

CS 6347

Lecture 19

Exponential Families & Expectation Propagation

Discrete State Spaces

- We have been focusing on the case of MRFs over discrete state spaces
- Probability distributions over discrete spaces correspond to vectors of probabilities for each element in the space such that the vector sums to one
 - The partition function is simply a sum over all of the possible values for each variable
 - Entropy of the distribution is nonnegative and is also computed by summing over the state space

Continuous State Spaces

$$p(x) = \frac{1}{Z} \prod_{C} \psi_{C(x_{C})}$$

For continuous state spaces, the partition function is now an integral

$$Z = \int \prod_{C} \psi_{C(x_{C})} \, dx$$

• The entropy becomes

$$H(x) = -\int p(x)\log p(x)\,dx$$

Differential Entropy

$$H(x) = -\int p(x)\log p(x)\,dx$$

- This is called the differential entropy
 - It is not always greater than or equal to zero
 - Easy to construct such distributions:

- Let q(x) be the uniform distribution over the interval [a, b], what is the entropy of q(x)?

Differential Entropy

$$H(x) = -\int p(x)\log p(x)\,dx$$

- This is called the differential entropy
 - It is not always greater than or equal to zero
 - Easy to construct such distributions:

- Let q(x) be the uniform distribution over the interval [a, b], what is the entropy of q(x)?

$$H(q) = -\int_{a}^{b} \frac{1}{b-a} \log \frac{1}{b-a} dx = \log(b-a)$$

KL Divergence

$$d(q||p) = \int q(x) \log \frac{q(x)}{p(x)} dx$$

- The KL-divergence is still nonnegative, even though it contains the differential entropy
 - This means that all of the observations that we made for finite state spaces will carry over to the continuous case
 - The EM algorithm, mean-field methods, etc.
 - Most importantly

$$\log Z \ge H(q) + \sum_{C} \int q_{C}(x_{C}) \log \psi_{C}(x_{C}) \, dx_{C}$$

Continuous State Spaces

- Examples of probability distributions over continuous state spaces
 - The uniform distribution over the interval [a, b]

$$q(x) = \frac{1_{x \in [a,b]}}{b-a}$$

– The multivariate normal distribution with mean μ and covariance matrix Σ

$$q(x) = \frac{1}{\sqrt{(2\pi)^k \det(\Sigma)}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right)$$

Continuous State Spaces

- What makes continuous distributions so difficult to deal with?
 - They may not be compactly representable
 - Families of continuous distributions need not be closed under marginalization
 - The marginal distributions of multivariate normal distributions are (multivariate) normal distributions
 - Integration problems of interest (e.g., the partition function or marginal distributions) may not have closed form solutions
 - Integrals may also not exist!

The Exponential Family

 $p(x|\theta) = h(x) \cdot \exp(\langle \theta, \phi(x) \rangle - \log Z(\theta))$

- A distribution is a member of the exponential family if its probability density function can be expressed as above for some choice of parameters θ and potential functions $\phi(x)$
- We are only interested in models for which $Z(\theta)$ is finite
- The family of log-linear models that we have been focusing on in the discrete case belong to the exponential family

The Exponential Family

$$p(x|\theta) = h(x) \cdot \exp(\langle \theta, \phi(x) \rangle - \log Z(\theta))$$

- As in the discrete case, there is not necessarily a unique way to express a distribution in this form
- We say that the representation is minimal if there does not exist a vector a ≠ 0 such that

$$\langle a, \phi(x) \rangle = constant$$

- In this case, there is a unique parameter vector associated with each member of the family
- The ϕ are called sufficient statistics for the distribution

The Multivariate Normal

$$q(x|\mu,\Sigma) = \frac{1}{Z} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right)$$

• The multivariate normal distribution is a member of the exponential family

$$q(x|\theta) = \frac{1}{Z(\theta)} \exp\left(\sum_{i} \theta_{i} x_{i} + \sum_{i \ge j} \theta_{ij} x_{i} x_{j}\right)$$

 The mean and the covariance matrix (must be positive semidefinite) are sufficient statistics of the multivariate normal distribution

The Exponential Family

- Many of the discrete distributions that you have seen before are members of the exponential family
 - Binomial, Poisson, Bernoulli, Gamma, Beta, Laplace, Categorical, etc.
- The exponential family, while not the most general parametric family, is one of the easiest to work with and captures a variety of different distributions

Continuous Bethe Approximation

• Recall that, from the nonnegativity of the KL-divergence

$$\log Z \ge H(q) + \sum_{C} \int q_{C}(x_{C}) \log \psi_{C}(x_{C}) \, dx_{C}$$

for any probability distribution q

• We can make the same approximations that we did in the discrete case to approximate $Z(\theta)$ in the continuous case

