Lagrange Multipliers & the Kernel Trick

Nicholas Ruozzi
University of Texas at Dallas
The Strategy So Far...

- Choose hypothesis space
- Construct loss function (ideally convex)
- Minimize loss to “learn” correct parameters
General Optimization

A mathematical detour, we’ll come back to SVMs soon!

\[
\min_{x \in \mathbb{R}^n} f_0(x)
\]

subject to:

\[
\begin{align*}
 f_i(x) &\leq 0, \quad i = 1, \ldots, m \\
 h_i(x) &= 0, \quad i = 1, \ldots, p
\end{align*}
\]
General Optimization

\[
\min_{x \in \mathbb{R}^n} f_0(x)
\]

subject to:

\[
\begin{align*}
 f_i(x) & \leq 0, & i = 1, \ldots, m \\
 h_i(x) & = 0, & i = 1, \ldots, p
\end{align*}
\]

\(f_0\) is not necessarily convex
General Optimization

\[
\begin{align*}
\min_{x \in \mathbb{R}^n} & \quad f_0(x) \\
\text{subject to:} & \\
& \quad f_i(x) \leq 0, \quad i = 1, \ldots, m \\
& \quad h_i(x) = 0, \quad i = 1, \ldots, p
\end{align*}
\]

Constraints do not need to be linear
Example

\[\min_{x \in \mathbb{R}^3} x_1 \log x_1 + x_2 \log x_2 \]

subject to:

\[x_1 + x_2 = 1 \]
\[x_1 \geq 0 \]
\[x_2 \geq 0 \]
Example

\[
\min_{x \in \mathbb{R}^3} x_1 \log x_1 + x_2 \log x_2
\]

subject to:

\[
1 - x_1 - x_2 = 0
\]

\[
-x_1 \leq 0
\]

\[
-x_2 \leq 0
\]
Lagrangian

\[L(x, \lambda, \nu) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x) \]

- Incorporate constraints into a new objective function
- \(\lambda \geq 0 \) and \(\nu \) are vectors of \textit{Lagrange multipliers}
- The Lagrange multipliers can be thought of as enforcing soft constraints
Example

\[
\min_{x \in \mathbb{R}^3} x_1 \log x_1 + x_2 \log x_2
\]

subject to:

\[
\begin{align*}
1 - x_1 - x_2 &= 0 \\
-x_1 &\leq 0 \\
-x_2 &\leq 0
\end{align*}
\]

\[
L(x_1, x_2, \nu_1, \lambda_1, \lambda_2) = x_1 \log x_1 + x_2 \log x_2 + \nu_1 \cdot (1 - x_1 - x_2) - \lambda_1 x_1 - \lambda_2 x_2
\]
Duality

- Construct a dual function by minimizing the Lagrangian over the primal variables

\[g(\lambda, \nu) = \inf_x L(x, \lambda, \nu) \]

- \(g(\lambda, \nu) = -\infty \) whenever the Lagrangian is not bounded from below for a fixed \(\lambda \) and \(\nu \)
Example

\[
\min_{x \in \mathbb{R}^3} x_1 \log x_1 + x_2 \log x_2
\]

subject to:

\[
\begin{align*}
1 - x_1 - x_2 &= 0 \\
-x_1 &\leq 0 \\
-x_2 &\leq 0
\end{align*}
\]

\[
L(x_1, x_2, \nu_1, \lambda_1, \lambda_2) = x_1 \log x_1 + x_2 \log x_2 + \nu_1 \cdot (1 - x_1 - x_2) - \lambda_1 x_1 - \lambda_2 x_2
\]

\[
\frac{\partial L}{\partial x_1} = \log x_1 + 1 - \nu_1 - \lambda_1 = 0 \\
\frac{\partial L}{\partial x_2} = \log x_2 + 1 - \nu_1 - \lambda_2 = 0
\]

\[
x_1 = \exp(\nu_1 + \lambda_1 - 1)
\]

\[
x_2 = \exp(\nu_1 + \lambda_2 - 1)
\]
Example

\[\min_{x \in \mathbb{R}^3} x_1 \log x_1 + x_2 \log x_2 \]

subject to:

\[
\begin{align*}
1 - x_1 - x_2 &= 0 \\
-x_1 &\leq 0 \\
-x_2 &\leq 0
\end{align*}
\]

\[
L(x_1, x_2, \nu_1, \lambda_1, \lambda_2) \\
= x_1 \log x_1 + x_2 \log x_2 + \nu_1 \cdot (1 - x_1 - x_2) - \lambda_1 x_1 - \lambda_2 x_2
\]

\[
g(\nu_1, \lambda_1, \lambda_2) \\
= \exp(\nu_1 + \lambda_1 - 1) \cdot (\nu_1 + \lambda_1 - 1) \\
+ \exp(\nu_1 + \lambda_2 - 1) \cdot (\nu_1 + \lambda_2 - 1) \\
+ \nu_1 \cdot (1 - \exp(\nu_1 + \lambda_1 - 1) - \exp(\nu_1 + \lambda_2 - 1)) \\
- \lambda_1 \exp(\nu_1 + \lambda_1 - 1) - \lambda_2 \exp(\nu_1 + \lambda_2 - 1)
\]
Example

