𝑓0 is not necessarily convex
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General Optimization

min
𝑥∈ℝ𝑛

𝑓0(𝑥)

subject to:

𝑓𝑖 𝑥 ≤ 0, 𝑖 = 1,… ,𝑚
ℎ𝑖 𝑥 = 0, 𝑖 = 1,… , 𝑝

Constraints do not need to 
be linear
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Lagrangian

𝐿 𝑥, 𝜆, 𝜈 = 𝑓0 𝑥 +෍

𝑖=1

𝑚

𝜆𝑖𝑓𝑖 𝑥 +෍

𝑖=1

𝑝

𝜈𝑖ℎ𝑖(𝑥)

• Incorporate constraints into a new objective function

• 𝜆 ≥ 0 and 𝜈 are vectors of Lagrange multipliers

• The Lagrange multipliers can be thought of as soft 

constraints
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Duality

• Construct a dual function by minimizing the Lagrangian

over the primal variables

𝑔 𝜆, 𝜈 = inf
𝑥
𝐿(𝑥, 𝜆, 𝜈)

• 𝑔 𝜆, 𝜈 = −∞ whenever the Lagrangian is not bounded 

from below for a fixed 𝜆 and 𝜈
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The Primal Problem

min
𝑥∈ℝ𝑛

𝑓0(𝑥)

subject to:

𝑓𝑖 𝑥 ≤ 0, 𝑖 = 1,… ,𝑚
ℎ𝑖 𝑥 = 0, 𝑖 = 1,… , 𝑝

Equivalently,

inf
𝑥
sup
𝜆≥0,𝜈

𝐿(𝑥, 𝜆, 𝜈)
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The Dual Problem

sup
𝜆≥0,𝜈

𝑔(𝜆, 𝜈)

Equivalently,

sup
𝜆≥0,𝜈

inf
𝑥
𝐿(𝑥, 𝜆, 𝜈)

• The dual problem is always concave, even if the primal 

problem is not convex
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Primal vs. Dual

sup
𝜆≥0,𝜈

inf
𝑥
𝐿(𝑥, 𝜆, 𝜈) ≤ inf

𝑥
sup
𝜆≥0,𝜈

𝐿(𝑥, 𝜆, 𝜈)

• Why?

– 𝑔 𝜆, 𝜈 ≤ 𝐿(𝑥, 𝜆, 𝜈) for all 𝑥

– 𝐿 𝑥′, 𝜆, 𝜈 ≤ 𝑓0(𝑥′) for any feasible 𝑥′, 𝜆 ≥ 0

• 𝑥 is feasible if it satisfies all of the constraints

– Let 𝑥∗ be the optimal solution to the primal problem and  𝜆 ≥ 0

𝑔 𝜆, 𝜈 ≤ 𝐿 𝑥∗, 𝜆, 𝜈 ≤ 𝑓0 𝑥∗
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Simple Examples

• Minimize 𝑥2 + 𝑦2 subject to 𝑥 + 𝑦 = 1

• Minimize 𝑥 + 𝑦 + 𝑧 subject to 𝑥2 + 𝑦2 + 𝑧2 ≥ 1

• Minimize 𝑥 log 𝑥 + 𝑦 log 𝑦 + 𝑧 log 𝑧 subject to 𝑥 + 𝑦 +
𝑧 = 1 and 𝑥, 𝑦, 𝑧 ≥ 0
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Duality

• Under certain conditions, the two optimization problems 

are equivalent

sup
𝜆≥0,𝜈

inf
𝑥
𝐿(𝑥, 𝜆, 𝜈) = inf

𝑥
sup
𝜆≥0,𝜈

𝐿(𝑥, 𝜆, 𝜈)

– This is called strong duality

• If the inequality is strict, then we say that there is a duality 

gap 

– Size of gap measured by the difference between the two sides of 

the inequality
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Slater’s Condition

For any optimization problem of the form

min
𝑥∈ℝ𝑛

𝑓0(𝑥)

subject to:

𝑓𝑖 𝑥 ≤ 0, 𝑖 = 1,… ,𝑚
𝐴𝑥 = 𝑏

where 𝑓0, … , 𝑓𝑚 are convex functions, strong duality holds if 

there exists an 𝑥 such that

𝑓𝑖 𝑥 < 0, 𝑖 = 1,… ,𝑚
𝐴𝑥 = 𝑏
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Dual SVM

min
𝑤

1

2
𝑤 2

such that

𝑦𝑖 𝑤
𝑇𝑥 𝑖 + 𝑏 ≥ 1, for all 𝑖

• Note that Slater’s condition holds as long as the data is 

linearly separable
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Dual SVM

𝐿 𝑤, 𝑏, 𝜆 =
1

2
𝑤𝑇𝑤 +෍

𝑖

𝜆𝑖(1 − 𝑦𝑖(𝑤
𝑇𝑥 𝑖 + 𝑏))

