

MORE Learning Theory

Nicholas Ruozzi
University of Texas at Dallas

Last Time

- Probably approximately correct (PAC)
 - The only reasonable expectation of a learner is that with high probability it learns a close approximation to the target concept
 - Specify two small parameters, $0 < \epsilon$, $0 < \delta < 1$
 - ϵ is the error of the approximation
 - $(1-\delta)$ is the probability that, given m i.i.d. samples, our learning algorithm produces a classifier with error at most ϵ

Learning Theory

- We use the observed data in order to learn a classifier
- Want to know how far the learned classifier deviates from the (unknown) underlying distribution
 - With too few samples, we will with high probability learn a classifier whose true error is quite high even though it may be a perfect classifier for the observed data
 - As we see more samples, we pick a classifier from the hypothesis space with low training error & hope that it also has low true error
 - Want this to be true with high probability can we bound how many samples that we need?

Haussler, 1988

What we proved last time:

Theorem: For a finite hypothesis space, H, with m i.i.d. samples, and $0<\epsilon<1$, the probability that any consistent classifier has true error larger than ϵ is at most $|H|e^{-\epsilon m}$

We can turn this into a sample complexity bound

Sample Complexity

- Let δ be an upper bound on the desired probability of not ϵ -exhausting the sample space
 - The probability that the version space is not ϵ -exhausted is at most $|H|e^{-\epsilon m} \leq \delta$
 - Solving for m yields

$$m \ge -\frac{1}{\epsilon} \ln \frac{\delta}{|H|}$$
$$= \left(\ln |H| + \ln \frac{1}{\delta} \right) / \epsilon$$

PAC Bounds

Theorem: For a finite hypothesis space H, m i.i.d. samples, and $0 < \epsilon < 1$, the probability that true error of any of the best classifiers (i.e., lowest training error) is larger than its training error plus ϵ is at most $|H|e^{-2m\epsilon^2}$

• Sample complexity (for desired $\delta \ge |H|e^{-2m\epsilon^2}$)

$$m \ge \left(\ln|H| + \ln\frac{1}{\delta}\right)/2\epsilon^2$$

PAC Bounds

• If we require that the previous error is bounded above by δ , then with probability $(1 - \delta)$, for all $h \in H$

$$\epsilon_h \leq \epsilon_h^{train} + \sqrt{\frac{1}{2m} \left(\ln |H| + \ln \frac{1}{\delta} \right)}$$
 "bias" "variance"

- For small |H|
 - High bias (may not be enough hypotheses to choose from)
 - Low variance

PAC Bounds

• If we require that the previous error is bounded above by δ , then with probability $(1 - \delta)$, for all $h \in H$

$$\epsilon_h \leq \epsilon_h^{train} + \sqrt{\frac{1}{2m} \left(\ln |H| + \ln \frac{1}{\delta} \right)}$$
 "bias" "variance"

- For large |H|
 - Low bias (lots of good hypotheses)
 - High variance

- Our analysis for the finite case was based on |H|
 - If H isn't finite, this translates into infinite sample complexity
 - We can derive a different notion of complexity for infinite hypothesis spaces by considering only the number of points that can be correctly classified by some member of *H*
 - We will only consider the binary case for now

 How many points in 1-D can be correctly classified by a linear separator?

— 2 points:

 How many points in 1-D can be correctly classified by a linear separator?

– 2 points:

Yes!

 How many points in 1-D can be correctly classified by a linear separator?

— 2 points:

Yes!

- How many points in 1-D can be correctly classified by a linear separator?
 - 3 points:

 How many points in 1-D can be correctly classified by a linear separator?

— 3 points:

NO!

