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Learning Theory
e

* So far, we've been focused only on algorithms for finding
the best hypothesis in the hypothesis space

— How do we know that the learned hypothesis will
perform well on the test set?

— How many samples do we need to make sure that we
learn a good hypothesis?

— In what situations is learning possible?




Learning Theory
e

* If the training data was linearly separable, we saw that
perceptron/SVMs will always perfectly classify the training
data

— This does not mean that it will perfectly classify the test
data

— Intuitively, if the true distribution of samples is linearly
separable, then seeing more data should help us do
better




Problem Complexity
-

* Complexity of a learning problem depends on
— Size/expressiveness of the hypothesis space

— Accuracy to which a target concept must be
approximated

— Probability with which the learner must produce a
successful hypothesis

— Manner in which training examples are presented, e.g.
randomly or by query to an oracle




Problem Complexity
-

* Measures of complexity
— Sample complexity

* How much data you need in order to (with high probability)
learn a good hypothesis

— Computational complexity

* Amount of time and space required to accurately solve (with
high probability) the learning problem

* Higher sample complexity means higher computational
complexity




PAC Learning

* Probably approximately correct (PAC)
— Developed by Leslie Valiant

— The only reasonable expectation of a learner is that with
high probability it learns a close approximation to the
target concept

— Specify two small parameters, € and 6, and require that
with probability at least (1 — &) a system learn a
concept with error at most ¢




Consistent Learners
,ee e

* Imagine a simple setting
— The hypothesis space is finite (i.e., |H| = ¢)
— The true distribution of the data is p(x), no noisy labels

— We learned a perfect classifier on the training set, let’s
callith € H

» Alearneris said to be consistent if it always outputs a perfect
classifier on the training data assuming that one exists

— Want to compute the error of the classifier




Notions of Error
-
* Training errorof h € H

— The error on the training data

— Number of samples incorrectly classified divided by the total
number of samples

* Trueerrorof h € H
— The error over all possible future random samples

— Probability that h misclassifies a random data point
p(h(x) #y)




Learning Theory
e

e Let(xM,y;), ..., (™, y,,,) be m labelled data points
sampled mdependently accordingtop

* Let Cl-h be a random variable that indicates whether or not
the i'" data point is correctly classified

» The probability that h misclassifies the it" data pointis

p(cih = 0) = z P, y) Lhyzy = €

(x,y)




Learning Theory
e

e Let(xM,y;), ..., (™, y,,,) be m labelled data points
sampled mdependently accordingtop

* Let Cl-h be a random variable that indicates whether or not
the i'" data point is correctly classified

» The probability that h misclassifies the it" data pointis

p(cih — 0) — z p(x,y) 1h(x)¢y @

(x,y)

This is the true error of h
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Learning Theory

* Probability that all data points classified correctly?
p(ch=1,..ch=1)=] [pcl =1 =1-epr
=1

* Probability that a hypothesis h € H whose true error is at
least € correctly classifies the m data points is then

p(Clh =1,..,Ch = 1) <(1—eMm<eem

fore <1
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Learning Theory

* The version space (set of consistent hypotheses) is said to
be e-exhausted if and only if every consistent hypothesis
has true error less than e

— Enough samples to guarantee that every consistent
hypothesis has error at most ¢

* We'll show that w.h.p. every hypothesis with true error at
least € is not consistent with the data
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The Union Bound
=

* Let Hgz4p € H be the set of all hypotheses that have true
error at least €

* From before foreach h € Hg 4p,

p(h correctly classifies all m data points) < e ™™

* So, the probability that so/me h € Hg 4 correctly
classifies all of the data points is

eEm

h€Hpap

13




Haussler, 1988

T
* What we just proved:

— Theorem: For a finite hypothesis space, H, with m i.i.d.
samples, and 0 < € < 1, the probability that the
version space is not e-exhausted is at most |H|e €™

* We can turn this into a sample complexity bound
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Sample Complexity

* Let 6 be an upper bound on the desired probability of not
e-exhausting the sample space

— The probability that the version space is not ¢-
exhausted isat most |[H|e €™ < §

— Solving for m yields

- 11 )
m = EnHl

1
= (ll’llH +11’15)/E
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Sample Complexity

* Let 6 be an upper bound on the desired probability of not
e-exhausting the sample space

— The probability that the version space is not ¢-
exhausted isat most |[H|e €™ < §

— Solving for m yields

This is sufficient,
but not necessary
(union bound is
quite loose)
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Decision Trees
-

* Suppose that we want to learn an arbitrary Boolean
function given n Boolean features

* Hypothesis space consists of all decision trees
— Size of this space = ?

