Practical ML Advice

Based on slides from Jude Shavlik and Tom Dietterich
Proper Experimental Methodology Can Have a Huge Impact:

A 2002 paper in *Nature* (a major journal) needed to be corrected due to “training on the testing set”

Original report: 95% accuracy (5% error rate)

Corrected report (which still is buggy):

73% accuracy (27% error rate)

Error rate increased over 400%!!!
Some Typical ML Experiments

![Graph showing test set accuracy vs. number of training examples with confidence bars and 'learning curve' annotations.]

- Test set
- Accuracy
- # of Training Examples
 (or 'amount of noise' or 'amount of missing features')

Confidence Bars (from multiple runs)

Algorithm 1

Algorithm 2

A 'learning curve'
Typical Experiments

<table>
<thead>
<tr>
<th></th>
<th>Test Set Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full System</td>
<td>80%</td>
</tr>
<tr>
<td>Without Module A</td>
<td>75%</td>
</tr>
<tr>
<td>Without Module B</td>
<td>62%</td>
</tr>
</tbody>
</table>
Experimental Methodology

1) Start with a dataset of labeled examples
2) Randomly partition into N groups
3a) N times, combine $N-1$ groups into a train set
3b) Provide training set to learning system
3c) Measure accuracy on “left out” group (the test set)

Called N-fold cross validation
Validation Sets

- Often, an ML system has to choose when to stop learning, select among alternative answers, etc.

- One wants the model that produces the highest accuracy on future examples ("overfitting avoidance")

- It is a "cheat" to look at the test set while still learning

- Better method
 - Set aside part of the training set
 - Measure performance on this validation data to estimate future performance for a given set of hyperparameters
 - Use best hyperparameter settings, train with all training data (except test set) to estimate future performance on new examples
A typical Learning system

Statistical techniques such as 10-fold cross validation and t-tests are used to get meaningful results.

LEARNER

Generate solutions → Select best → Train' set → Tune set → Classifier

collection of classified examples

Expected accuracy on future examples
Multiple Tuning sets

- Using a **single** tuning set can be an unreliable predictor, plus some data “wasted”

1) For each possible set of hyperparameters

 a) Divide training data into **train** and **valid.** sets, using **N-fold cross validation**

 b) Score this set of hyperparameter values: average **valid.** set accuracy over the **N** folds

2) Use **best** set of hyperparameter settings and **all** (train + valid.) examples

3) Apply resulting model to **test** set
EVALUATING ML MODELS
Contingency Tables

(special case of ‘confusion matrices’)

<table>
<thead>
<tr>
<th>Algorithm Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
</tr>
<tr>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>True Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
</tr>
<tr>
<td>-</td>
</tr>
</tbody>
</table>

Counts of occurrences
True Positive Rate (TPR) = \(\frac{n(1,1)}{n(1,1) + n(0,1)} \)

\(\sim \) P(algo outputs + | + is correct)

False Positive Rate (FPR) = \(\frac{n(1,0)}{n(1,0) + n(0,0)} \)

\(\sim \) P(algo outputs + | - is correct)

Can similarly define False Negative Rate and True Negative Rate
ROC Curves

• ROC: *Receiver Operating Characteristics*

• Started for radar research during WWII

• Judging algorithms on accuracy alone may not be good enough when **getting a positive wrong** costs more than **getting a negative wrong** (or vice versa)
 • e.g., medical tests for serious diseases
 • e.g., a movie-recommender system
ROC Curves Graphically

Different algorithms can work better in different parts of ROC space. This depends on cost of false + vs false -
Creating an ROC Curve

The Standard Approach:

• You need an ML algorithm that outputs **NUMERIC** results such as `prob(example is +)`

• You can use ensemble methods to get this from a model that only provides Boolean outputs
 • e.g., have 100 models vote & count votes
Alg. for Creating ROC Curves