Continuous Bethe Approximation

$$\max_{\tau \in \mathbf{T}} H_B(\tau) + \sum_C \int \tau_C(x_C) \log \psi_C(x_C) \, dx_C$$

where

$$H_B(\tau) = -\sum_{i \in \mathbb{V}} \int \tau_i(x_i) \log \tau_i(x_i) \, dx_i - \sum_C \int \tau_C(x_C) \log \frac{\tau_C(x_C)}{\prod_{i \in C} \tau_i(x_i)} \, dx_C$$

and T is a vector of locally consistent marginals

• This approximation is exact on trees

Continuous Belief Propagation

$$p(x) = \frac{1}{Z} \prod_{i \in V} \phi_i(x_i) \prod_{(i,j) \in E} \psi_{ij}(x_i, x_j)$$

• The messages passed by belief propagation are

$$m_{ij}(x_j) \propto \int \phi_i(x_i) \psi_{ij}(x_i, x_j) \prod_{k \in N(i) \setminus j} m_{ki}(x_i) dx_i$$

- Depending on the functional form of the potential functions, the message update may not have a closed form solution
 - We can't necessarily compute the correct marginal distributions/partition function even in the case of a tree!

Gaussian Belief Propagation

- When p(x) is a multivariate normal distribution, the message updates can be computed in closed form
 - In this case, max-product and sum-product are equivalent
 - Note that computing the mode of a multivariate normal is equivalent to solving a linear system of equations
 - Called Gaussian belief propagation or GaBP
 - Does not converge for all multivariate normal
 - The messages can have a non-positive definite inverse covariance matrix

Properties of Exponential Families

- Exponential families are
 - Closed under multiplication
 - Not closed under marginalization
 - Easy to get mixtures of Gaussians when a model has both discrete and continuous variables
 - Let p(x, y) be such that $x \in \mathbb{R}^n$ and $y \in \{1, ..., k\}$ such that p(x|y) is normally distributed and p(y) is multinomially distributed
 - p(x) is then a Gaussian mixture (mixtures of exponential family distributions are not generally in the exponential family)

Properties of Exponential Families

• Derivatives of the log-partition function correspond to expectations of the sufficient statistics

$$\nabla_{\theta} \log Z(\theta) = \int p(x|\theta)\phi(x)dx$$

• So do second derivatives

$$\frac{\partial^2}{\partial \theta_k \partial \theta_l} \log Z(\theta) = \int p(x|\theta) \phi(x)_k \phi(x)_l dx - \left(\int p(x|\theta) \phi(x)_k dx\right) \left(\int p(x|\theta) \phi(x)_l dx\right)$$

KL-Divergence and Exponential Families

- Minimizing KL divergence is equivalent to "moment matching"
- Let $q(x|\theta) = h(x) \cdot \exp(\langle \theta, \phi(x) \rangle \log Z(\theta))$ and let p(x) be an arbitrary distribution

$$d(p||q) = \int p(x) \log \frac{p(x)}{q(x|\theta)} dx$$

• This KL divergence is minimized (as a function of θ) when

$$\int p(x)\phi(x)_k dx = \int q(x|\theta)\phi(x)_k dx$$

Expectation Propagation

- Key idea: given $p(x) = \frac{1}{Z} \prod_C \psi_C(x_C)$ approximate it by a simpler distribution $p(x) \approx \tilde{p}(x) = \frac{1}{\tilde{Z}} \prod_C \tilde{\psi}_C(x_C)$
- We could just replace each factor with a member of some exponential family that best describes it, but this can result in a poor approximation unless each ψ_c is essentially a member of the exponential family already
- Instead, we construct the approximating distribution by performing a series of optimizations

Expectation Propagation

- Initialize the approximate distribution $\tilde{p}(x) = \frac{1}{\tilde{z}} \prod_{C} \tilde{\psi}_{C}(x_{C})$ so that each $\tilde{\psi}_{C}(x_{C})$ is a member of some exponential family
- Repeat until convergence
 - For each C

• Let
$$\tilde{p}_{\backslash C}(x) = \frac{\tilde{p}(x)}{\tilde{\psi}_C(x_C)}$$

• Set $\tilde{q} = \operatorname{argmin}_{q} d(\tilde{p}_{\backslash C}\psi_{C}||q)$ where the minimization is over all exponential families q of the chosen form

• Set
$$\tilde{\psi}_C(x_C) = \frac{\tilde{q}(x)}{\tilde{p}_{\backslash C}(x)}$$

Expectation Propagation

- This is one approach used to handle continuous distributions in practice
- Other methods include discretization/sampling methods that approximate BP messages and then sample to compute the message updates
 - Nonparametric BP
 - Particle BP
 - Stochastic BP