- How many points in 1-D can be correctly classified by a linear separator?
 - 3 points:

 3 points and up: for any collection of three or more there is always some choice of pluses and minuses such that that the points cannot be classified with a linear separator

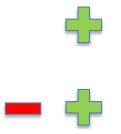
• A set of points is shattered by a hypothesis space H if and only if for every partition of the set of points into positive and negative examples, there exists some consistent $h \in H$

 The Vapnik-Chervonenkis (VC) dimension of H over inputs from X is the size of the *largest* finite subset of X shattered by H

- Common misconception:
 - VC dimension is determined by the largest shattered set of points, not the highest number such that all sets of points that size can be shattered

Cannot be shattered by a line

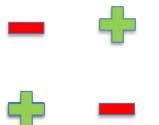
- Common misconception:
 - VC dimension is determined by the largest shattered set of points, not the highest number such that all sets of points that size can be shattered



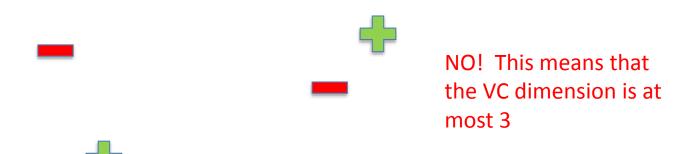
Can be shattered by a line (no matter the labels), so VC dimension is at least 3

- What is the VC dimension of 2-D space under linear separators?
 - It is at least three from the last slide
 - Can some set of four points be shattered?

- What is the VC dimension of 2-D space under linear separators?
 - It is at least three from the last slide
 - Can some set of four points be shattered?



- What is the VC dimension of 2-D space under linear separators?
 - It is at least three from the last slide
 - Can some set of four points be shattered?



- There exists a linear separator that can shatter any set of size d+1 in a d-dimensional space, but not d+2
- The larger the subset of *X* that can be shattered, the more expressive the hypothesis space is
- If arbitrarily large finite subsets of X can be shattered, then $VC(H) = \infty$

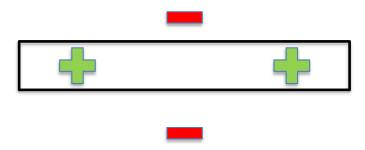
Axis Parallel Rectangles

- Let X be the set of all points in \mathbb{R}^2
- Let H be the set of all axis parallel rectangles in 2-D
 - What is VC(H)?

Axis Parallel Rectangles

- Let X be the set of all points in \mathbb{R}^2
- Let H be the set of all axis parallel rectangles in 2-D

$$-VC(H) \ge 4$$



Axis Parallel Rectangles

- Let X be the set of all points in \mathbb{R}^2
- Let H be the set of all axis parallel rectangles in 2-D

$$-VC(H)=4$$

A rectangle can contain at most 4 extreme points, the fifth point must be contained within the rectangle defined by these points

Examples

VC dimension of decision trees?

VC dimension of 1-NN?

VC dimension of linear separators through the origin?

PAC Bounds with VC Dimension

VC dimension can be used to construct PAC bounds

$$m \ge \frac{1}{\epsilon} \left(4 \ln \frac{2}{\delta} + 8 \cdot VC(H) \ln \frac{13}{\epsilon} \right)$$

• With probability at least $(1 - \delta)$ every $h \in H$ satisfies

$$\epsilon_h \le \epsilon_h^{train} + \sqrt{\frac{1}{m} \left(VC(H) \left(\ln \left(\frac{2m}{VC(H)} \right) + 1 \right) + \ln \frac{4}{\delta} \right)}$$

 These bounds (and the preceding discussion) only work for binary classification, but there are generalizations

PAC Learning

- Given:
 - Set of data X
 - Hypothesis space H
 - Set of target concepts C
 - Training instances from unknown probability distribution over X of the form (x, c(x))
- Goal:
 - Learn the target concept $c \in C$

PAC Learning

- Given:
 - A concept class C over n instances from the set X
 - A learner L with hypothesis space H
 - Two constants, $\epsilon, \delta \in (0, \frac{1}{2})$
- C is said to be PAC learnable by L using H iff for all distributions over X, learner L by sampling n instances, will with probability at least $1-\delta$ outputs a hypothesis $h\in H$ such that
 - $-\epsilon_h \le \epsilon$
 - Running time is polynomial in $\frac{1}{\epsilon}$, $\frac{1}{\delta}$, n, size(c)

