Decision Trees

Nicholas Ruozzi

University of Texas at Dallas

Supervised Learning

- Input: labelled training data
- i.e., data plus desired output
- Assumption: there exists a function f that maps data items x to their correct labels
- Goal: construct an approximation to f

Today

- We've been focusing on linear separators
- Relatively easy to learn (using standard techniques)
- Easy to picture, but not clear if data will be separable
- Next two lectures we'll focus on other hypothesis spaces
- Decision trees
- Nearest neighbor classification

Application: Medical Diagnosis

- Suppose that you go to your doctor with flu-like symptoms
- How does your doctor determine if you have a flu that requires medical attention?

Application: Medical Diagnosis

- Suppose that you go to your doctor with flu-like symptoms
- How does your doctor determine if you have a flu that requires medical attention?
- Check a list of symptoms:
- Do you have a fever over 100.4 degrees Fahrenheit?
- Do you have a sore throat or a stuffy nose?
- Do you have a dry cough?

Application: Medical Diagnosis

- Just having some symptoms is not enough, you should also not have symptoms that are not consistent with the flu
- For example,
- If you have a fever over 100.4 degrees Fahrenheit?
- And you have a sore throat or a stuffy nose?
- You probably do not have the flu (most likely just a cold)

Application: Medical Diagnosis

- In other words, your doctor will perform a series of tests and ask a series of questions in order to determine the likelihood of you having a severe case of the flu
- This is a method of coming to a diagnosis (i.e., a classification of your condition)
- We can view this decision making process as a tree

Decision Trees

- A tree in which each internal (non-leaf) node tests the value of a particular feature
- Each leaf node specifies a class label (in this case whether or not you should play tennis)

Decision Trees

- Features: (Outlook, Humidity, Wind)
- Classification is performed root to leaf
- The feature vector (Sunny, Normal, Strong) would be classified as a yes instance

Decision Trees

- Can have continuous features too
- Internal nodes for continuous features correspond to thresholds

Decision Trees

- Decision trees divide the feature space into axis parallel rectangles

Decision Trees

- Decision trees divide the feature space into axis parallel rectangles

Decision Trees

- Decision trees divide the feature space into axis parallel rectangles

Decision Trees

- Decision trees divide the feature space into axis parallel rectangles

Decision Trees

- Decision trees divide the feature space into axis parallel rectangles

Decision Trees

- Decision trees divide the feature space into axis parallel rectangles

Decision Trees

- Worst case decision tree may require exponentially many nodes

Decision Tree Learning

- Basic decision tree building algorithm:
- Pick some feature/attribute
- Partition the data based on the value of this attribute
- Recurse over each new partition

Decision Tree Learning

- Basic decision tree building algorithm:
- Pick some feature/attribute (how to pick the "best"?)
- Partition the data based on the value of this attribute
- Recurse over each new partition (when to stop?)

We'll focus on the discrete case first (i.e., each feature takes a value in some finite set)

Decision Trees

- What functions can be represented by decision trees?
- Are decision trees unique?

Decision Trees

- What functions can be represented by decision trees?
- Every function of $+/-$ can be represented by a sufficiently complicated decision tree
- Are decision trees unique?
- No, many different decision trees are possible for the same set of labels

Choosing the Best Attribute

- Because the complexity of storage and classification increases with the size of the tree, should prefer smaller trees
- Simplest models that explain the data are usually preferred over more complicated ones
- This is an NP-hard problem
- Instead, use a greedy heuristic based approach to pick the best attribute at each stage

Choosing the Best Attribute

$$
x_{1}, x_{2} \in\{0,1\}
$$

Which attribute should you split on?

x_{1}	x_{2}	y
1	1	+
1	0	+
1	1	+
1	0	+
0	1	+
0	0	-
0	1	-
0	0	-

Choosing the Best Attribute

$$
x_{1}, x_{2} \in\{0,1\}
$$

Which attribute should you split on?

