Logistic Regression

Nicholas Ruozzi
University of Texas at Dallas

based on the slides of Vibhav Gogate
Last Time

• Supervised learning via naive Bayes
 • Use MLE to estimate a distribution $p(x, y) = p(y)p(x|y)$
 • Classify by looking at the conditional distribution, $p(y|x)$
• Today: logistic regression
Logistic Regression

• Learn $p(Y|X)$ directly from the data

• Assume a particular functional form, e.g., a linear classifier $p(Y = 1|x) = 1$ on one side and 0 on the other

• Not differentiable...
 • Makes it difficult to learn
 • Can’t handle noisy labels

\[p(Y = 1|x) = 0 \]

\[p(Y = 1|x) = 1 \]
Logistic Regression

• Learn $p(y|x)$ directly from the data

• Assume a particular functional form

$$p(Y = -1|x) = \frac{1}{1 + \exp(w^T x + b)}$$

$$p(Y = 1|x) = \frac{\exp(w^T x + b)}{1 + \exp(w^T x + b)}$$
Logistic Function in m Dimensions

Can be applied to discrete and continuous features

$$p(Y = -1|x) = \frac{1}{1 + \exp(w^T x + b)}$$
Functional Form: Two classes

• Given some w and b, we can classify a new point x by assigning the label 1 if $p(Y = 1|x) > p(Y = -1|x)$ and -1 otherwise

• This leads to a linear classification rule:
 • Classify as a 1 if $w^T x + b > 0$
 • Classify as a -1 if $w^T x + b < 0$
Learning the Weights

• To learn the weights, we maximize the conditional likelihood

\[
(w^*, b^*) = \arg \max_{w, b} \prod_{i=1}^{N} p(y^{(i)} | x^{(i)}, w, b)
\]

• This is not the same strategy that we used in the case of naive Bayes

 • For naive Bayes, we maximized the log-likelihood
Generative vs. Discriminative Classifiers

Generative classifier: (e.g., Naïve Bayes)
- Assume some **functional form** for $p(x|y), p(y)$
- Estimate parameters of $p(x|y), p(y)$ directly from training data
- Use Bayes rule to calculate $p(y|x)$
- This is a **generative model**
 - **Indirect** computation of $p(Y|X)$ through Bayes rule
 - As a result, can also generate a sample of the data, $p(x) = \sum_y p(y)p(x|y)$

Discriminative classifiers: (e.g., Logistic Regression)
- Assume some **functional form for** $p(y|x)$
- Estimate parameters of $p(y|x)$ directly from training data
- This is a **discriminative model**
 - Directly learn $p(y|x)$
 - But **cannot obtain a sample of the data** as $p(x)$ is not available
 - Useful for discriminating labels
Learning the Weights

\[\ell(w, b) = \ln \prod_{i=1}^{N} p(y^{(i)}|x^{(i)}, w, b) \]

\[= \sum_{i=1}^{N} \ln p(y^{(i)}|x^{(i)}, w, b) \]

\[= \sum_{i=1}^{N} \frac{y^{(i)} + 1}{2} \ln p(Y = 1|x^{(i)}, w, b) + \left(1 - \frac{y^{(i)} + 1}{2}\right) \ln p(Y = -1|x^{(i)}, w, b) \]

\[= \sum_{i=1}^{N} \frac{y^{(i)} + 1}{2} \ln \frac{p(Y = 1|x^{(i)}, w, b)}{p(Y = -1|x^{(i)}, w, b)} + \ln p(Y = -1|x^{(i)}, w, b) \]

\[= \sum_{i=1}^{N} \frac{y^{(i)} + 1}{2} \left(w^T x^{(i)} + b \right) - \ln (1 + \exp(w^T x^{(i)} + b)) \]
Learning the Weights

\[\ell(w, b) = \ln \prod_{i=1}^{N} p(y^{(i)}|x^{(i)}, w, b) \]

\[= \sum_{i=1}^{N} \ln p(y^{(i)}|x^{(i)}, w, b) \]

\[= \sum_{i=1}^{N} \frac{y^{(i)} + 1}{2} \ln p(Y = 1|x^{(i)}, w, b) + \left(1 - \frac{y^{(i)} + 1}{2}\right) \ln p(Y = -1|x^{(i)}, w, b) \]

\[= \sum_{i=1}^{N} \frac{y^{(i)} + 1}{2} \ln \frac{p(Y = 1|x^{(i)}, w, b)}{p(Y = -1|x^{(i)}, w, b)} + \ln p(Y = -1|x^{(i)}, w, b) \]

\[= \sum_{i=1}^{N} \frac{y^{(i)} + 1}{2} \left(w^{T}x^{(i)} + b\right) - \ln(1 + \exp(w^{T}x^{(i)} + b)) \]

