Bayesian Methods

Nicholas Ruozzi
University of Texas at Dallas

based on the slides of Vibhav Gogate
Binary Variables

- Coin flipping: heads=1, tails=0 with bias μ

 \[p(X = 1|\mu) = \mu \]

- Bernoulli Distribution

 \begin{align*}
 \text{Bern}(x|\mu) &= \mu^x \cdot (1 - \mu)^{1-x} \\
 E[X] &= \mu \\
 \text{var}(X) &= \mu \cdot (1 - \mu)
 \end{align*}
Estimating the Bias of a Coin

• Suppose that we have a coin, and we would like to figure out what the probability is that it will flip up heads

 • How should we estimate the bias?
Estimating the Bias of a Coin

• Suppose that we have a coin, and we would like to figure out what the probability is that it will flip up heads

• How should we estimate the bias?

• With these coin flips, our estimate of the bias is: ?
Estimating the Bias of a Coin

• Suppose that we have a coin, and we would like to figure out what the probability is that it will flip up heads

 • How should we estimate the bias?

• With these coin flips, our estimate of the bias is: 3/5

 • Why is this a good estimate?
Coin Flipping – Binomial Distribution

- \(P(Heads) = \theta, \ P(Tails) = 1 - \theta \)
- Flips are i.i.d.
 - Independent events
 - Identically distributed according to Binomial distribution
- Our training data consists of \(\alpha_H \) heads and \(\alpha_T \) tails
 \[
p(D|\theta) = \theta^{\alpha_H} \cdot (1 - \theta)^{\alpha_T}
\]
Maximum Likelihood Estimation (MLE)

- **Data:** Observed set of α_H heads and α_T tails
- **Hypothesis:** Coin flips follow a Bernoulli distribution
- **Learning:** Find the “best” θ
- **MLE:** Choose θ to maximize probability of D given θ

\[
\hat{\theta} = \arg \max_\theta P(D \mid \theta) \\
= \arg \max_\theta \ln P(D \mid \theta)
\]
First Parameter Learning Algorithm

\[\hat{\theta} = \arg\max_{\theta} \ln P(\mathcal{D} \mid \theta) \]

\[= \arg\max_{\theta} \ln \theta^{\alpha_H} (1 - \theta)^{\alpha_T} \]

Set derivative to zero, and solve!

\[\frac{d}{d\theta} \ln P(\mathcal{D} \mid \theta) = \frac{d}{d\theta} [\ln \theta^{\alpha_H} (1 - \theta)^{\alpha_T}] \]
First Parameter Learning Algorithm

\[\hat{\theta} = \arg \max_\theta \ln P(\mathcal{D} | \theta) \]
\[= \arg \max_\theta \ln \theta^{\alpha_H} (1 - \theta)^{\alpha_T} \]

Set derivative to zero, and solve!

\[
\frac{d}{d\theta} \ln P(\mathcal{D} | \theta) = \frac{d}{d\theta} \left[\ln \theta^{\alpha_H} (1 - \theta)^{\alpha_T} \right] \\
= \frac{d}{d\theta} \left[\alpha_H \ln \theta + \alpha_T \ln(1 - \theta) \right] \\
= \alpha_H \frac{d}{d\theta} \ln \theta + \alpha_T \frac{d}{d\theta} \ln(1 - \theta) \\
= \frac{\alpha_H}{\theta} - \frac{\alpha_T}{1 - \theta} = 0
\]
First Parameter Learning Algorithm

\[\hat{\theta} = \arg \max_{\theta} \ln P(\mathcal{D} \mid \theta) \]
\[= \arg \max_{\theta} \ln \theta^{\alpha_H} (1 - \theta)^{\alpha_T} \]

Set derivative to zero, and solve!

\[
\frac{d}{d\theta} \ln P(\mathcal{D} \mid \theta) = \frac{d}{d\theta} \left[\ln \theta^{\alpha_H} (1 - \theta)^{\alpha_T} \right] \\
= \frac{d}{d\theta} \left[\alpha_H \ln \theta + \alpha_T \ln(1 - \theta) \right] \\
= \alpha_H \frac{d}{d\theta} \ln \theta + \alpha_T \frac{d}{d\theta} \ln(1 - \theta) \\
= \frac{\alpha_H}{\theta} - \frac{\alpha_T}{1 - \theta} = 0
\]

\[\hat{\theta}_{MLE} = \frac{\alpha_H}{\alpha_H + \alpha_T} \]
Coin Flip MLE

\[\hat{\theta}_{MLE} = \frac{\alpha_H}{\alpha_H + \alpha_T} \]
• Suppose we have 5 coin flips all of which are heads
 • Our estimate of the bias is?
• Suppose we have 5 coin flips all of which are heads

• MLE would give $\theta_{MLE} = 1$

• This event occurs with probability $\frac{1}{2^5} = \frac{1}{32}$ for a fair coin

• Are we willing to commit to such a strong conclusion with such little evidence?
Priors

