

Nicholas Ruozzi University of Texas at Dallas

Based on the slides of Vibhav Gogate and David Sontag

- So far, we've been focused only on algorithms for finding the best hypothesis in the hypothesis space
 - How do we know that the learned hypothesis will perform well on the test set?
 - How many samples do we need to make sure that we learn a good hypothesis?
 - In what situations is learning possible?

- If the training data was linearly separable, we saw that perceptron/SVMs will always perfectly classify the training data
 - This does not mean that it will perfectly classify the test data
 - Intuitively, if the true distribution of samples is linearly separable, then seeing more data should help us do better

Problem Complexity

- Complexity of a learning problem depends on
 - Size/expressiveness of the hypothesis space
 - Accuracy to which a target concept must be approximated
 - Probability with which the learner must produce a successful hypothesis
 - Manner in which training examples are presented, e.g. randomly or by query to an oracle

Problem Complexity

- Measures of complexity
 - Sample complexity
 - How much data you need in order to (with high probability) learn a good hypothesis
 - Computational complexity
 - Amount of time and space required to accurately solve (with high probability) the learning problem
 - Higher sample complexity means higher computational complexity

- Probably approximately correct (PAC)
 - Developed by Leslie Valiant
 - The only reasonable expectation of a learner is that with high probability it learns a close approximation to the target concept
 - Specify two small parameters, ϵ and δ , and require that with probability at least (1δ) a system learn a concept with error at most ϵ

Consistent Learners

- Imagine a simple setting
 - The hypothesis space is finite (i.e., |H| = c)
 - The true distribution of the data is $p(\vec{x})$, no noisy labels
 - We learned a perfect classifier on the training set, let's call it $h \in \mathbf{H}$
 - A learner is said to be consistent if it always outputs a perfect classifier on the training data assuming that one exists
 - Want to compute the error of the classifier

Notions of Error

- Training error of $h \in H$
 - The error on the training data
 - Number of samples incorrectly classified divided by the total number of samples
- True error of $h \in H$
 - The error over all possible future random samples
 - Probability that h misclassifies a random data point

 $p(h(x) \neq y)$

- Let $(x^{(1)}, y_1), \dots, (x^{(m)}, y_m)$ be m labelled data points sampled independently according to p
- Let C_i^h be a random variable that indicates whether or not the ith data point is correctly classified
- The probability that h misclassifies the i^{th} data point is

$$p(C_i^h = 0) = \sum_{(x,y)} p(x,y) \, \mathbf{1}_{h(x)\neq y} = \epsilon_h$$

- Let $(x^{(1)}, y_1), \dots, (x^{(m)}, y_m)$ be m labelled data points sampled independently according to p
- Let C_i^h be a random variable that indicates whether or not the ith data point is correctly classified
- The probability that h misclassifies the i^{th} data point is

$$p(C_i^h = 0) = \sum_{(x,y)} p(x,y) \, \mathbf{1}_{h(x) \neq y} \neq \epsilon_h$$

This is the true error of h

Probability that all data points classified correctly?

$$p(C_1^h = 1, ..., C_m^h = 1) = \prod_{i=1}^m p(C_i^h = 1) = (1 - \epsilon_h)^m$$

• Probability that a hypothesis $h \in H$ whose true error is at least ϵ correctly classifies the m data points is then

$$p(C_1^h = 1, \dots, C_m^h = 1) \le (1 - \epsilon)^m \le e^{-\epsilon m}$$

for $\epsilon \leq 1$

- The version space (set of consistent hypotheses) is said to be *e*-exhausted if and only if every consistent hypothesis has true error less than *e*
 - Enough samples to guarantee that every consistent hypothesis has error at most ϵ
- We'll show that w.h.p. every hypothesis with true error at least ϵ is not consistent with the data

The Union Bound

- Let $H_{BAD} \subseteq H$ be the set of all hypotheses that have true error at least ϵ
- From before for each $h \in H_{BAD}$,

