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Learning Theory

• So far, we’ve been focused only on algorithms for finding 

the best hypothesis in the hypothesis space

– How do we know that the learned hypothesis will 

perform well on the test set?

– How many samples do we need to make sure that we 

learn a good hypothesis?

– In what situations is learning possible?
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Learning Theory

• If the training data was linearly separable, we saw that 

perceptron/SVMs will always perfectly classify the training 

data

– This does not mean that it will perfectly classify the test 

data

– Intuitively, if the true distribution of samples is linearly 

separable, then seeing more data should help us do 

better
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Problem Complexity

• Complexity of a learning problem depends on

– Size/expressiveness of the hypothesis space

– Accuracy to which a target concept must be 

approximated

– Probability with which the learner must produce a 

successful hypothesis

– Manner in which training examples are presented, e.g. 

randomly or by query to an oracle
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Problem Complexity

• Measures of complexity

– Sample complexity

• How much data you need in order to (with high probability) 
learn a good hypothesis

– Computational complexity 

• Amount of time and space required to accurately solve (with 
high probability) the learning problem

• Higher sample complexity means higher computational 
complexity
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PAC Learning

• Probably approximately correct (PAC)

– Developed by Leslie Valiant

– The only reasonable expectation of a learner is that with 

high probability it learns a close approximation to the 

target concept

– Specify two small parameters, 𝜖 and 𝛿, and require that 

with probability at least (1 − 𝛿) a system learn a 

concept with error at most 𝜖
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Consistent Learners

• Imagine a simple setting

– The hypothesis space is finite (i.e., 𝐻 = 𝑐)

– The true distribution of the data is 𝑝( Ԧ𝑥), no noisy labels

– We learned a perfect classifier on the training set, let’s 

call it ℎ ∈ H

• A learner is said to be consistent if it always outputs a perfect 

classifier on the training data assuming that one exists

– Want to compute the error of the classifier
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Notions of Error

• Training error of ℎ ∈ 𝐻

– The error on the training data

– Number of samples incorrectly classified divided by the total 
number of samples

• True error of ℎ ∈ 𝐻

– The error over all possible future random samples

– Probability that ℎ misclassifies a random data point

𝑝 ℎ 𝑥 ≠ 𝑦
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Learning Theory

• Let 𝑥 1 , 𝑦1 , … , (𝑥 𝑚 , 𝑦𝑚) be 𝑚 labelled data points 

sampled independently according to 𝑝

• Let 𝐶𝑖
ℎ be a random variable that indicates whether or not 

the 𝑖𝑡ℎ data point is correctly classified

• The probability that ℎ misclassifies the 𝑖𝑡ℎ data point is

𝑝 𝐶𝑖
ℎ = 0 = ෍

(𝑥,𝑦)

𝑝 𝑥, 𝑦 1ℎ 𝑥 ≠𝑦 = 𝜖ℎ

9



Learning Theory
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Learning Theory

• Probability that all data points classified correctly?

𝑝 𝐶1
ℎ = 1,… , 𝐶𝑚

ℎ = 1 =ෑ

𝑖=1

𝑚

𝑝(𝐶𝑖
ℎ = 1) = 1 − 𝜖ℎ

𝑚

• Probability that a hypothesis ℎ ∈ H whose true error is at 

least 𝜖 correctly classifies the 𝑚 data points is then

𝑝 𝐶1
ℎ = 1,… , 𝐶𝑚

ℎ = 1 ≤ 1 − 𝜖 𝑚 ≤ 𝑒−𝜖𝑚

for 𝜖 ≤ 1
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Learning Theory

• The version space (set of consistent hypotheses) is said to 

be 𝜖-exhausted if and only if every consistent hypothesis 

has true error less than 𝜖

– Enough samples to guarantee that every consistent 

hypothesis has error at most 𝜖

• We’ll show that w.h.p. every hypothesis with true error at 

least 𝜖 is not consistent with the data

12



The Union Bound

• Let 𝐻𝐵𝐴𝐷 ⊆ 𝐻 be the set of all hypotheses that have true 
error at least 𝜖

• From before for each ℎ ∈ 𝐻𝐵𝐴𝐷, 

𝑝 ℎ correctly classifies all 𝑚 data points ≤ 𝑒−𝜖𝑚

• So, the probability that some ℎ ∈ 𝐻𝐵𝐴𝐷 correctly 
classifies all of the data points is

𝑝 ሧ

ℎ∈𝐻𝐵𝐴𝐷

𝐶1
ℎ = 1,… , 𝐶𝑚

ℎ = 1 ≤ ෍

ℎ∈𝐻𝐵𝐴𝐷

𝑝 𝐶1
ℎ = 1,… , 𝐶𝑚

ℎ = 1

≤ 𝐻𝐵𝐴𝐷 𝑒−𝜖𝑚

≤ 𝐻 𝑒−𝜖𝑚
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Haussler, 1988

• What we just proved:

– Theorem: For a finite hypothesis space, 𝐻, with 𝑚 i.i.d. 