\[\min_{x \in \mathbb{R}^3} x_1 \log x_1 + x_2 \log x_2 \]

subject to:

\[1 - x_1 - x_2 = 0 \]
\[-x_1 \leq 0 \]
\[-x_2 \leq 0 \]

\[L(x_1, x_2, \nu_1, \lambda_1, \lambda_2) = x_1 \log x_1 + x_2 \log x_2 + \nu_1 \cdot (1 - x_1 - x_2) - \lambda_1 x_1 - \lambda_2 x_2 \]

\[g(\nu_1, \lambda_1, \lambda_2) = -\exp(\nu_1 + \lambda_1 - 1) - \exp(\nu_1 + \lambda_2 - 1) + \nu_1 \]
The Primal Problem

\[
\min_{x \in \mathbb{R}^n} f_0(x)
\]

subject to:

\[
f_i(x) \leq 0, \quad i = 1, \ldots, m
\]
\[
h_i(x) = 0, \quad i = 1, \ldots, p
\]

Equivalently,

\[
\inf_{x} \sup_{\lambda \geq 0, \nu} L(x, \lambda, \nu)
\]

Why are these equivalent?
The Primal Problem

\[
\begin{align*}
\min_{x \in \mathbb{R}^n} & \quad f_0(x) \\
\text{subject to:} & \\
& f_i(x) \leq 0, \quad i = 1, \ldots, m \\
& h_i(x) = 0, \quad i = 1, \ldots, p
\end{align*}
\]

Equivalently,

\[
\begin{align*}
\inf_x \sup_{\lambda \geq 0, \nu} & \quad L(x, \lambda, \nu) \\
\sup_{\lambda \geq 0, \nu} \left[f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x) \right] & = \infty
\end{align*}
\]

whenever \(x \) violates the constraints
The Dual Problem

\[
\sup_{\lambda \geq 0, \nu} g(\lambda, \nu)
\]

Equivalently,

\[
\sup_{\lambda \geq 0, \nu} \inf_x L(x, \lambda, \nu)
\]

- The dual problem is always concave, even if the primal problem is not convex
 - For each \(x \), \(L(x, \lambda, \nu) \) is a linear function in \(\lambda \) and \(\nu \)
 - Maximum (or supremum) of concave functions is concave!
Primal vs. Dual

\[\sup_{\lambda \geq 0, \nu} \inf_x L(x, \lambda, \nu) \leq \inf_x \sup_{\lambda \geq 0, \nu} L(x, \lambda, \nu) \]

- Why?
 - \(g(\lambda, \nu) \leq L(x, \lambda, \nu) \) for all \(x \)
 - \(L(x', \lambda, \nu) \leq f_0(x') \) for any feasible \(x', \lambda \geq 0 \)
 - \(x \) is \textbf{feasible} if it satisfies all of the constraints
 - Let \(x^* \) be the optimal solution to the primal problem and \(\lambda \geq 0 \)
 \[g(\lambda, \nu) \leq L(x^*, \lambda, \nu) \leq f_0(x^*) \]
Example

\[
\begin{align*}
\min_{x \in \mathbb{R}^3} & \quad x_1 \log x_1 + x_2 \log x_2 \\
\text{subject to:} & \\
1 - x_1 - x_2 = 0 \\
-x_1 & \leq 0 \\
-x_2 & \leq 0
\end{align*}
\]

\[
L(x_1, x_2, \nu_1, \lambda_1, \lambda_2) = x_1 \log x_1 + x_2 \log x_2 + \nu_1 \cdot (1 - x_1 - x_2) - \lambda_1 x_1 - \lambda_2 x_2
\]

\[
g(\nu_1, \lambda_1, \lambda_2) = -\exp(\nu_1 + \lambda_1 - 1) - \exp(\nu_1 + \lambda_2 - 1) + \nu_1
\]

\[
\frac{\partial g}{\partial \nu_1} = -\exp(\nu_1 + \lambda_1 - 1) - \exp(\nu_1 + \lambda_2 - 1) + 1 = 0
\]

\[
g \text{ is a decreasing function of } \lambda_1 \text{ and } \lambda_2, \\
\text{so the optimum is achieved at the boundary } \lambda_1 = \lambda_2 = 0
\]
Example

\[\min_{x \in \mathbb{R}^3} x_1 \log x_1 + x_2 \log x_2 \]

subject to:

\[1 - x_1 - x_2 = 0 \]
\[-x_1 \leq 0 \]
\[-x_2 \leq 0 \]

\[L(x_1, x_2, \nu_1, \lambda_1, \lambda_2) = x_1 \log x_1 + x_2 \log x_2 + \nu_1 \cdot (1 - x_1 - x_2) - \lambda_1 x_1 - \lambda_2 x_2 \]

\[g(\nu_1, \lambda_1, \lambda_2) = -\exp(\nu_1 + \lambda_1 - 1) - \exp(\nu_1 + \lambda_2 - 1) + \nu_1 \]

\[\frac{\partial g}{\partial \nu_1} = -\exp(\nu_1 + \lambda_1 - 1) - \exp(\nu_1 + \lambda_2 - 1) + 1 = 0 \]
\[-\exp(\nu_1 - 1) - \exp(\nu_1 - 1) + 1 = 0 \]
\[\exp(\nu_1 - 1) = .5 \]
\[\nu_1 = \log(.5) + 1 \]
More Examples