Step 1: Sort predictions on test set

Step 2: Locate a *threshold* between examples with opposite categories

Step 3: Compute TPR & FPR for each threshold of Step 2

Step 4: Connect the dots

![Example ROC Curve](image-url)
Plotting ROC Curves - Example

<table>
<thead>
<tr>
<th>ML Algo Output (Sorted)</th>
<th>Correct Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ex 9 .99</td>
<td>+</td>
</tr>
<tr>
<td>Ex 7 .98 TPR=(2/5), FPR=(0/5)</td>
<td>+</td>
</tr>
<tr>
<td>Ex 1 .72 TPR=(2/5), FPR=(1/5)</td>
<td>-</td>
</tr>
<tr>
<td>Ex 2 .70</td>
<td>+</td>
</tr>
<tr>
<td>Ex 6 .65 TPR=(4/5), FPR=(1/5)</td>
<td>+</td>
</tr>
<tr>
<td>Ex 10 .51</td>
<td>-</td>
</tr>
<tr>
<td>Ex 3 .39 TPR=(4/5), FPR=(3/5)</td>
<td>-</td>
</tr>
<tr>
<td>Ex 5 .24 TPR=(5/5), FPR=(3/5)</td>
<td>+</td>
</tr>
<tr>
<td>Ex 4 .11</td>
<td>-</td>
</tr>
<tr>
<td>Ex 8 .01 TPR=(5/5), FPR=(5/5)</td>
<td>-</td>
</tr>
</tbody>
</table>

Algorithm predicts + if its output is ≥ 0
Area Under ROC Curve

• A common metric for experiments is to numerically integrate the ROC Curve

• Usually called AUC

• Probability that ML alg. will “rank” a randomly chosen positive instance higher than a randomly chosen negative one

• Can summarize the curve too much in practice
Asymmetric Error Costs

- Assume that \(\text{cost}(FP) \neq \text{cost}(FN) \)
- You would like to pick a threshold that minimizes

\[
E(\text{total cost})
= \text{cost}(FP) \times \text{pr}(FP) \times (# \text{ of neg ex's}) + \\
\text{cost}(FN) \times \text{pr}(FN) \times (# \text{ of pos ex's})
\]

- You could also have (maybe negative) costs for TP and TN (assumed zero in above)
ROC’s & Skewed Data

- One strength of ROC curves is that they are a good way to deal with skewed data (|+| >> |-|) since the axes are fractions (rates) independent of the # of examples.

- You must be careful though!
 - Low FPR * (many negative ex) = sizable number of FP
 - Possibly more than # of TP
Precision vs. Recall

• Think about search engines...

• **Precision** = (# of relevant items retrieved) / (total # of items retrieved)

 = \(\frac{n(1,1)}{n(1,1) + n(1,0)} \)

 \(\cong P(\text{is pos} \mid \text{called pos}) \)

• **Recall** = (# of relevant items retrieved) / (# of relevant items that exist)

 = \(\frac{n(1,1)}{n(1,1) + n(0,1)} \) = TPR

 \(\cong P(\text{called pos} \mid \text{is pos}) \)

• Notice that \(n(0,0) \) is not used in either formula
Therefore you get no credit for filtering out irrelevant items
You can get very different visual results on the same data!

The reason for this is that there may be lots of – ex’s (e.g., might need to include 100 neg’s to get 1 more pos)
Rejection Curves

• In most learning algorithms, we can specify a threshold for making a rejection decision

• Probabilistic classifiers: adjust cost of rejecting versus cost of FP and FN

• Decision-boundary method: if a test point \boldsymbol{x} is within θ of the decision boundary, then reject

 • Equivalent to requiring that the “activation” of the best class is larger than the second-best class by at least θ
Rejection Curves

- Vary θ and plot fraction correct versus fraction rejected
The F1 Measure

• Figure of merit that combines precision and recall

\[F_1 = 2 \cdot \frac{P \cdot R}{P + R} \]

where \(P \) = precision; \(R \) = recall. This is twice the harmonic mean of \(P \) and \(R \).

• We can plot \(F1 \) as a function of the classification threshold \(\theta \)