 $p(h \text{ correctly classifies all } m \text{ data points}) \leq e^{-\epsilon m}$

• So, the probability that some $h \in H_{BAD}$ correctly classifies all of the data points is

$$p\left(\bigvee_{h\in H_{BAD}} \left(C_1^h = 1, \dots, C_m^h = 1\right)\right) \leq \sum_{h\in H_{BAD}} p\left(C_1^h = 1, \dots, C_m^h = 1\right)$$
$$\leq |H_{BAD}|e^{-\epsilon m}$$
$$\leq |H|e^{-\epsilon m}$$

Haussler, 1988

- What we just proved:
 - Theorem: For a finite hypothesis space, H, with m i.i.d. samples, and $0 < \epsilon < 1$, the probability that the version space is not ϵ -exhausted is at most $|H|e^{-\epsilon m}$
- We can turn this into a sample complexity bound

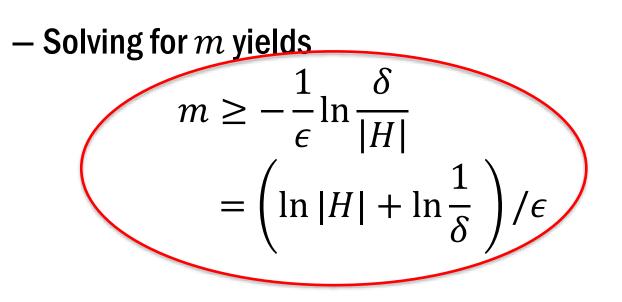
Sample Complexity

- Let δ be an upper bound on the desired probability of not $\epsilon\text{-exhausting the sample space}$
 - The probability that the version space is not ϵ -exhausted is at most $|H|e^{-\epsilon m} \leq \delta$
 - Solving for m yields

$$m \ge -\frac{1}{\epsilon} \ln \frac{\delta}{|H|}$$
$$= \left(\ln |H| + \ln \frac{1}{\delta} \right) / \epsilon$$

Sample Complexity

- Let δ be an upper bound on the desired probability of not $\epsilon\text{-exhausting the sample space}$
 - The probability that the version space is not ϵ -exhausted is at most $|H|e^{-\epsilon m}\leq \delta$



This is sufficient, but not necessary (union bound is quite loose)

Decision Trees

- Suppose that we want to learn an arbitrary Boolean function given *n* Boolean features
- Hypothesis space consists of all decision trees

- Size of this space = ?

• How many samples are sufficient?

Decision Trees

- Suppose that we want to learn an arbitrary Boolean function given n Boolean features
- Hypothesis space consists of all decision trees
 - Size of this space = 2^{2^n} = number of Boolean functions on n inputs
- How many samples are sufficient?

$$m \ge \left(\ln 2^{2^n} + \ln \frac{1}{\delta}\right)/\epsilon$$

Generalizations

- How do we handle the case the there is no perfect classifier?
 - Pick the hypothesis with the lowest error on the training set
- What do we do if the hypothesis space isn't finite?
 - Infinite sample complexity?
 - Next time...

Chernoff Bounds

• Chernoff bound: Suppose Y_1, \ldots, Y_m are i.i.d. random variables taking values in $\{0, 1\}$ such that $E_p[Y_i] = y$. For $\epsilon > 0$,

$$p\left(\left|y-\frac{1}{m}\sum_{i}Y_{i}\right|\geq\epsilon\right)\leq2e^{-2m\epsilon^{2}}$$

Chernoff Bounds

• Chernoff bound: Suppose Y_1, \ldots, Y_m are i.i.d. random variables taking values in $\{0, 1\}$ such that $E_p[Y_i] = y$. For $\epsilon > 0$,

$$p\left(\left|y-\frac{1}{m}\sum_{i}Y_{i}\right|\geq\epsilon\right)\leq2e^{-2m\epsilon^{2}}$$