• Minimize $x^2 + y^2$ subject to $x + y \geq 1$

• Given a point $z \in \mathbb{R}^n$ and a hyperplane $w^T x + b = 0$, find the projection of the point z onto the hyperplane
Duality

• Under certain conditions, the two optimization problems are equivalent

\[
\sup_{\lambda \geq 0, \nu} \inf_x L(x, \lambda, \nu) = \inf_x \sup_{\lambda \geq 0, \nu} L(x, \lambda, \nu)
\]

• This is called strong duality

• If the inequality is strict, then we say that there is a duality gap

• Size of gap measured by the difference between the two sides of the inequality
Slater’s Condition

For any optimization problem of the form

$$\min_{x \in \mathbb{R}^n} f_0(x)$$

subject to:

$$f_i(x) \leq 0, \quad i = 1, \ldots, m$$
$$Ax = b$$

where $$f_0, \ldots, f_m$$ are convex functions, strong duality holds if there exists an $$x$$ such that

$$f_i(x) < 0, \quad i = 1, \ldots, m$$
$$Ax = b$$
Dual SVM

\[
\min_{w} \frac{1}{2} ||w||^2
\]

such that

\[y_i (w^T x^{(i)} + b) \geq 1, \text{ for all } i\]

• Note that Slater’s condition holds as long as the data is linearly separable
Dual SVM

\[L(w, b, \lambda) = \frac{1}{2} w^T w + \sum_i \lambda_i (1 - y_i (w^T x^{(i)} + b)) \]

Convex in \(w \), so take derivatives to form the dual

\[\frac{\partial L}{\partial w_k} = w_k + \sum_i -\lambda_i y_i x_k^{(i)} = 0 \]

\[\frac{\partial L}{\partial b} = \sum_i -\lambda_i y_i = 0 \]
Dual SVM

\[L(w, b, \lambda) = \frac{1}{2} w^T w + \sum_i \lambda_i (1 - y_i (w^T x^{(i)} + b)) \]

Convex in \(w \), so take derivatives to form the dual

\[w = \sum_i \lambda_i y_i x^{(i)} \]

\[\sum_i \lambda_i y_i = 0 \]
Dual SVM

\[
\max_{\lambda \geq 0} -\frac{1}{2} \sum_i \sum_j \lambda_i \lambda_j y_i y_j x(i)^T x(j) + \sum_i \lambda_i
\]

such that

\[
\sum_i \lambda_i y_i = 0
\]

• By strong duality, solving this problem is equivalent to solving the primal problem

• Given the optimal \(\lambda \), we can easily construct \(w \) (\(b \) can be found by complementary slackness...)

26
Complementary Slackness

- Suppose that there is zero duality gap
- Let x^* be an optimum of the primal and (λ^*, ν^*) be an optimum of the dual

\[
f_0(x^*) = g(\lambda^*, \nu^*)
= \inf_x \left[f_0(x) + \sum_{i=1}^{m} \lambda_i^* f_i(x) + \sum_{i=1}^{p} \nu_i^* h_i(x) \right]
\leq f_0(x^*) + \sum_{i=1}^{m} \lambda_i^* f_i(x^*) + \sum_{i=1}^{p} \nu_i^* h_i(x^*)
= f_0(x^*) + \sum_{i=1}^{m} \lambda_i^* f_i(x^*)
\leq f_0(x^*)
\]
Complementary Slackness

• This means that

\[\sum_{i=1}^{m} \lambda_i^* f_i(x^*) = 0 \]

• As \(\lambda \geq 0 \) and \(f_i(x_i^*) \leq 0 \), this can only happen if \(\lambda_i^* f_i(x^*) = 0 \) for all \(i \)

• Put another way,

 • If \(f_i(x^*) < 0 \) (i.e., the constraint is not tight), then \(\lambda_i^* = 0 \)

 • If \(\lambda_i^* > 0 \), then \(f_i(x^*) = 0 \)

• ONLY applies when there is no duality gap
Dual SVM

\[
\max_{\lambda \geq 0} -\frac{1}{2} \sum_i \sum_j \lambda_i \lambda_j y_i y_j x^{(i)T} x^{(j)} + \sum_i \lambda_i
\]

such that

\[
\sum_i \lambda_i y_i = 0
\]

• By complementary slackness, \(\lambda^*_i > 0 \) means that \(x^{(i)} \) is a support vector (can then solve for \(b \) using \(w \))
Dual SVM

\[
\max_{\lambda \geq 0} -\frac{1}{2} \sum_i \sum_j \lambda_i \lambda_j y_i y_j x^{(i)T} x^{(j)} + \sum_i \lambda_i
\]

such that

\[
\sum_i \lambda_i y_i = 0
\]

• Takes \(O(n^2)\) time just to evaluate the objective function

 • Active area of research to try to speed this up