Learning Theory

Nicholas Ruozzi
University of Texas at Dallas

Based on the slides of Vibhav Gogate and David Sontag
Learning Theory

• So far, we’ve been focused only on algorithms for finding the best hypothesis in the hypothesis space

 • How do we know that the learned hypothesis will perform well on the test set?

 • How many samples do we need to make sure that we learn a good hypothesis?

 • In what situations is learning possible?
Learning Theory

• If the training data is linearly separable, we saw that perceptron/SVMs will always perfectly classify the training data
• This does not mean that it will perfectly classify the test data
• Intuitively, if the true distribution of samples is linearly separable, then seeing more data should help us do better
Problem Complexity

• Complexity of a learning problem depends on
 • Size/expressiveness of the hypothesis space
 • Accuracy to which a target concept must be approximated
 • Probability with which the learner must produce a successful hypothesis
 • Manner in which training examples are presented, e.g. randomly or by query to an oracle
Problem Complexity

• Measures of complexity
 • Sample complexity
 • How much data you need in order to (with high probability) learn a good hypothesis
 • Computational complexity
 • Amount of time and space required to accurately solve (with high probability) the learning problem
 • Higher sample complexity means higher computational complexity
PAC Learning

- Probably approximately correct (PAC)

 - The only reasonable expectation of a learner is that with high probability it learns a close approximation to the target concept

 - Specify two small parameters, ϵ and δ, and require that with probability at least $(1 - \delta)$ a system learn a concept with error at most ϵ
Consistent Learners

• Imagine a simple setting

 • The hypothesis space is finite (i.e., $|H| = c$)

 • The true distribution of the data is $p(\tilde{x})$, no noisy labels

 • We learned a perfect classifier on the training set, let’s call it $h \in H$

 • A learner is said to be consistent if it always outputs a perfect classifier (assuming that one exists)

 • Want to compute the (expected) error of the classifier
Notions of Error

- Training error of $h \in H$
 - The error on the training data
 - Number of samples incorrectly classified divided by the total number of samples
- True error of $h \in H$
 - The error over all possible future random samples
 - Probability, with respect to the data generating distribution, that h misclassifies a random data point
 \[p(h(x) \neq y) \]
Learning Theory

• Assume that there exists a hypothesis in H that perfectly classifies all data points and that $|H|$ is finite

• The version space (set of consistent hypotheses) is said to be ϵ-exhausted if and only if every consistent hypothesis has true error less than ϵ

 • Want enough samples to guarantee that every consistent hypothesis has error at most ϵ

• We’ll show that, given enough samples, w.h.p. every hypothesis with true error at least ϵ is not consistent with the data
Learning Theory

• Let \((x^{(1)}, y^{(1)}), \ldots, (x^{(M)}, y^{(M)})\) be \(M\) labelled data points sampled independently according to \(p\)

• Let \(C^h_m\) be a random variable that indicates whether or not the \(m^{th}\) data point is correctly classified

• The probability that \(h\) misclassifies the \(m^{th}\) data point is

\[
p(C^h_m = 0) = \sum_{(x,y)} p(x, y) 1_{h(x) \neq y} = \epsilon_h
\]
Learning Theory

- Let \((x^{(1)}, y^{(1)}), \ldots, (x^{(M)}, y^{(M)})\) be \(M\) labelled data points sampled independently according to \(p\)
- Let \(C^h_m\) be a random variable that indicates whether or not the \(m^{th}\) data point is correctly classified.
- The probability that \(h\) misclassifies the \(m^{th}\) data point is

\[
p(C^h_m = 0) = \sum_{(x,y)} p(x, y) 1_{h(x) \neq y} = \epsilon_h
\]

Probability that a randomly sampled pair \((x,y)\) is incorrectly classified by \(h\)
Learning Theory

• Let \((x^{(1)}, y^{(1)}), \ldots, (x^{(M)}, y^{(M)}) \) be \(M \) labelled data points sampled independently according to \(p \)

• Let \(C^h_m \) be a random variable that indicates whether or not the \(m^{th} \) data point is correctly classified

• The probability that \(h \) misclassifies the \(m^{th} \) data point is

\[
p(C^h_m = 0) = \sum_{(x,y)} p(x, y) 1_{h(x) \neq y} = \epsilon_h
\]

This is the true error of hypothesis \(h \)
• Probability that all data points classified correctly?

