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Lecture 18

Topic Models and LDA
(some slides by David Blei)



Generative vs. Discriminative Models

• Recall that, in Bayesian networks, there could be many 
different, but equivalent models of the same joint distribution

• Although these two models are equivalent (in the sense that 
they imply the same independence relations), they can differ 
significantly when it comes to inference/prediction
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Generative vs. Discriminative Models

• Generative models:  we can think of the observations as being 
generated by the latent variables

• Start sampling at the top and work downwards

• Examples?
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Generative vs. Discriminative Models

• Generative models:  we can think of the observations as being 
generated by the latent variables

• Start sampling at the top and work downwards

• Examples:  HMMs, naïve Bayes, LDA
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Generative vs. Discriminative Models

• Discriminative models:  most useful for discriminating the 
values of the latent variables

• Almost always used for supervised learning

• Examples?
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Generative vs. Discriminative Models

• Discriminative models:  most useful for discriminating the 
values of the latent variables

• Almost always used for supervised learning

• Examples:  CRFs
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Generative vs. Discriminative Models

• Suppose we are only interested in the prediction task (i.e., 
estimating 𝑝𝑝(𝑌𝑌|𝑋𝑋))

• Discriminative model:  𝑝𝑝 𝑋𝑋,𝑌𝑌 = 𝑝𝑝 𝑋𝑋 𝑝𝑝(𝑌𝑌|𝑋𝑋)

• Generative model:  𝑝𝑝 𝑋𝑋,𝑌𝑌 = 𝑝𝑝 𝑌𝑌 𝑝𝑝(𝑋𝑋|𝑌𝑌)

7

𝑋𝑋

𝑌𝑌 𝑋𝑋

𝑌𝑌

GenerativeDiscriminative



Generative Models

• The primary advantage of generative models is that they 
provide a model of the data generating process

• Could generate “new” data samples by using the model

• Topic models (generative models of documents)

• Methods for discovering themes (topics) from a collection 
(e.g., books, newspapers, etc.)

• Annotates the collection according to the discovered 
themes

• Use the annotations to organize, search, summarize, etc.
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Topic Models
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Models of Text Documents

• Bag-of-words model:  assume that the ordering of words in a 
document do not matter

• This is typically false as certain phrases can only appear 
together

• Unigram model:  all words in a document are drawn uniformly 
at random from categorical distribution

• Mixture of unigrams model:  for each document, we first 
choose a topic 𝑧𝑧 and then generate words for the document 
from the conditional distribution 𝑝𝑝(𝑤𝑤|𝑧𝑧)

• Topics are just probability distributions over words
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Latent Dirichlet Allocation (LDA)
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Latent Dirichlet Allocation (LDA)

• 𝛼𝛼 and 𝜂𝜂 are parameters of the prior distributions over 𝜃𝜃 and 𝛽𝛽

• 𝜃𝜃𝑑𝑑 is the distribution of topics for document 𝑑𝑑 (real vector of length 𝐾𝐾)

• 𝛽𝛽𝑘𝑘 is the distribution of words for topic 𝑘𝑘 (real vector of length 𝑉𝑉)

• 𝑧𝑧𝑑𝑑,𝑛𝑛 is the topic for the 𝑛𝑛th word in the 𝑑𝑑th document

• 𝑤𝑤𝑑𝑑,𝑛𝑛 is the 𝑛𝑛th word of the 𝑑𝑑th document
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Latent Dirichlet Allocation (LDA)

• Plate notation

• There are 𝑁𝑁 ⋅ 𝐷𝐷 different variables that represent the observed 
words in the different documents

• There are 𝐾𝐾 total topics (assumed to be known in advance)

• There are 𝐷𝐷 total documents 
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Latent Dirichlet Allocation (LDA)

• The only observed variables are the words in the documents

• The topic for each word, the distribution over topics for each 
document, and the distribution of words per topic are all latent 
variables in this model
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Latent Dirichlet Allocation (LDA)

• The model contains both continuous and discrete random 
variables

• 𝜃𝜃𝑑𝑑 and 𝛽𝛽𝑘𝑘 are vectors of probabilities

• 𝑧𝑧𝑑𝑑,𝑛𝑛 is an integer in {1, … ,𝐾𝐾} that indicates the topic of the 
𝑛𝑛th word in the 𝑑𝑑th document

• 𝑤𝑤𝑑𝑑,𝑛𝑛 is an integer in 1, … ,𝑉𝑉 which indexes over all 
possible words
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Latent Dirichlet Allocation (LDA)

• 𝜃𝜃𝑑𝑑~𝐷𝐷𝐷𝐷𝐷𝐷(𝛼𝛼) where 𝐷𝐷𝐷𝐷𝐷𝐷(𝛼𝛼) is the Dirichlet distribution with 
parameter vector 𝛼𝛼 > 0

• 𝛽𝛽𝑘𝑘~𝐷𝐷𝐷𝐷𝐷𝐷(𝜂𝜂) with parameter vector 𝜂𝜂 > 0

• Dirichlet distribution over 𝑥𝑥1, … , 𝑥𝑥𝐾𝐾 such that 𝑥𝑥1, … , 𝑥𝑥𝐾𝐾 ≥ 0
and ∑𝑖𝑖 𝑥𝑥𝑖𝑖 = 1

𝑓𝑓(𝑥𝑥1, … , 𝑥𝑥𝐾𝐾;𝛼𝛼1, … ,𝛼𝛼𝐾𝐾) ∝�
𝑖𝑖

𝑥𝑥𝑖𝑖
𝛼𝛼𝑖𝑖−1

• The Dirichlet distribution is a distribution over probability 
distributions over 𝐾𝐾 elements
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Latent Dirichlet Allocation (LDA)