This is concave in \(w\) and \(b\): take derivatives and solve!
Learning the Weights

$$\ell(w, b) = \ln \prod_{i=1}^{N} p(y^{(i)}|x^{(i)}, w, b)$$

$$= \sum_{i=1}^{N} \ln p(y^{(i)}|x^{(i)}, w, b)$$

$$= \sum_{i=1}^{N} \frac{y^{(i)} + 1}{2} \ln p(Y = 1|x^{(i)}, w, b) + \left(1 - \frac{y^{(i)} + 1}{2}\right) \ln p(Y = -1|x^{(i)}, w, b)$$

$$= \sum_{i=1}^{N} \frac{y^{(i)} + 1}{2} \ln \frac{p(Y = 1|x^{(i)}, w, b)}{p(Y = -1|x^{(i)}, w, b)} + \ln p(Y = -1|x^{(i)}, w, b)$$

$$= \sum_{i=1}^{N} \frac{y^{(i)} + 1}{2} (w^T x^{(i)} + b) - \ln(1 + \exp(w^T x^{(i)} + b))$$

No closed form solution 😞
Learning the Weights

- Can apply gradient ascent to maximize the conditional likelihood

\[
\frac{\partial \ell}{\partial b} = \sum_{i=1}^{N} \left[\frac{y^{(i)} + 1}{2} - p(Y = 1|x^{(i)}, w, b) \right]
\]

\[
\frac{\partial \ell}{\partial w_j} = \sum_{i=1}^{N} x_j^{(i)} \left[\frac{y^{(i)} + 1}{2} - p(Y = 1|x^{(i)}, w, b) \right]
\]
Priors

• Can define priors on the weights to prevent overfitting
 • Normal distribution, zero mean, identity covariance

\[
p(w) = \prod_j \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{w_j^2}{2\sigma^2}\right)
\]

• “Pushes” parameters towards zero

• Regularization
 • Helps avoid very large weights and overfitting
Priors as Regularization

- The log-MAP objective with this Gaussian prior is then

$$
\ln \prod_{i=1}^{N} p(y^{(i)}|x^{(i)}, w, b) + \ln (p(w)p(b)) = \left[\sum_{i} \ln p(y^{(i)}|x^{(i)}, w, b) \right] - \frac{\lambda}{2} \|w\|_2^2
$$

- Quadratic penalty: drives weights towards zero
- Adds a negative linear term to the gradients
- Different priors can produce different kinds of regularization
Priors as Regularization

• The log-MAP objective with this Gaussian prior is then

\[
\ln \prod_{i=1}^{N} p(y^{(i)}|x^{(i)}, w, b) + \ln(p(w)p(b)) = \left[\sum_{i}^{N} \ln p(y^{(i)}|x^{(i)}, w, b) \right] - \frac{\lambda}{2} \|w\|_2^2
\]

• Quadratic penalty: drives weights towards zero
• Adds a negative linear term to the gradients
• Different priors can produce different kinds of regularization

Sometimes called an \(\ell_2 \) regularizer
Regularization

\(w^* \)

\(\ell_1 \)

\(\ell_2 \)
Naïve Bayes vs. Logistic Regression

• Non-asymptotic analysis (for Gaussian NB)
 • Convergence rate of parameter estimates as size of training data tends to infinity ($n = \# \text{ of attributes in } X$)
 • Naïve Bayes needs $O(\log n)$ samples
 • NB converges quickly to its (perhaps less helpful) asymptotic estimates
 • Logistic Regression needs $O(n)$ samples
 • LR converges more slowly but makes no independence assumptions (typically less biased)

[Ng & Jordan, 2002]
NB vs. LR (on UCI datasets)

Sample size m

Naïve bayes

Logistic Regression

[Ng & Jordan, 2002]
LR in General

• Suppose that $y \in \{1, \ldots, R\}$, i.e., that there are R different class labels

• Can define a collection of weights and biases as follows

 • Choose a vector of biases and a matrix of weights such that for $y \neq R$

 $$p(Y = k|x) = \frac{\exp(b_k + \sum_i w_{ki}x_i)}{1 + \sum_{j<R} \exp(b_j + \sum_i w_{ji}x_i)}$$

 and

 $$p(Y = R|x) = \frac{1}{1 + \sum_{j<R} \exp(b_j + \sum_i w_{ji}x_i)}$$