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Primal SVM

min
𝑤,𝑏

1

2
𝑤 2

such that

𝑦𝑖 𝑤
𝑇𝑥 𝑖 + 𝑏 ≥ 1, for all 𝑖

• Note that Slater’s condition holds as long as the data is 

linearly separable
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Dual SVM

max
𝜆≥0

−
1

2


𝑖



𝑗

𝜆𝑖𝜆𝑗𝑦𝑖𝑦𝑗𝑥
𝑖 𝑇
𝑥 𝑗 +

𝑖

𝜆𝑖

such that



𝑖

𝜆𝑖𝑦𝑖 = 0

• The dual formulation only depends on inner products 

between the data points

– Same thing is true if we use feature vectors instead
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The Kernel Trick

• For some feature vectors, we can compute the inner products 
quickly, even if the feature vectors are very large

• This is best illustrated by example

– Let 𝜙 𝑥1, 𝑥2 =

𝑥1𝑥2
𝑥2𝑥1
𝑥1
2

𝑥2
2

– 𝜙 𝑥1, 𝑥2
𝑇𝜙 𝑧1, 𝑧2 = 𝑥1

2𝑧1
2 + 2𝑥1𝑥2𝑧1𝑧2 + 𝑥2

2𝑧2
2

= 𝑥1𝑧1 + 𝑥2𝑧2
2

= 𝑥𝑇𝑧 2
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The Kernel Trick

• For some feature vectors, we can compute the inner products 
quickly, even if the feature vectors are very large

• This is best illustrated by example

– Let 𝜙 𝑥1, 𝑥2 =

𝑥1𝑥2
𝑥2𝑥1
𝑥1
2

𝑥2
2

– 𝜙 𝑥1, 𝑥2
𝑇𝜙 𝑧1, 𝑧2 = 𝑥1

2𝑧1
2 + 2𝑥1𝑥2𝑧1𝑧2 + 𝑥2

2𝑧2
2

= 𝑥1𝑧1 + 𝑥2𝑧2
2

= 𝑥𝑇𝑧 2

Reduces to a dot 
product in the original 
space
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The Kernel Trick

• The same idea can be applied for the feature vector 𝜙 of all 

polynomials of degree (exactly) 𝑑

– 𝜙 𝑥 𝑇𝜙 𝑧 = 𝑥𝑇𝑧 𝑑

• More generally, a kernel is a function 

𝑘 𝑥, 𝑧 = 𝜙 𝑥 𝑇𝜙(𝑧) for some feature map 𝜙

• Rewrite the dual objective

max
𝜆≥0,σ𝑖 𝜆𝑖𝑦𝑖=0

−
1

2


𝑖



𝑗

𝜆𝑖𝜆𝑗𝑦𝑖𝑦𝑗𝑘(𝑥
(𝑖), 𝑥 𝑗 ) +

𝑖

𝜆𝑖
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Examples of Kernels

• Polynomial kernel of degree exactly 𝑑

– 𝑘 𝑥, 𝑧 = 𝑥𝑇𝑧 𝑑

• General polynomial kernel of degree 𝑑 for some 𝑐

– 𝑘 𝑥, 𝑧 = 𝑥𝑇𝑧 + 𝑐 𝑑

• Gaussian kernel for some 𝜎

– 𝑘 𝑥, 𝑧 = exp
− 𝑥−𝑧 2

2𝜎2

– The corresponding 𝜙 is infinite dimensional!

• So many more…
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Gaussian Kernels

• Consider the Gaussian kernel

exp
− 𝑥 − 𝑧 2

2𝜎2
= exp

− 𝑥 − 𝑧 𝑇(𝑥 − 𝑧)

2𝜎2

= exp
− 𝑥 2 + 2𝑥𝑇𝑧 − 𝑧 2

2𝜎2

= exp − 𝑥 2 exp − 𝑧 2 exp
𝑥𝑇𝑧

𝜎2

• Use the Taylor expansion for exp()

exp
𝑥𝑇𝑧

𝜎2
= 

𝑛=0

∞
𝑥𝑇𝑧 𝑛

𝜎2𝑛𝑛!
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Gaussian Kernels

• Consider the Gaussian kernel

exp
− 𝑥 − 𝑧 2

2𝜎2
= exp

− 𝑥 − 𝑧 𝑇(𝑥 − 𝑧)

2𝜎2

= exp
− 𝑥 2 + 2𝑥𝑇𝑧 − 𝑧 2

2𝜎2

= exp − 𝑥 2 exp − 𝑧 2 exp
𝑥𝑇𝑧

𝜎2

• Use the Taylor expansion for exp()

exp
𝑥𝑇𝑧

𝜎2
= 

𝑛=0

∞
𝑥𝑇𝑧 𝑛

𝜎2𝑛𝑛!
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Polynomial kernels of 
every degree!