samples, and 0 < 𝜖 < 1, the probability that the 

version space is not 𝜖-exhausted is at most 𝐻 𝑒−𝜖𝑚

• We can turn this into a sample complexity bound
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Sample Complexity

• Let 𝛿 be an upper bound on the desired probability of not 

𝜖-exhausting the sample space

– The probability that the version space is not 𝜖-

exhausted is at most 𝐻 𝑒−𝜖𝑚 ≤ 𝛿

– Solving for 𝑚 yields

𝑚 ≥ −
1

𝜖
ln

𝛿

𝐻

= ln |𝐻| + ln
1

𝛿
/𝜖
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Sample Complexity

• Let 𝛿 be an upper bound on the desired probability of not 

𝜖-exhausting the sample space

– The probability that the version space is not 𝜖-

exhausted is at most 𝐻 𝑒−𝜖𝑚 ≤ 𝛿

– Solving for 𝑚 yields
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𝜖
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𝛿

𝐻
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𝛿
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Decision Trees

• Suppose that we want to learn an arbitrary Boolean 

function given 𝑛 Boolean features

• Hypothesis space consists of all decision trees

– Size of this space = ?

• How many samples are sufficient?
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Decision Trees

• Suppose that we want to learn an arbitrary Boolean 

function given 𝑛 Boolean features

• Hypothesis space consists of all decision trees

– Size of this space = 22
𝑛
= number of Boolean 

functions on 𝑛 inputs

• How many samples are sufficient?

𝑚 ≥ ln 22
𝑛
+ ln

1

𝛿
/𝜖
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Generalizations

• How do we handle the case the there is no perfect 

classifier?

– Pick the hypothesis with the lowest error on the training 

set

• What do we do if the hypothesis space isn’t finite?

– Infinite sample complexity?

– Next time…
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Chernoff Bounds

• Chernoff bound:  Suppose 𝑌1, … , 𝑌𝑚 are i.i.d. random 

variables taking values in {0, 1} such that 𝐸𝑝 𝑌𝑖 = 𝑦.  

For 𝜖 > 0,

𝑝 𝑦 −
1

𝑚
෍

𝑖

𝑌𝑖 ≥ 𝜖 ≤ 2𝑒−2𝑚𝜖2
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PAC Bounds

• Theorem: For a finite hypothesis space H finite, 𝑚 i.i.d. 

samples, and 0 < 𝜖 < 1, the probability that true error of 

any of the best classifiers (i.e., lowest training error) is 

larger than its training error plus 𝜖 is at most |𝐻|𝑒−2𝑚𝜖2

– Sample complexity (for desired 𝛿 ≥ 2|𝐻|𝑒−2𝑚𝜖2)

𝑚 ≥ ln 𝐻 + ln
1

𝛿
/2𝜖2
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PAC Bounds

• If we require that the previous error is bounded above by 𝛿, 
then with probability (1 − 𝛿), for all ℎ ∈ 𝐻

𝜖ℎ ≤ 𝜖ℎ
𝑡𝑟𝑎𝑖𝑛 +

1

2𝑚
ln |𝐻| + ln

1

𝛿

– For small |𝐻|
• High bias (may not be enough hypotheses to choose from)

• Low variance
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PAC Bounds

• If we require that the previous error is bounded above by 𝛿, 
then with probability (1 − 𝛿), for all ℎ ∈ 𝐻

𝜖ℎ ≤ 𝜖ℎ
𝑡𝑟𝑎𝑖𝑛 +

1

2𝑚
ln |𝐻| + ln

1

𝛿

– For large |𝐻|
• Low bias (lots of good hypotheses)

• High variance
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PAC Learning

• Given:

– Set of data 𝑋

– Hypothesis space 𝐻

– Set of target concepts 𝐶

– Training instances from unknown probability distribution 

over 𝑋 of the form (𝑥, 𝑐 𝑥 )

• Goal:

– Learn the target concept 𝑐 ∈ C
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PAC Learning

• Given:

– A concept class 𝐶 over 𝑛 instances from the set 𝑋

– A learner 𝐿 with hypothesis space 𝐻

– Two constants, 𝜖, 𝛿 ∈ (0,
1

2
)

• 𝐶 is said to be PAC learnable by 𝐿 using 𝐻 iff for all 
distributions over 𝑋, learner 𝐿 by sampling 𝑛 instances, 
will with probability at least 1 − 𝛿 output a hypothesis ℎ ∈
H such that

– 𝜖ℎ ≤ 𝜖

– Running time is polynomial in 
1

𝜖
,
1

𝛿
, 𝑛, 𝑠𝑖𝑧𝑒(𝑐)
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PAC Learning

• PAC concerned about computational resources required for 

learning

– In practice, we are often only concerned about the 

number of training examples required

– The two are related

• The computational limitation also imposes a polynomial 

constraint on the training set size, since a learner can process 

at most polynomial data in polynomial time

• The learner must visit each example at least once 
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