Can think of these counts as probability distributions over the
labels: if $x=1$, the probability that

$$
y=+ \text { is equal to } 1
$$

Choosing the Best Attribute

- The selected attribute is a good split if we are more "certain" about the classification after the split
- If each partition with respect to the chosen attribute has a distinct class label, we are completely certain about the classification after partitioning
- If the class labels are evenly divided between the partitions, the split isn't very good (we are very uncertain about the label for each partition)
- What about other situations? How do you measure the uncertainty of a random process?

Discrete Probability

- Sample space specifies the set of possible outcomes
- For example, $\Omega=\{\mathrm{H}, \mathrm{T}\}$ would be the set of possible outcomes of a coin flip
- Each element $\omega \in \Omega$ is associated with a number $p(\omega) \in[0,1]$ called a probability

$$
\sum_{\omega \in \Omega} p(\omega)=1
$$

- For example, a biased coin might have $p(H)=.6$ and $p(T)=$. 4

Discrete Probability

- An event is a subset of the sample space
- Let $\Omega=\{1,2,3,4,5,6\}$ be the 6 possible outcomes of a dice role
$-A=\{1,5,6\} \subseteq \Omega$ would be the event that the dice roll comes up as a one, five, or six
- The probability of an event is just the sum of all of the outcomes that it contains

$$
-p(A)=p(1)+p(5)+p(6)
$$

Independence

- Two events A and B are independent if

$$
p(A \cap B)=p(A) P(B)
$$

Let's suppose that we have a fair die: $p(1)=\ldots=p(6)=1 / 6$
If $A=\{1,2,5\}$ and $B=\{3,4,6\}$ are A and B indpendent?

Independence

- Two events A and B are independent if

$$
p(A \cap B)=p(A) P(B)
$$

Let's suppose that we have a fair die: $p(1)=\ldots=p(6)=1 / 6$
If $A=\{1,2,5\}$ and $B=\{3,4,6\}$ are A and B indpendent?

$$
\begin{gathered}
N o! \\
p(A \cap B)=0 \neq \frac{1}{4}
\end{gathered}
$$

Independence

- Now, suppose that $\Omega=\{(1,1),(1,2), \ldots,(6,6)\}$ is the set of all possible rolls of two unbiased dice
- Let $A=\{(1,1),(1,2),(1,3), \ldots,(1,6)\}$ be the event that the first die is a one and let $B=\{(1,6),(2,6), \ldots,(6,6)\}$ be the event that the second die is a six
- Are A and B independent?

Independence

- Now, suppose that $\Omega=\{(1,1),(1,2), \ldots,(6,6)\}$ is the set of all possible rolls of two unbiased dice
- Let $A=\{(1,1),(1,2),(1,3), \ldots,(1,6)\}$ be the event that the first die is a one and let $B=\{(1,6),(2,6), \ldots,(6,6)\}$ be the event that the second die is a six
- Are A and B independent?

Conditional Probability

- The conditional probability of an event A given an event B with $p(B)>0$ is defined to be

$$
p(A \mid B)=\frac{p(A \cap B)}{P(B)}
$$

- This is the probability of the event $A \cap B$ over the sample space $\Omega^{\prime}=B$
- Some properties:
$-\sum_{\omega \in \Omega} p(\omega \mid B)=1$
- If A and B are independent, then $p(A \mid B)=p(A)$

Discrete Random Variables

- A discrete random variable, X, is a function from the state space Ω into a discrete space D
- For each $x \in D$,

$$
p(X=x) \equiv p(\{\omega \in \Omega: X(\omega)=x\})
$$

is the probability that X takes the value x
$-p(X)$ defines a probability distribution

- $\sum_{x \in D} p(X=x)=1$
- Random variables partition the state space into disjoint events

Example: Pair of Dice

- Let Ω be the set of all possible outcomes of rolling a pair of dice
- Let p be the uniform probability distribution over all possible outcomes in Ω
- Let $X(\omega)$ be equal to the sum of the value showing on the pair of dice in the outcome ω
$-p(X=2)=?$
$-p(X=8)=?$