• The discrete  random variables are distributed via the 
corresponding probability distributions

𝑝𝑝(𝑧𝑧𝑑𝑑,𝑛𝑛 = 𝑘𝑘 𝜃𝜃𝑑𝑑 = 𝜃𝜃𝑑𝑑 𝑘𝑘

𝑝𝑝 𝑤𝑤𝑑𝑑,𝑛𝑛 = 𝑣𝑣 𝑧𝑧𝑑𝑑,𝑛𝑛,𝛽𝛽1, … ,𝛽𝛽𝐾𝐾 = 𝛽𝛽𝑧𝑧𝑑𝑑,𝑛𝑛 𝑣𝑣

• Here, 𝜃𝜃𝑑𝑑 𝑘𝑘 is the 𝑘𝑘th element of the vector 𝜃𝜃𝑑𝑑 which 
corresponds to the percentage of document 𝑑𝑑
corresponding to topic 𝑘𝑘

• The joint distribution is then

𝑝𝑝 𝑤𝑤, 𝑧𝑧,𝜃𝜃,𝛽𝛽 𝛼𝛼, 𝜂𝜂 = �
𝑘𝑘

𝑝𝑝(𝛽𝛽𝑘𝑘|𝜂𝜂)�
𝑑𝑑

𝑝𝑝(𝜃𝜃𝑑𝑑|𝛼𝛼)�
𝑛𝑛

𝑝𝑝(𝑧𝑧𝑑𝑑,𝑛𝑛 𝜃𝜃𝑑𝑑 𝑝𝑝 𝑤𝑤𝑑𝑑,𝑛𝑛 𝑧𝑧𝑑𝑑,𝑛𝑛,𝛽𝛽
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Latent Dirichlet Allocation (LDA)

• LDA is a generative model

• We can think of the words as being generated by a 
probabilistic process defined by the model

• How reasonable is the generative model?

18



Latent Dirichlet Allocation (LDA)

• Inference in this model is NP-hard

• Given the 𝐷𝐷 documents, want to find the parameters that 
best maximize the joint probability 

• Can use an EM based approach called variational EM
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Variational EM

• Recall that the EM algorithm constructed a lower bound using 
Jensen’s inequality
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Variational EM

• Performing the optimization over 𝑞𝑞 is equivalent to computing 
𝑝𝑝(𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚

(𝑘𝑘) |𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜
(𝑘𝑘) ,𝜃𝜃)

• This can be intractable in practice

• Instead, restrict 𝑞𝑞 to lie in some restricted set of 
distributions 𝑄𝑄

• For example, could make a mean-field assumption

𝑞𝑞 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚
(𝑘𝑘) = �

𝑖𝑖∈𝑚𝑚𝑚𝑚𝑠𝑠𝑘𝑘

𝑞𝑞𝑖𝑖(𝑥𝑥𝑖𝑖
(𝑘𝑘))

• The resulting algorithm only yields an approximation to the 
log-likelihood
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EM for Topic Models

𝑝𝑝 𝑤𝑤 𝛼𝛼, 𝜂𝜂 = ��
𝑘𝑘

𝑝𝑝(𝛽𝛽𝑘𝑘|𝜂𝜂)��
𝑧𝑧

�
𝑑𝑑

𝑝𝑝(𝜃𝜃𝑑𝑑|𝛼𝛼)�
𝑛𝑛

𝑝𝑝(𝑧𝑧𝑑𝑑,𝑛𝑛 𝜃𝜃𝑑𝑑 𝑝𝑝 𝑤𝑤𝑑𝑑,𝑛𝑛 𝑧𝑧𝑑𝑑,𝑛𝑛,𝛽𝛽 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑

• To apply variational EM, we write

log𝑝𝑝 𝑤𝑤 𝛼𝛼, 𝜂𝜂 = log���
𝑧𝑧

𝑝𝑝 𝑤𝑤, 𝑧𝑧,𝜃𝜃,𝛽𝛽 𝛼𝛼, 𝜂𝜂 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

≥ ���
𝑧𝑧

𝑞𝑞 𝑧𝑧,𝜃𝜃,𝛽𝛽 log
𝑝𝑝 𝑤𝑤, 𝑧𝑧,𝜃𝜃,𝛽𝛽 𝛼𝛼, 𝜂𝜂

𝑞𝑞 𝑧𝑧,𝜃𝜃,𝛽𝛽
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

where we restrict the distribution 𝑞𝑞 to be of the following form

𝑞𝑞 𝑧𝑧,𝜃𝜃,𝛽𝛽 = �
𝑘𝑘

𝑞𝑞(𝛽𝛽𝑘𝑘|𝜂𝜂)�
𝑑𝑑

𝑞𝑞 𝜃𝜃𝑑𝑑 𝛼𝛼 �
𝑛𝑛

𝑞𝑞(𝑧𝑧𝑑𝑑,𝑛𝑛)
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Example of LDA
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Example of LDA
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Extensions of LDA

• Author– Topic model

• 𝑎𝑎𝑑𝑑 is the group of authors 
for the 𝑑𝑑th document

• 𝑥𝑥𝑑𝑑,𝑛𝑛 is the author of the 
𝑛𝑛th word of the 𝑑𝑑th
document

• 𝜃𝜃𝑎𝑎 is the topic distribution 
for author 𝑎𝑎

• 𝑧𝑧𝑑𝑑,𝑛𝑛 is the topic for the 𝑛𝑛th
word of the 𝑑𝑑th document
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The Author-Topic Model for Authors and Documents 
Rosen-Zvi et al.



Extensions of LDA
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• Label 𝑌𝑌𝑑𝑑 for each document represents a value to be 
predicted from the document

• E.g., number of stars for each document in a corpus of 
movie reviews
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