• Probability that a hypothesis \(h \in H \) whose true error is at least \(\epsilon \) correctly classifies the \(m \) data points is then

\[
\Pr(C_1^h, \ldots, C_m^h) \leq 1 - \epsilon m \leq e^{-\epsilon m}
\]
Learning Theory

• Probability that all data points classified correctly?

\[
p(C_1^h = 1, \ldots, C_M^h = 1) = \prod_{m=1}^{M} p(C_m^h = 1) = (1 - \epsilon_h)^M
\]

• Probability that a hypothesis \(h \in H \) whose true error is at least \(\epsilon \) correctly classifies the \(m \) data points is then
Learning Theory

• Probability that all data points classified correctly?

\[p(C_1^h = 1, \ldots, C_M^h = 1) = \prod_{m=1}^{M} p(C_m^h = 1) = (1 - \epsilon_h)^M \]

• Probability that a hypothesis \(h \in H \) whose true error is at least \(\epsilon \) correctly classifies the \(m \) data points is then

\[p(C_1^h = 1, \ldots, C_M^h = 1) \leq (1 - \epsilon)^M \leq e^{-\epsilon M} \]

for \(\epsilon \leq 1 \)
The Union Bound

• Let $H_{BAD} \subseteq H$ be the set of all hypotheses that have true error at least ε

• From before for each $h \in H_{BAD}$,

$$p(h \text{ correctly classifies all } M \text{ data points}) \leq e^{-\varepsilon M}$$

• So, the probability that some $h \in H_{BAD}$ correctly classifies all of the data points is

$$p\left(\bigvee_{h \in H_{BAD}} (C_1^h = 1, \ldots, C_M^h = 1)\right) \leq \sum_{h \in H_{BAD}} p(C_1^h = 1, \ldots, C_M^h = 1)$$

$$\leq |H_{BAD}|e^{-\varepsilon M}$$

$$\leq |H|e^{-\varepsilon M}$$
What we just proved:

Theorem: For a finite hypothesis space, H, with M i.i.d. samples, and $0 < \epsilon < 1$, the probability that the version space is not ϵ-exhausted is at most $|H|e^{-\epsilon M}$

We can turn this into a sample complexity bound
• What we just proved:

• **Theorem:** For a finite hypothesis space, H, with M i.i.d. samples, and $0 < \epsilon < 1$, the probability that there exists a hypothesis in H that is consistent with the data but has true error larger than ϵ is at most $|H|e^{-\epsilon M}$

• We can turn this into a **sample complexity bound**
Sample Complexity

- Let δ be an upper bound on the desired probability of not ϵ-exhausting the sample space.

 - That is, the probability that the version space is not ϵ-exhausted is at most $|H|e^{-\epsilon M} \leq \delta$.

- Solving for M yields

 $$M \geq -\frac{1}{\epsilon} \ln \frac{\delta}{|H|}$$

 $$= \left(\ln |H| + \ln \frac{1}{\delta} \right) / \epsilon$$
Sample Complexity

- Let δ be an upper bound on the desired probability of not ϵ-exhausting the sample space.

- That is, the probability that the version space is not ϵ-exhausted is at most $|H|e^{-\epsilon M} \leq \delta$.

- Solving for M yields:

\[
M \geq -\frac{1}{\epsilon} \ln \frac{\delta}{|H|} = \left(\ln |H| + \ln \frac{1}{\delta} \right) / \epsilon
\]

This is sufficient, but not necessary (union bound is quite loose).
• Suppose that we want to learn an arbitrary Boolean function given n Boolean features

• Hypothesis space consists of all decision trees
 • Size of this space = ?

