More Learning Theory

Nicholas Ruozzi
 University of Texas at Dallas

Based on the slides of Vibhav Gogate and David Sontag

Last Time

- Probably approximately correct (PAC)
- The only reasonable expectation of a learner is that with high probability it learns a close approximation to the target concept
- Specify two small parameters, $0<\epsilon, 0<\delta<1$
- ϵ is the error of the approximation
- $(1-\delta)$ is the probability that, given M i.i.d. samples, our learning algorithm produces a classifier with error at most ϵ

Learning Theory

- We use the observed data in order to learn a classifier
- Want to know how far the learned classifier deviates from the (unknown) underlying distribution
- With too few samples, we will with high probability learn a classifier whose true error is quite high even though it may be a perfect classifier for the observed data
- As we see more samples, we pick a classifier from the hypothesis space with low training error \& hope that it also has low true error
- Want this to be true with high probability - can we bound how many samples that we need?

Haussler, 1988

- What we proved last time:

Theorem: For a finite hypothesis space, H, with M i.i.d. samples, and $0<\epsilon<1$, the probability that any consistent classifier has true error larger than ϵ is at most $|H| e^{-\epsilon M}$

- We can turn this into a sample complexity bound

Sample Complexity

- Let δ be an upper bound on the desired probability of not ϵ exhausting the sample space
- The probability that the version space is not ϵ-exhausted is at most $|H| e^{-\epsilon M} \leq \delta$
- Solving for M yields

$$
\begin{aligned}
M & \geq-\frac{1}{\epsilon} \ln \frac{\delta}{|H|} \\
& =\left(\ln |H|+\ln \frac{1}{\delta}\right) / \epsilon
\end{aligned}
$$

PAC Bounds

Theorem: For a finite hypothesis space H, M i.i.d. samples, and $0<\epsilon<1$, the probability that true error of any of the best classifiers (i.e., lowest training error) is larger than its training error plus ϵ is at most $|H| e^{-2 M \epsilon^{2}}$

- Sample complexity (for desired $\delta \geq|H| e^{-2 M \epsilon^{2}}$)

$$
M \geq\left(\ln |H|+\ln \frac{1}{\delta}\right) / 2 \epsilon^{2}
$$

PAC Bounds

- If we require that the previous error is bounded above by δ, then with probability $(1-\delta)$, for all $h \in H$

$$
\epsilon_{h} \leq \underbrace{\epsilon_{h}^{\text {train }}}_{\text {"bias" }}+\underbrace{\sqrt{\frac{1}{2 M}\left(\ln |H|+\ln \frac{1}{\delta}\right)}}_{\text {"variance" }}
$$

- For small $|H|$
- High bias (may not be enough hypotheses to choose from)
- Low variance

PAC Bounds

- If we require that the previous error is bounded above by δ, then with probability $(1-\delta)$, for all $h \in H$

$$
\epsilon_{h} \leq \underbrace{\epsilon_{h}^{\text {train }}}_{\text {"bias" }}+\underbrace{\sqrt{\frac{1}{2 M}\left(\ln |H|+\ln \frac{1}{\delta}\right)}}_{\text {"variance" }}
$$

- For large $|H|$
- Low bias (lots of good hypotheses)
- High variance

VC Dimension

- Our analysis for the finite case was based on $|H|$
- If H isn't finite, this translates into infinite sample complexity
- We can derive a different notion of complexity for infinite hypothesis spaces by considering only the number of points that can be correctly classified by some member of H
- We will only consider the binary classification case for now

VC Dimension

- How many points in 1-D can be correctly classified by a linear separator?
- 2 points:

VC Dimension

- How many points in 1-D can be correctly classified by a linear separator?
- 2 points:

VC Dimension

- How many points in 1-D can be correctly classified by a linear separator?
- 2 points:

VC Dimension

- How many points in 1-D can be correctly classified by a linear separator?
- 3 points:

VC Dimension

- How many points in 1-D can be correctly classified by a linear separator?
- 3 points:

VC Dimension

- How many points in 1-D can be correctly classified by a linear separator?
- 3 points:

NO!

