Nearest Neighbor Methods

Nicholas Ruozzi
University of Texas at Dallas

Based on the slides of Vibhav Gogate and David Sontag
Nearest Neighbor Methods

- Learning
 - Store all training examples
- Classifying a new point x'
 - Find the training example $(x^{(i)}, y^{(i)})$ such that $x^{(i)}$ is closest (for some notion of close) to x'
 - Classify x' with the label $y^{(i)}$
Nearest Neighbor Methods
Nearest Neighbor Methods
Nearest Neighbor Methods
k-nearest neighbor methods look at the k closest points in the training set and take a majority vote (should choose k to be odd)
Nearest Neighbor Methods

k-nearest neighbor methods look at the k closest points in the training set and take a majority vote (should choose k to be odd)
1-NN Example
20-NN Example

[Kevin Zakka]
Nearest Neighbor Methods

• Applies to data sets with points in \mathbb{R}^d
 • Best for large data sets with only a few (< 20) attributes

• Advantages
 • Learning is easy
 • Can learn complicated decision boundaries

• Disadvantages
 • Classification is slow (need to keep the entire training set around)
 • Easily fooled by irrelevant attributes
Practical Challenges

• How to choose the right measure of closeness?
 • Euclidean distance is popular, but many other possibilities

• How to pick k?
 • Too small and the estimates are noisy, too large and the accuracy suffers

• What if the nearest neighbor is really far away?
Choosing the Distance

• Euclidean distance makes sense when each of the features is roughly on the same scale

• If the features are very different (e.g., height and age), then Euclidean distance makes less sense as height would be less significant than age simply because age has a larger range of possible values

• To correct for this, feature vectors are often recentered around their means and scaled by the standard deviation over the training set
Normalization

• Sample mean

\[\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x^{(i)} \]

• Sample variance (biased)

\[\hat{\sigma}_k^2 = \frac{1}{n} \sum_{i=1}^{n} (x_k^{(i)} - \bar{x}_k)^2 \]
Consider the nearest neighbor problem in one dimension
Irrelevant Attributes

Now, add a new attribute that is just random noise...
K-Dimensional Trees

- In order to do classification, we can compute the distances between all points in the training set and the point we are trying to classify

 - With m data points in n-dimensional space, this takes $O(mn)$ time for Euclidean distance

 - It is possible to do better if we do some preprocessing on the training data
K-Dimensional Trees

- k-d trees provide a data structure that can help simplify the classification task by constructing a tree that partitions the search space
 - Starting with the entire training set, choose some dimension, i
 - Select an element of the training data whose i^{th} dimension has the median value among all elements of the training set
 - Divide the training set into two pieces: depending on whether their i^{th} attribute is smaller or larger than the median
 - Repeat this partitioning process on each of the two new pieces separately
K-Dimensional Trees

[Images from slides by Mehyrar Mohri]
K-Dimensional Trees

- Start at the top of the k-d tree and traverse it to a leaf of the tree based on where the point to classify should fall.
- Once a leaf node is reached, it is selected to be the current closest point to x'.
- Follow the path, in the opposite direction, from the leaf to the root.
 - If the current node along the path is closer to x' than the selected closest point it becomes the new closest point.
 - Before moving up the tree, the algorithm checks if there could be any points in the opposite partition that are closer to x' than the current closest point.
 - If so, then closest point in that subtree is computed recursively.
 - Otherwise, the parent of the current node along the path becomes the new current node.
K-Dimensional Trees

• By design, the constructed k-d tree is “bushy”
 • The idea is that if new points to classify are evenly distributed throughout the space, then the expected (amortized) cost of classification is approximately $O(d \log n)$ operations

• Summary
 • k-NN is fast and easy to implement
 • No training required
 • Can be good in practice (where applicable)