• How many samples are sufficient?
Decision Trees

• Suppose that we want to learn an arbitrary Boolean function given n Boolean features

• Hypothesis space consists of all decision trees

 • Size of this space $= 2^{2^n} = \text{number of Boolean functions on } n \text{ inputs}$

• How many samples are sufficient?

$$M \geq \left(\ln 2^{2^n} + \ln \frac{1}{\delta} \right) / \epsilon$$
Generalizations

• How do we handle situations with no perfect classifier?
 • Pick the hypothesis with the lowest error on the training set
• What do we do if the hypothesis space isn’t finite?
 • Infinite sample complexity?
• Coming soon...
Chernoff Bounds

- Chernoff bound: Suppose Y_1, \ldots, Y_M are i.i.d. random variables taking values in $\{0, 1\}$ such that $E_p [Y_i] = \gamma$. For $\epsilon > 0$,

$$p \left(\left| \gamma - \frac{1}{M} \sum_{m} Y_m \right| \geq \epsilon \right) \leq 2e^{-2M\epsilon^2}$$
Chernoff Bounds

• Chernoff bound: Suppose Y_1, \ldots, Y_M are i.i.d. random variables taking values in $\{0, 1\}$ such that $E_p[Y_i] = y$. For $\epsilon > 0$,

$$p \left(\left| y - \frac{1}{M} \sum_m Y_m \right| \geq \epsilon \right) \leq 2e^{-2M\epsilon^2}$$

• Applying this to $1 - C_1^h, \ldots, 1 - C_M^h$ gives

$$p \left(\left| \epsilon_h - \frac{1}{M} \sum_m (1 - C_m^h) \right| \geq \epsilon \right) \leq 2e^{-2M\epsilon^2}$$
Chernoff Bounds

- Chernoff bound: Suppose Y_1, \ldots, Y_M are i.i.d. random variables taking values in $\{0, 1\}$ such that $E_p [Y_i] = y$. For $\epsilon > 0$,

 $$p \left(\left| y - \frac{1}{M} \sum_{m} Y_m \right| \geq \epsilon \right) \leq 2e^{-2M\epsilon^2}$$

- Applying this to $1 - C_1^h, \ldots, 1 - C_M^h$ gives

 $$p \left(\epsilon_h - \frac{1}{M} \sum_{m} (1 - C_m^h) \geq \epsilon \right) \leq e^{-2M\epsilon^2}$$

This is the training error
PAC Bounds

• **Theorem:** For a finite hypothesis space H finite, M i.i.d. samples, and $0 < \epsilon < 1$, the probability that true error of any of the best classifiers (i.e., lowest training error) is larger than its training error plus ϵ is at most $|H|e^{-2M\epsilon^2}$

• Sample complexity (for desired $\delta \geq |H|e^{-2M\epsilon^2}$)

\[
M \geq \left(\ln |H| + \ln \frac{1}{\delta} \right) / 2\epsilon^2
\]
PAC Bounds

- If we require that the previous error is bounded above by δ, then with probability $(1 - \delta)$, for all $h \in H$

$$\varepsilon_h \leq \varepsilon_h^{\text{train}} + \sqrt{\frac{1}{2M} \left(\ln |H| + \ln \frac{1}{\delta} \right)}$$

- For small $|H|
 - High bias (may not be enough hypotheses to choose from)
 - Low variance
PAC Bounds

- If we require that the previous error is bounded above by δ, then with probability $(1 - \delta)$, for all $h \in H$

$$\epsilon_h \leq \epsilon_h^{\text{train}} + \sqrt{\frac{1}{2M} \left(\ln |H| + \ln \frac{1}{\delta} \right)}$$

"bias" \hspace{0.5cm} "variance"

- For large $|H|$:
 - Low bias (lots of good hypotheses)
 - High variance