Kernels

• Bigger feature space increases the possibility of overfitting

– Large margin solutions should still generalize reasonably well

• Alternative:  add “penalties” to the objective to 

disincentivize complicated solutions

min
𝑤

1

2
𝑤 2 + 𝑐 ⋅ (# 𝑜𝑓 𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠)

– Not a quadratic program anymore (in fact, it’s NP-hard)

– Similar problem to Hamming loss, no notion of how badly the 

data is misclassified
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SVMs with Slack

• Allow misclassification

– Penalize misclassification linearly (just like in the perceptron 

algorithm)

• Again, easier to work with than the Hamming loss

• Objective stays convex

– Will let us handle data that isn’t linearly separable!
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SVMs with Slack

min
𝑤,𝑏,𝜉

1

2
𝑤 2 + 𝑐

𝑖

𝜉𝑖

such that

𝑦𝑖 𝑤
𝑇𝑥 𝑖 + 𝑏 ≥ 1 − 𝜉𝑖 , for all 𝑖

𝜉𝑖 ≥ 0, for all 𝑖
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SVMs with Slack

min
𝑤,𝑏,𝜉

1

2
𝑤 2 + 𝑐

𝑖

𝜉𝑖

such that

𝑦𝑖 𝑤
𝑇𝑥 𝑖 + 𝑏 ≥ 1 − 𝜉𝑖 , for all 𝑖

𝜉𝑖 ≥ 0, for all 𝑖 Potentially allows some 
points to be 
misclassified/inside the 
margin
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SVMs with Slack

min
𝑤,𝑏,𝜉

1

2
𝑤 2 + 𝑐

𝑖

𝜉𝑖

such that

𝑦𝑖 𝑤
𝑇𝑥 𝑖 + 𝑏 ≥ 1 − 𝜉𝑖 , for all 𝑖

𝜉𝑖 ≥ 0, for all 𝑖

Constant c determines 
degree to which slack is 
penalized
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SVMs with Slack

min
𝑤,𝑏,𝜉

1

2
𝑤 2 + 𝑐

𝑖

𝜉𝑖

such that

𝑦𝑖 𝑤
𝑇𝑥 𝑖 + 𝑏 ≥ 1 − 𝜉𝑖 , for all 𝑖

𝜉𝑖 ≥ 0, for all 𝑖

• How does this objective change with 𝑐?
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SVMs with Slack

min
𝑤,𝑏,𝜉

1

2
𝑤 2 + 𝑐

𝑖

𝜉𝑖

such that

𝑦𝑖 𝑤
𝑇𝑥 𝑖 + 𝑏 ≥ 1 − 𝜉𝑖 , for all 𝑖

𝜉𝑖 ≥ 0, for all 𝑖

• How does this objective change with 𝑐?

– As 𝑐 → ∞, requires a perfect classifier

– As 𝑐 → 0, allows arbitrary classifiers (i.e., ignores the data)
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SVMs with Slack

min
𝑤,𝑏,𝜉

1

2
𝑤 2 + 𝑐

𝑖

𝜉𝑖

such that

𝑦𝑖 𝑤
𝑇𝑥 𝑖 + 𝑏 ≥ 1 − 𝜉𝑖 , for all 𝑖

𝜉𝑖 ≥ 0, for all 𝑖

• How should we pick 𝑐?
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SVMs with Slack

min
𝑤,𝑏,𝜉

1

2
𝑤 2 + 𝑐

𝑖

𝜉𝑖

such that

𝑦𝑖 𝑤
𝑇𝑥 𝑖 + 𝑏 ≥ 1 − 𝜉𝑖 , for all 𝑖

𝜉𝑖 ≥ 0, for all 𝑖

• How should we pick 𝑐?

– Divide the data into three pieces training, testing, and validation

– Use the validation set to tune the value of the hyperparameter 𝑐
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SVMs with Slack

• What is the optimal value of 𝜉 for fixed 𝑤 and 𝑏?

– If 𝑦𝑖 𝑤
𝑇𝑥 𝑖 + 𝑏 ≥ 1, then 𝜉𝑖 = 0

– If 𝑦𝑖 𝑤
𝑇𝑥 𝑖 + 𝑏 < 1, then 𝜉𝑖 = 1 − 𝑦𝑖 𝑤

𝑇𝑥 𝑖 + 𝑏
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SVMs with Slack

• What is the optimal value of 𝜉 for fixed 𝑤 and 𝑏?