Convex in 𝑤, so take derivatives to form the dual

𝜕𝐿

𝜕𝑤𝑘
= 𝑤𝑘 +෍

𝑖

−𝜆𝑖𝑦𝑖𝑥𝑘
(𝑖)

= 0

𝜕𝐿

𝜕𝑏
=෍

𝑖

−𝜆𝑖𝑦𝑖 = 0
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Dual SVM

𝐿 𝑤, 𝑏, 𝜆 =
1

2
𝑤𝑇𝑤 +෍

𝑖

𝜆𝑖(1 − 𝑦𝑖(𝑤
𝑇𝑥 𝑖 + 𝑏))

Convex in 𝑤, so take derivatives to form the dual

𝑤 =෍

𝑖

𝜆𝑖𝑦𝑖𝑥
(𝑖)

෍

𝑖

𝜆𝑖𝑦𝑖 = 0
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Dual SVM

max
𝜆≥0

−
1

2
෍

𝑖

෍

𝑗

𝜆𝑖𝜆𝑗𝑦𝑖𝑦𝑗𝑥
𝑖 𝑇
𝑥 𝑗 +෍

𝑖

𝜆𝑖

such that

෍

𝑖

𝜆𝑖𝑦𝑖 = 0

• By strong duality, solving this problem is equivalent to 

solving the primal problem

– Given the optimal 𝜆, we can easily construct 𝑤 (𝑏 can be found by 

complementary slackness)
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Complementary Slackness

• Suppose that there is zero duality gap

• Let 𝑥∗ be an optimum of the primal and (𝜆∗, 𝜈∗) be an optimum 

of the dual

𝑓0 𝑥∗ = 𝑔 𝜆∗, 𝜈∗

= inf
𝑥

𝑓0 𝑥 +෍

𝑖=1

𝑚

𝜆𝑖
∗𝑓𝑖 𝑥 +෍

𝑖=1

𝑝

𝜈𝑖
∗ℎ𝑖(𝑥)

≤ 𝑓0 𝑥∗ +෍

𝑖=1

𝑚

𝜆𝑖
∗𝑓𝑖 𝑥

∗ +෍

𝑖=1

𝑝

𝜈𝑖
∗ℎ𝑖 𝑥

∗

= 𝑓0 𝑥∗ +෍

𝑖=1

𝑚

𝜆𝑖
∗𝑓𝑖 𝑥

∗

≤ 𝑓0 𝑥∗
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Complementary Slackness

• This means that

෍

𝑖=1

𝑚

𝜆𝑖
∗𝑓𝑖 𝑥

∗ = 0

– As 𝜆 ≥ 0 and 𝑓𝑖 𝑥𝑖
∗ ≤ 0, this can only happen  if  𝜆𝑖

∗𝑓𝑖 𝑥
∗ =

0 for all 𝑖

– Put another way, 

• If 𝑓𝑖 𝑥
∗ < 0 (i.e., the constraint is not tight), then 𝜆𝑖

∗ = 0

• If 𝜆𝑖
∗ > 0, then 𝑓𝑖(𝑥

∗) = 0

• ONLY applies when there is no duality gap
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Dual SVM

max
𝜆≥0

−
1

2
෍

𝑖

෍

𝑗

𝜆𝑖𝜆𝑗𝑦𝑖𝑦𝑗𝑥
𝑖 𝑇
𝑥 𝑗 +෍

𝑖

𝜆𝑖

such that

෍

𝑖

𝜆𝑖𝑦𝑖 = 0

• By complementary slackness, 𝜆𝑖
∗ > 0means that 𝑥(𝑖) is a 

support vector (can then solve for 𝑏 using 𝑤)
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Dual SVM

max
𝜆≥0

−
1

2
෍

𝑖

෍

𝑗

𝜆𝑖𝜆𝑗𝑦𝑖𝑦𝑗𝑥
𝑖 𝑇
𝑥 𝑗 +෍

𝑖

𝜆𝑖

such that

෍

𝑖

𝜆𝑖𝑦𝑖 = 0

• Takes 𝑂(𝑛2) time just to evaluate the objective function

– Active area of research to try to speed this up
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The Kernel Trick

max
𝜆≥0

−
1

2
෍

𝑖

෍

𝑗

𝜆𝑖𝜆𝑗𝑦𝑖𝑦𝑗𝑥
𝑖 𝑇
𝑥 𝑗 +෍

𝑖

𝜆𝑖

such that

෍

𝑖

𝜆𝑖𝑦𝑖 = 0

• The dual formulation only depends on inner products 

between the data points

– Same thing is true if we use feature vectors instead
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The Kernel Trick