- 3 points and up: for any collection of three or more there is always some choice of pluses and minuses such that that the points cannot be classified with a linear separator (in one dimension)

VC Dimension

- A set of points is shattered by a hypothesis space H if and only if for every partition of the set of points into positive and negative examples, there exists some consistent $h \in H$
- The Vapnik-Chervonenkis (VC) dimension of H over inputs from X is the size of the largest finite subset of X shattered by H

VC Dimension

- Common misconception:
- VC dimension is determined by the largest shattered set of points, not the highest number such that all sets of points that size can be shattered

Cannot be shattered by a line

VC Dimension

- Common misconception:
- VC dimension is determined by the largest shattered set of points, not the highest number such that all sets of points that size can be shattered

Can be shattered by a line (no matter the labels), so VC dimension is at least 3

VC Dimension

- What is the VC dimension of 2-D space under linear separators?
- It is at least three from the last slide
- Can some set of four points be shattered?

VC Dimension

- What is the VC dimension of 2-D space under linear separators?
- It is at least three from the last slide
- Can some set of four points be shattered?

VC Dimension

- What is the VC dimension of 2-D space under linear separators?
- It is at least three from the last slide
- Can some set of four points be shattered?

VC Dimension

- What is the VC dimension of 2-D space under linear separators?
- It is at least three from the last slide
- Can some set of four points be shattered?

NO! This means that
the VC dimension is at
most 3

VC Dimension

- There exists a set of size $d+1$ in a d - dimensional space that can be shattered by a linear separator, but not a set of size $d+2$
- The larger the subset of X that can be shattered, the more expressive the hypothesis space is
- If arbitrarily large finite subsets of X can be shattered, then $V C(H)=\infty$

Axis Parallel Rectangles

- Let X be the set of all points in \mathbb{R}^{2}
- Let H be the set of all axis parallel rectangles in 2-D (inside + outside -)
- What is $V C(H)$?

Axis Parallel Rectangles

- Let X be the set of all points in \mathbb{R}^{2}
- Let H be the set of all axis parallel rectangles in 2-D (inside + outside -)
- $V C(H) \geq 4$

Axis Parallel Rectangles

- Let X be the set of all points in \mathbb{R}^{2}
- Let H be the set of all axis parallel rectangles in 2-D
- $V C(H)=4$
- A rectangle can contain at most 4 extreme points, the fifth point must be contained within the rectangle defined by these points

Examples

- VC dimension of one-level decision trees over real vectors of length 2?
- Three
- VC dimension of linear separators through the origin?
- Two
- VC dimension of a hypothesis space with exactly one hypothesis in it for binary vectors of length $n \geq 1$?
- Zero

PAC Bounds with VC Dimension

- VC dimension can be used to construct PAC bounds

$$
M \geq \frac{1}{\epsilon}\left(4 \ln \frac{2}{\delta}+8 \cdot V C(H) \ln \frac{13}{\epsilon}\right)
$$

- Then, with probability at least $(1-\delta)$ every $h \in H$ satisfies

$$
\epsilon_{h} \leq \epsilon_{h}^{\text {train }}+\sqrt{\frac{1}{M}\left(V C(H)\left(\ln \left(\frac{2 M}{V C(H)}\right)+1\right)+\ln \frac{4}{\delta}\right)}
$$

- These bounds (and the preceding discussion) only work for binary classification, but there are generalizations

PAC Learning

- Given:
- Set of data X
- Hypothesis space H
- Set of target concepts C
- Training instances from unknown probability distribution over X of the form $(x, c(x))$
- Goal:
- Learn the target concept $c \in \mathrm{C}$

PAC Learning

- Given:
- A concept class C over n instances from the set X
- A learner L with hypothesis space H
- Two constants, $\epsilon, \delta \in\left(0, \frac{1}{2}\right)$
- C is said to be PAC learnable by L using H iff for all distributions over X, learner L by sampling n instances, will with probability at least $1-\delta$ outputs a hypothesis $h \in \mathrm{H}$ such that
- $\epsilon_{h} \leq \epsilon$
- Running time is polynomial in $\frac{1}{\epsilon}, \frac{1}{\delta}, n, \operatorname{size}(c)$

