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Last Time
=

* Probably approximately correct (PAC)

— The only reasonable expectation of a learner is that with
high probability it learns a close approximation to the
target concept

— Specify two small parameters, 0 < ¢, 0 <6 < 1
* ¢ isthe error of the approximation

* (1 — &) isthe probability that, given m i.i.d. samples, our
learning algorithm produces a classifier with error at most e
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Learning Theory
e

 We use the observed data in order to learn a classifier

 Wantto know how far the learned classifier deviates from the
(unknown) underlying distribution

— With too few samples, we will with high probability learn a
classifier whose true error is quite high even though it may be a
perfect classifier for the observed data

— As we see more samples, we pick a classifier from the hypothesis
space with low training error & hope that it also has low true error

e Want this to be true with high probability - can we bound how
many samples that we need?




Haussler, 1988

T
* What we proved last time:

Theorem: For a finite hypothesis space, H, with m i.i.d.
samples, and 0 < € < 1, the probability that any
consistent classifier has true error larger than € is at most
|H|e—6m

* We can turn this into a sample complexity bound




Sample Complexity

* Let 6 be an upper bound on the desired probability of not
e-exhausting the sample space

— The probability that the version space is not ¢-
exhausted isat most |[H|e €™ < §

— Solving for m yields

- 11 )
m = EnHl

1
= (ll’llH +11’15)/E




PAC Bounds

Theorem: For a finite hypothesis space H, m i.i.d. samples,
and 0 < € < 1, the probability that true error of any of the
best classifiers (i.e., lowest training error) is larger than its

. | oo
training error plus € is at most |H |e ~%™€

« Sample complexity (for desired 6 = IHIe_zmez)

1
m = (lanI + lng )/262




PAC Bounds

* |f we require that the previous error is bounded above by 6,
then with probability (1 — 6),forallh € H
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e, < €fFMM 4 —(ln |H| + In— )
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“bias” “variance”
— Forsmall |H|

 High bias (may not be enough hypotheses to choose from)
* Low variance




PAC Bounds

* |f we require that the previous error is bounded above by 6,
then with probability (1 — 6),forallh € H
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“bias” “variance”
— For large |H |
 Low bias (lots of good hypotheses)
* High variance




VC Dimension
_

* Ouranalysis for the finite case was based on |H |

— If H isn’t finite, this translates into infinite sample
complexity

— We can derive a different notion of complexity for infinite
hypothesis spaces by considering only the number of
points that can be correctly classified by some member
of H

— We will only consider the binary case for now




VC Dimension
I

* How many pointsin 1-D can be correctly classified by a
linear separator?

— 2 points:
':::l,:' _— Yes!
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VC Dimension
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* How many pointsin 1-D can be correctly classified by a
linear separator?

— 2 points:
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VC Dimension
I

* How many pointsin 1-D can be correctly classified by a
linear separator?

— 3 points:

e ':l‘:b ':[b Yes!
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VC Dimension
I

* How many pointsin 1-D can be correctly classified by a
linear separator?

— 3 points:

oF == s NO!

14




VC Dimension
_

* How many pointsin 1-D can be correctly classified by a
linear separator?

— 3 points:

q]j -ﬂj NO!

— 3 points and up: for any collection of three or more there
is always some choice of pluses and minuses such that
that the points cannot be classified with a linear
separator
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VC Dimension

* Aset of points is shattered by a hypothesis space H if and
only if for every partition of the set of points into positive

and negative examples, there exists some consistent h €
H

* The Vapnik-Chervonenkis (VC) dimension of H over inputs

from X is the size of the /argest finite subset of X shattered
by H
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VC Dimension
e

e Common misconception:

— VC dimension is determined by the largest shattered set
of points, not the highest number such that all sets of
points that size can be shattered

N = op

Cannot be shattered by a line
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VC Dimension
S

e Common misconception:

— VC dimension is determined by the largest shattered set
of points, not the highest number such that all sets of
points that size can be shattered

-
-

Can be shattered by a line (no
matter the labels), so VC
dimension is at least 3
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VC Dimension
e

* What is the VC dimension of 2-D space under linear
separators?

— It is at least three from the last slide

— Can some set of four points be shattered?

-
- o
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VC Dimension
e

* What is the VC dimension of 2-D space under linear
separators?

— It is at least three from the last slide

— Can some set of four points be shattered?

- o
o
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VC Dimension
S

* What is the VC dimension of 2-D space under linear
separators?

— It is at least three from the last slide

— Can some set of four points be shattered?

NO! This means that
_— the VC dimension is at
most 3
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VC Dimension

* There exists a linear separator that can shatter any set of
sized + 1inad — dimensional space, butnotd + 2

* The larger the subset of X that can be shattered, the more
expressive the hypothesis space is

* If arbitrarily large finite subsets of X can be shattered, then
VC(H) = oo
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Axis Parallel Rectangles

e Let X be the set of all points in R?
* Let H be the set of all axis parallel rectangles in 2-D

— Whatis VC (H)?
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Axis Parallel Rectangles
|

e Let X be the set of all points in R?
* Let H be the set of all axis parallel rectangles in 2-D

—VC(H) = 4
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Axis Parallel Rectangles
-

e Let X be the set of all points in R?
e Let H be the set of all axis parallel rectangles in 2-D
—-VC(H) =4

— A rectangle can contain at most 4 extreme points, the
fifth point must be contained within the rectangle
defined by these points g

¥ &

als

25




Examples

e VC dimension of decision trees?

e VC dimension of 1-NN?

* VC dimension of linear separators through the origin?
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PAC Bounds with VC Dimension

_
e VC dimension can be used to construct PAC bounds

1 2 13
m=>—(4ln=+8-VC(H)In—
€ o) €

 With probability atleast (1 — &) every h € H satisfies

train 1 2m 4
€Ep < € F E(VC(H) <ln(VC(H)>+1>+lng

* These bounds (and the preceding discussion) only work for binary
classification, but there are generalizations

27




PAC Learning

e Given:
— Set of data X
— Hypothesis space H
— Set of target concepts C

— Training instances from unknown probability distribution
over X of the form (x, c(x))

* Goal:
— Learn the target conceptc € C
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PAC Learning
e

e Given:
— A concept class C over n instances from the set X

— A learner L with hypothesis space H

— Two constants, €, 0 € (0, %)

e (issaidto be PAC learnable by L using H iff for all
distributions over X, learner L by sampling n instances,
will with probability at least 1 — 6 outputs a hypothesis

h € H such that
—€p <€

11

— Running time is polynomial in s size(c)
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