Example: Pair of Dice

- Let Ω be the set of all possible outcomes of rolling a pair of dice
- Let p be the uniform probability distribution over all possible outcomes in Ω
- Let $X(\omega)$ be equal to the sum of the value showing on the pair of dice in the outcome ω

$$
-p(X=2)=\frac{1}{36}
$$

$-p(X=8)=?$

Example: Pair of Dice

- Let Ω be the set of all possible outcomes of rolling a pair of dice
- Let p be the uniform probability distribution over all possible outcomes in Ω
- Let $X(\omega)$ be equal to the sum of the value showing on the pair of dice in the outcome ω
$-p(X=2)=\frac{1}{36}$
$-p(X=8)=\frac{5}{36}$

Discrete Random Variables

- We can have vectors of random variables as well

$$
X(\omega)=\left[X_{1}(\omega), \ldots, X_{n}(\omega)\right]
$$

- The joint distribution is $p\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right)$ is

$$
p\left(X_{1}=x_{1} \cap \cdots \cap X_{n}=x_{n}\right)
$$

typically written as

$$
p\left(x_{1}, \ldots, x_{n}\right)
$$

- Because $X_{i}=x_{i}$ is an event, all of the same rules from basic probability apply

Entropy

- A standard way to measure uncertainty of a random variable is to use the entropy

$$
H(Y)=-\sum_{Y=y} p(Y=y) \log p(Y=y)
$$

- Entropy is maximized for uniform distributions
- Entropy is minimized for distributions that place all their probability on a single outcome

Entropy of a Coin Flip

$H(X) \quad X=$ outcome of coin flip with probability of heads p

Conditional Entropy

- We can also compute the entropy of a random variable conditioned on a different random variable

$$
H(Y \mid X)=-\sum_{x} p(X=x) \sum_{y} p(Y=y \mid X=x) \log p(Y=y \mid X=x)
$$

- This is called the conditional entropy
- This is the amount of information needed to quantify the random variable Y given the random variable X

Information Gain

- Using entropy to measure uncertainty, we can greedily select an attribute that guarantees the largest expected decrease in entropy (with respect to the empirical partitions)

$$
I G(X)=H(Y)-H(Y \mid X)
$$

- Called information gain
- Larger information gain corresponds to less uncertainty about Y given X
- Note that $H(Y \mid X) \leq H(Y)$

Decision Tree Learning

- Basic decision tree building algorithm:
- Pick the feature/attribute with the highest information gain
- Partition the data based on the value of this attribute
- Recurse over each new partition

Choosing the Best Attribute

$$
x_{1}, x_{2} \in\{0,1\}
$$

Which attribute should you split on?

x_{1}	x_{2}	y
1	1	+
1	0	+
1	1	+
1	0	+
0	1	+
0	0	-
0	1	-
0	0	-

What is the information gain in each case?

Choosing the Best Attribute

$$
x_{1}, x_{2} \in\{0,1\}
$$

Which attribute should you split on?

$$
\begin{aligned}
& H(Y)=-\frac{5}{8} \log \frac{5}{8}-\frac{3}{8} \log \frac{3}{8} \\
& H\left(Y \mid X_{1}\right)=.5[-0 \log 0-1 \log 1]+.5[-.75 \log .75-.25 \log .25] \\
& H\left(Y \mid X_{2}\right)=.5[-.5 \log .5-.5 \log .5]+.5[-.75 \log .75-.25 \log .25]
\end{aligned}
$$

$$
H(Y)-H\left(Y \mid X_{1}\right)-H(Y)+H\left(Y \mid X_{2}\right)=-\log .5>0 \quad \text { Should split on } x_{1}
$$

When to Stop

- If the current set is "pure" (i.e., has a single label in the output), stop
- If you run out of attributes to recurse on, even if the current data set isn't pure, stop and use a majority vote
- If a partition contains no data items, nothing to recurse on
- For fixed depth decision trees, the final label is determined by majority vote

Decision Trees

- Because of speed/ease of implementation, decision trees are quite popular
- Can be used for regression too!
- Decision trees will always overfit!
- It is always possible to obtain zero training error on the input data with a deep enough tree (if there is no noise in the labels)
- Solution?