– If 𝑦𝑖 𝑤
𝑇𝑥 𝑖 + 𝑏 ≥ 1, then 𝜉𝑖 = 0

– If 𝑦𝑖 𝑤
𝑇𝑥 𝑖 + 𝑏 < 1, then 𝜉𝑖 = 1 − 𝑦𝑖 𝑤

𝑇𝑥 𝑖 + 𝑏

• We can formulate this slightly differently 

– 𝜉𝑖 = max 0, 1 − 𝑦𝑖 𝑤
𝑇𝑥 𝑖 + 𝑏

– Does this look familiar?

– Hinge loss provides an upper bound on Hamming loss
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Hinge Loss Formulation

• Obtain a new objective by substituting in for 𝜉

min
𝑤,𝑏

1

2
𝑤 2 + 𝑐

𝑖

max 0, 1 − 𝑦𝑖 𝑤
𝑇𝑥 𝑖 + 𝑏
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Can minimize with gradient descent!



Hinge Loss Formulation

• Obtain a new objective by substituting in for 𝜉

min
𝑤,𝑏

1

2
𝑤 2 + 𝑐

𝑖

max 0, 1 − 𝑦𝑖 𝑤
𝑇𝑥 𝑖 + 𝑏
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Hinge lossPenalty to prevent 

overfitting



Hinge Loss Formulation

• Obtain a new objective by substituting in for 𝜉

min
𝑤,𝑏

𝜆

2
𝑤 2 + 𝑐

𝑖

max 0, 1 − 𝑦𝑖 𝑤
𝑇𝑥 𝑖 + 𝑏
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Hinge lossRegularizer

𝜆 controls the amount of 

regularization

How should we pick 𝜆?



Imbalanced Data

• If the data is imbalanced (i.e., more positive examples than 

negative examples), may want to evenly distribute the error 

between the two classes

min
𝑤,𝑏,𝜉

1

2
𝑤 2 +

𝑐

𝑁+


𝑖:𝑦𝑖=1

𝜉𝑖 +
𝑐

𝑁−


𝑖:𝑦𝑖=−1

𝜉𝑖

such that

𝑦𝑖 𝑤
𝑇𝑥 𝑖 + 𝑏 ≥ 1 − 𝜉𝑖 , for all 𝑖

𝜉𝑖 ≥ 0, for all 𝑖
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Dual of Slack Formulation

min
𝑤,𝑏,𝜉

1

2
𝑤 2 + 𝑐

𝑖

𝜉𝑖

such that

𝑦𝑖 𝑤
𝑇𝑥 𝑖 + 𝑏 ≥ 1 − 𝜉𝑖 , for all 𝑖

𝜉𝑖 ≥ 0, for all 𝑖
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Dual of Slack Formulation

𝐿 𝑤, 𝑏, 𝜉, 𝜆, 𝜇 =
1

2
𝑤𝑇𝑤 + 𝑐

𝑖

𝜉𝑖 +

𝑖

𝜆𝑖(1 − 𝜉𝑖 − 𝑦𝑖(𝑤
𝑇𝑥 𝑖 + 𝑏)) +

𝑖

−𝜇𝑖𝜉𝑖

Convex in 𝑤, 𝑏, 𝜉, so take derivatives to form the dual

𝜕𝐿

𝜕𝑤𝑘
= 𝑤𝑘 +

𝑖

−𝜆𝑖𝑦𝑖𝑥𝑘
(𝑖)

= 0

𝜕𝐿

𝜕𝑏
=

𝑖

−𝜆𝑖𝑦𝑖 = 0

𝜕𝐿

𝜕𝜉𝑘
= 𝑐 − 𝜆𝑘 − 𝜇𝑘 = 0
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Dual of Slack Formulation

max
𝜆≥0

−
1

2


𝑖



𝑗

𝜆𝑖𝜆𝑗𝑦𝑖𝑦𝑗𝑥
𝑖 𝑇
𝑥 𝑗 +

𝑖

𝜆𝑖

such that



𝑖

𝜆𝑖𝑦𝑖 = 0

𝑐 ≥ 𝜆𝑖 ≥ 0, for all 𝑖
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Summary

• Gather Data + Labels

– Randomly split into three groups

• Training set

• Validation set

• Test set 

• Construct features vectors

• Experimentation cycle 

– Select a “good” hypothesis from the hypothesis space

– Tune hyperparameters using validation set

– Compute accuracy on test set (fraction of correctly classified 

instances)
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Generalization

• We argued, intuitively, that SVMs generalize better than the 

perceptron algorithm

– How can we make this precise?

– Coming soon... but first...
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Roadmap

• Where are we headed?

– Other types of hypothesis spaces for supervised learning

• k nearest neighbor

• Decision trees

– Learning theory

• Generalization and PAC bounds

• VC dimension

• Bias/variance tradeoff
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