* How many samples are sufficient?
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Decision Trees
-

* Suppose that we want to learn an arbitrary Boolean
function given n Boolean features

* Hypothesis space consists of all decision trees

— Size of this space = 22" = number of Boolean
functions on n inputs

* How many samples are sufficient?
n 1
mZ(anz +1n5>/e
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Generalizations
,ee e

* How do we handle the case the there is no perfect
classifier?

— Pick the hypothesis with the lowest error on the training
set

* What do we do if the hypothesis space isn’t finite?
— Infinite sample complexity?

— Next time...
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Chernoff Bounds

* Chernoff bound: SupposeY;, ..., Y,, arei.i.d. random
variables taking values in {0, 1} suchthat E,,[Y;] = y.

Fore > 0,

p y—lZ:Y- > e | < 2e72me
m d A
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Chernoff Bounds

* Chernoff bound: SupposeY;, ..., Y,, arei.i.d. random
variables taking values in {0, 1} suchthat E,,[Y;] = y.

Fore > 0,

p(y——Z:Y ZE)SZG_ZmEZ

* Applyingthisto 1 — C, ..., 1 — C[ gives

m

1
p( €Ep — (1-chH| = E> < 2g~2me’

[
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Chernoff Bounds

* Chernoff bound: SupposeY;, ..., Y,, arei.i.d. random
variables taking values in {0, 1} suchthat E,,[Y;] = y.

Fore > 0,

p(y——ZY ZE)SZG_ZmEZ

* Applyingthisto 1 — C, ..., 1 — C[ gives

_ 2
P(Eh 26>Se 2me

This is the training error

UT D
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PAC Bounds

* Theorem: For a finite hypothesis space H finite, m i.i.d.

samples, and 0 < € < 1, the probability that true error of
any of the best classifiers (i.e., lowest training error) is

larger than its training error plus € is at most |H |e ~2™¢

2

— Sample complexity (for desired § = 2|H|e~2™¢”)
1
m > (lanI + lng )/Ze2
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PAC Bounds

* |f we require that the previous error is bounded above by 6,
then with probability (1 — 6),forallh € H

. 1 1
e, < €fFMM 4 —(ln |H| + In— )

2m o)
\
\_',_I | J
1
“bias” “variance”
— Forsmall |H|

 High bias (may not be enough hypotheses to choose from)
* Low variance
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PAC Bounds

* |f we require that the previous error is bounded above by 6,
then with probability (1 — 6),forallh € H

. 1 1
ep, < el 4 |— | In|H|+In=
n S € ——(In|H| +In3
\
\—Y_I \ J
\
“bias” “variance”
— For large |H |
 Low bias (lots of good hypotheses)
* High variance
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PAC Learning

e Given:
— Set of data X
— Hypothesis space H
— Set of target concepts C

— Training instances from unknown probability distribution
over X of the form (x, c(x))

* Goal:
— Learn the target conceptc € C
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PAC Learning
e

e Given:
— A concept class C over n instances from the set X

— A learner L with hypothesis space H

— Two constants, €, 0 € (0, %)

e (issaidto be PAC learnable by L using H iff for all
distributions over X, learner L by sampling n instances,
will with probability at least 1 — 6 output a hypothesis h €

H such that
—€p <€

11

— Running time is polynomial in s size(c)
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PAC Learning

* PAC concerned about computational resources required for
learning

— In practice, we are often only concerned about the
number of training examples required

— The two are related

* The computational limitation also imposes a polynomial
constraint on the training set size, since a learner can process
at most polynomial data in polynomial time

* The learner must visit each example at least once
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