• Priors are a Bayesian mechanism that allow us to take into account “prior” knowledge about our belief in the outcome

• Rather than estimating a single θ, consider a distribution over possible values of θ given the data

• Update our prior after seeing data

Our best guess in the absence of any data

Our estimate after we see some data

Observe flips e.g.: \{tails, tails\}
Bayesian Learning

Apply Bayes rule:

\[p(\theta|D) = \frac{p(D|\theta)p(\theta)}{p(D)} \]

• Or equivalently: \(p(\theta|D) \propto p(D|\theta)p(\theta) \)

• For uniform priors this reduces to the MLE objective

\[p(\theta) \propto 1 \implies p(\theta|D) \propto p(D|\theta) \]
Picking Priors

• How do we pick a good prior distribution?
 • Could represent expert domain knowledge
 • Statisticians choose them to make the posterior distribution “nice” (conjugate priors)

• What is a good prior for the bias in the coin flipping problem?
Picking Priors

- How do we pick a good prior distribution?
 - Could represent expert domain knowledge
 - Statisticians choose them to make the posterior distribution “nice” (conjugate priors)

- What is a good prior for the bias in the coin flipping problem?
 - Truncated Gaussian (tough to work with)
 - Beta distribution (works well for binary random variables)
Coin Flips with Beta Distribution

Likelihood function:

\[P(\mathcal{D} \mid \theta) = \theta^\alpha H (1 - \theta)^\alpha T \]

Prior:

\[P(\theta) = \frac{\theta^{\beta H - 1} (1 - \theta)^{\beta T - 1}}{B(\beta_H, \beta_T)} \sim \text{Beta}(\beta_H, \beta_T) \]

\[P(\theta \mid \mathcal{D}) \propto \theta^{\alpha H} (1 - \theta)^{\alpha T} \theta^{\beta H - 1} (1 - \theta)^{\beta T - 1} \]
\[= \theta^{\alpha_H + \beta_H - 1} (1 - \theta)^{\alpha_T + \beta_T - 1} \]
\[= \text{Beta}(\alpha_H + \beta_H, \alpha_T + \beta_T) \]
MAP Estimation

• Choosing θ to maximize the posterior distribution is called maximum a posteriori (MAP) estimation

$$\theta_{MAP} = \arg \max_\theta p(\theta|D)$$

• The only difference between θ_{MLE} and θ_{MAP} is that one assumes a uniform prior (MLE) and the other allows an arbitrary prior
• Suppose we have 5 coin flips all of which are heads
 • MLE would give $\theta_{MLE} = 1$
 • MLE with a $Beta(2,2)$ prior gives $\theta_{MAP} = \frac{6}{7} \approx 0.857$
 • As we see more data, the effect of the prior diminishes

$$\theta_{MAP} = \frac{\alpha_H + \beta_H - 1}{\alpha_H + \beta_H + \alpha_T + \beta_T - 2} \approx \frac{\alpha_H}{\alpha_H + \alpha_T} \text{ for large # of observations}$$
Sample Complexity

• How many coin flips do we need in order to guarantee that our learned parameter does not differ too much from the true parameter (with high probability)?

• Can use Chernoff bound (again!)

 • Suppose Y_1, \ldots, Y_N are i.i.d. random variables taking values in $\{0, 1\}$ such that $E_p [Y_i] = y$. For $\epsilon > 0$,

$$p \left(\left| y - \frac{1}{N} \sum_{i} Y_i \right| \geq \epsilon \right) \leq 2e^{-2N\epsilon^2}$$
Sample Complexity

• How many coin flips do we need in order to guarantee that our learned parameter does not differ too much from the true parameter (with high probability)?

• Can use Chernoff bound (again!)

• For the coin flipping problem with X_1, \ldots, X_n iid coin flips and $\epsilon > 0$,

$$p \left(\left| \theta_{\text{true}} - \frac{1}{N} \sum_i X_i \right| \geq \epsilon \right) \leq 2e^{-2N\epsilon^2}$$
Sample Complexity

• How many coin flips do we need in order to guarantee that our learned parameter does not differ too much from the true parameter (with high probability)?

• Can use Chernoff bound (again!)

 • For the coin flipping problem with X_1, \ldots, X_n iid coin flips and $\epsilon > 0$,

 $$p(|\theta_{true} - \theta_{MLE}| \geq \epsilon) \leq 2e^{-2N\epsilon^2}$$
Sample Complexity

- How many coin flips do we need in order to guarantee that our learned parameter does not differ too much from the true parameter (with high probability)?

- Can use Chernoff bound (again!)

 - For the coin flipping problem with X_1, \ldots, X_n iid coin flips and $\epsilon > 0$,

 $$ p(|\theta_{true} - \theta_{MLE}| \geq \epsilon) \leq 2e^{-2N\epsilon^2} $$

 $$ \delta \geq 2e^{-2N\epsilon^2} \Rightarrow N \geq \frac{1}{2\epsilon^2 \ln \frac{2}{\delta}} $$