• For some feature vectors, we can compute the inner products 
quickly, even if the feature vectors are very large

• This is best illustrated by example

– Let 𝜙 𝑥1, 𝑥2 =

𝑥1𝑥2
𝑥2𝑥1
𝑥1
2

𝑥2
2

– 𝜙 𝑥1, 𝑥2
𝑇𝜙 𝑧1, 𝑧2 = 𝑥1

2𝑧1
2 + 2𝑥1𝑥2𝑧1𝑧2 + 𝑥2

2𝑧2
2

= 𝑥1𝑧1 + 𝑥2𝑧2
2

= 𝑥𝑇𝑧 2
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The Kernel Trick

• For some feature vectors, we can compute the inner products 
quickly, even if the feature vectors are very large

• This is best illustrated by example

– Let 𝜙 𝑥1, 𝑥2 =

𝑥1𝑥2
𝑥2𝑥1
𝑥1
2

𝑥2
2

– 𝜙 𝑥1, 𝑥2
𝑇𝜙 𝑧1, 𝑧2 = 𝑥1

2𝑧1
2 + 2𝑥1𝑥2𝑧1𝑧2 + 𝑥2

2𝑧2
2

= 𝑥1𝑧1 + 𝑥2𝑧2
2

= 𝑥𝑇𝑧 2

Reduces to a dot 
product in the original 
space
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The Kernel Trick

• The same idea can be applied for the feature vector 𝜙 of all 

polynomials of degree (exactly) 𝑑

– 𝜙 𝑥 𝑇𝜙 𝑧 = 𝑥𝑇𝑧 𝑑

• More generally, a kernel is a function 

𝑘 𝑥, 𝑧 = 𝜙 𝑥 𝑇𝜙(𝑧) for some feature map 𝜙

• Rewrite the dual objective

max
𝜆≥0,σ𝑖 𝜆𝑖𝑦𝑖=0

−
1

2
෍

𝑖

෍

𝑗

𝜆𝑖𝜆𝑗𝑦𝑖𝑦𝑗𝑘(𝑥
(𝑖), 𝑥 𝑗 ) +෍

𝑖

𝜆𝑖
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Examples of Kernels

• Polynomial kernel of degree exactly 𝑑

– 𝑘 𝑥, 𝑧 = 𝑥𝑇𝑧 𝑑

• General polynomial kernel of degree 𝑑 for some 𝑐

– 𝑘 𝑥, 𝑧 = 𝑥𝑇𝑧 + 𝑐 𝑑

• Gaussian kernel for some 𝜎

– 𝑘 𝑥, 𝑧 = exp
− 𝑥−𝑧 2

2𝜎2

– The corresponding 𝜙 is infinite dimensional!

• Many more…
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Gaussian Kernels

• Consider the Gaussian kernel

exp
− 𝑥 − 𝑧 2

2𝜎2
= exp

− 𝑥 − 𝑧 𝑇(𝑥 − 𝑧)

2𝜎2

= exp
− 𝑥 2 + 2𝑥𝑇𝑧 − 𝑧 2

2𝜎2

= exp − 𝑥 2 exp − 𝑧 2 exp
𝑥𝑇𝑧

𝜎2

• Use the Taylor expansion for exp()

exp
𝑥𝑇𝑧

𝜎2
= ෍

𝑛=0

∞
𝑥𝑇𝑧 𝑛

𝜎2𝑛𝑛!
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Gaussian Kernels

• Consider the Gaussian kernel

exp
− 𝑥 − 𝑧 2

2𝜎2
= exp

− 𝑥 − 𝑧 𝑇(𝑥 − 𝑧)

2𝜎2

= exp
− 𝑥 2 + 2𝑥𝑇𝑧 − 𝑧 2

2𝜎2

= exp − 𝑥 2 exp − 𝑧 2 exp
𝑥𝑇𝑧

𝜎2

• Use the Taylor expansion for exp()

exp
𝑥𝑇𝑧

𝜎2
= ෍

𝑛=0

∞
𝑥𝑇𝑧 𝑛

𝜎2𝑛𝑛!
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Kernels

• Bigger feature space increases the possibility of overfitting

– Large margin solutions should still generalize reasonably well

• Alternative:  add “penalties” to the objective to 

disincentivize complicated solutions

min
𝑤

1

2
𝑤 2 + 𝑐 ⋅ (# 𝑜𝑓 𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠)

– Not a quadratic program anymore (in fact, it’s NP-hard)

– Similar problem to Hamming loss, no notion of how badly the 

data is misclassified
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Kernels

• Bigger feature space increases the possibility of overfitting

– Large margin solutions should still generalize reasonably well

• Alternative:  add “penalties” to the objective to 

disincentivize complicated solutions
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𝑤
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2
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data is misclassified
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