• Applying this to $1 - C_1^h$, ..., $1 - C_m^h$ gives

$$p\left(\left|\epsilon_{h} - \frac{1}{m}\sum_{i}(1 - C_{i}^{h})\right| \ge \epsilon\right) \le 2e^{-2m\epsilon^{2}}$$

Chernoff Bounds

• Chernoff bound: Suppose Y_1, \ldots, Y_m are i.i.d. random variables taking values in $\{0, 1\}$ such that $E_p[Y_i] = y$. For $\epsilon > 0$,

$$p\left(\left|y-\frac{1}{m}\sum_{i}Y_{i}\right|\geq\epsilon\right)\leq2e^{-2m\epsilon^{2}}$$

• Applying this to $1 - C_1^h$, ..., $1 - C_m^h$ gives

$$p\left(\epsilon_{h} - \frac{1}{m}\sum_{i}(1 - C_{i}^{h}) \ge \epsilon\right) \le e^{-2m\epsilon^{2}}$$

This is the training error

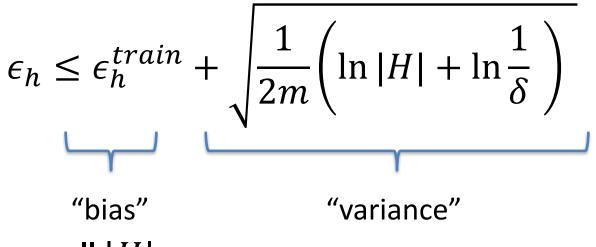
PAC Bounds

- **Theorem:** For a finite hypothesis space H finite, m i.i.d. samples, and $0 < \epsilon < 1$, the probability that true error of any of the best classifiers (i.e., lowest training error) is larger than its training error plus ϵ is at most $|H|e^{-2m\epsilon^2}$
 - Sample complexity (for desired $\delta \geq 2|H|e^{-2m\epsilon^2}$)

$$m \ge \left(\ln|H| + \ln\frac{1}{\delta} \right) / 2\epsilon^2$$

PAC Bounds

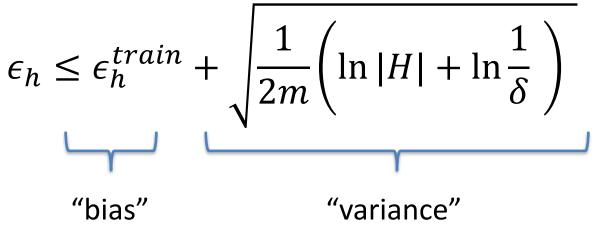
• If we require that the previous error is bounded above by δ , then with probability $(1 - \delta)$, for all $h \in H$



- For small |H|
 - High bias (may not be enough hypotheses to choose from)
 - Low variance

PAC Bounds

• If we require that the previous error is bounded above by δ , then with probability $(1 - \delta)$, for all $h \in H$



- For large |H|
 - Low bias (lots of good hypotheses)
 - High variance

- Given:
 - Set of data X
 - Hypothesis space H
 - Set of target concepts C
 - Training instances from unknown probability distribution over X of the form (x, c(x))
- Goal:

– Learn the target concept $c \in C$

- Given:
 - A concept class C over n instances from the set \boldsymbol{X}
 - A learner L with hypothesis space H
 - Two constants, $\epsilon, \delta \in (0, \frac{1}{2})$
- *C* is said to be PAC learnable by *L* using *H* iff for all distributions over *X*, learner *L* by sampling *n* instances, will with probability at least 1δ output a hypothesis $h \in$ H such that

$$-\epsilon_h \leq \epsilon$$

– Running time is polynomial in
$$\frac{1}{\epsilon}$$
, $\frac{1}{\delta}$, n , $size(c)$

- PAC concerned about computational resources required for learning
 - In practice, we are often only concerned about the number of training examples required
 - The two are related
 - The computational limitation also imposes a polynomial constraint on the training set size, since a learner can process at most polynomial data in polynomial time
 - The learner must visit each example at least once

