Logistic Regression

Nicholas Ruozzi
University of Texas at Dallas

based on the slides of Vibhav Gogate
Last Time

- Supervised learning via naive Bayes
 - Use MLE to estimate a distribution $p(x, y) = p(y)p(x|y)$
 - Classify by looking at the conditional distribution, $p(y|x)$
- Today: logistic regression
Logistic Regression

• Learn $p(Y|X)$ directly from the data

 • Assume a particular functional form, e.g., a linear classifier $p(Y = 1|x) = 1$ on one side and 0 on the other

 • Not differentiable...

 • Makes it difficult to learn

 • Can’t handle noisy labels
Logistic Regression

• Learn $p(y|x)$ directly from the data

• Assume a particular functional form

\[p(Y = -1|x) = \frac{1}{1 + \exp(w^T x + b)} \]

\[p(Y = 1|x) = \frac{\exp(w^T x + b)}{1 + \exp(w^T x + b)} \]
Logistic Function in m Dimensions

$$p(Y = -1|x) = \frac{1}{1 + \exp(w^T x + b)}$$
Functional Form: Two classes

• Given some w and b, we can classify a new point x by assigning the label 1 if $p(Y = 1|x) > p(Y = -1|x)$ and -1 otherwise

• This leads to a linear classification rule:
 • Classify as a 1 if $w^T x + b > 0$
 • Classify as a -1 if $w^T x + b < 0$
Learning the Weights

- To learn the weights, we maximize the conditional likelihood

\[(w^*, b^*) = \arg \max_{w, b} \prod_{i=1}^{N} p(y^{(i)}|x^{(i)}, w, b)\]

- This is not the same strategy that we used in the case of naive Bayes
 - For naive Bayes, we maximized the log-likelihood
Generative vs. Discriminative Classifiers

Generative classifier: (e.g., Naïve Bayes)
- Assume some **functional form** for $p(x|y), p(y)$
- Estimate parameters of $p(x|y), p(y)$ directly from training data
- Use Bayes rule to calculate $p(y|x)$
- This is a **generative model**
 - *Indirect* computation of $p(Y|X)$ through Bayes rule
 - As a result, **can also generate a sample of the data**, $p(x) = \sum_y p(y)p(x|y)$

Discriminative classifiers: (e.g., Logistic Regression)
- Assume some **functional form for** $p(y|x)$
- Estimate parameters of $p(y|x)$ directly from training data
- This is a **discriminative model**
 - Directly learn $p(y|x)$
 - But **cannot obtain a sample of the data** as $p(x)$ is not available
 - Useful for discriminating labels
\[
\ell(w, b) = \ln \prod_{i=1}^{N} p(y^{(i)}|x^{(i)}, w, b) \\
= \sum_{i=1}^{N} \ln p(y^{(i)}|x^{(i)}, w, b) \\
= \sum_{i=1}^{N} \frac{y^{(i)} + 1}{2} \ln p(Y = 1|x^{(i)}, w, b) + \left(1 - \frac{y^{(i)} + 1}{2}\right) \ln p(Y = -1|x^{(i)}, w, b) \\
= \sum_{i=1}^{N} \frac{y^{(i)} + 1}{2} \ln \frac{p(Y = 1|x^{(i)}, w, b)}{p(Y = -1|x^{(i)}, w, b)} + \ln p(Y = -1|x^{(i)}, w, b) \\
= \sum_{i=1}^{N} \frac{y^{(i)} + 1}{2} (w^T x^{(i)} + b) - \ln(1 + \exp(w^T x^{(i)} + b))
\]
Learning the Weights

$$\ell(w, b) = \ln \prod_{i=1}^{N} p(y^{(i)}|x^{(i)}, w, b)$$

$$= \sum_{i=1}^{N} \ln p(y^{(i)}|x^{(i)}, w, b)$$

$$= \sum_{i=1}^{N} \frac{y^{(i)} + 1}{2} \ln p(Y = 1|x^{(i)}, w, b) + \left(1 - \frac{y^{(i)} + 1}{2}\right) \ln p(Y = -1|x^{(i)}, w, b)$$

$$= \sum_{i=1}^{N} \frac{y^{(i)} + 1}{2} \ln \frac{p(Y = 1|x^{(i)}, w, b)}{p(Y = -1|x^{(i)}, w, b)} + \ln p(Y = -1|x^{(i)}, w, b)$$

$$= \sum_{i=1}^{N} \frac{y^{(i)} + 1}{2} \left(w^T x^{(i)} + b\right) - \ln \left(1 + \exp\left(w^T x^{(i)} + b\right)\right)$$

This is concave in w and b: take derivatives and solve!
Learning the Weights

$$\ell(w, b) = \ln \prod_{i=1}^{N} p(y^{(i)}|x^{(i)}, w, b)$$

$$= \sum_{i=1}^{N} \ln p(y^{(i)}|x^{(i)}, w, b)$$

$$= \sum_{i=1}^{N} \frac{y^{(i)} + 1}{2} \ln p(Y = 1|x^{(i)}, w, b) + \left(1 - \frac{y^{(i)} + 1}{2}\right) \ln p(Y = -1|x^{(i)}, w, b)$$

$$= \sum_{i=1}^{N} \frac{y^{(i)} + 1}{2} \ln \frac{p(Y = 1|x^{(i)}, w, b)}{p(Y = -1|x^{(i)}, w, b)} + \ln p(Y = -1|x^{(i)}, w, b)$$

$$= \sum_{i=1}^{N} \frac{y^{(i)} + 1}{2} (w^T x^{(i)} + b) - \ln(1 + \exp(w^T x^{(i)} + b))$$

No closed form solution 😞
Learning the Weights

• Can apply gradient ascent to maximize the conditional likelihood

\[
\frac{\partial \ell}{\partial b} = \sum_{i=1}^{N} \left[\frac{y^{(i)} + 1}{2} - p(Y = 1|x^{(i)}, w, b) \right]
\]

\[
\frac{\partial \ell}{\partial w_j} = \sum_{i=1}^{N} x_j^{(i)} \left[\frac{y^{(i)} + 1}{2} - p(Y = 1|x^{(i)}, w, b) \right]
\]
• Can define priors on the weights to prevent overfitting

 • Normal distribution, zero mean, diagonal covariance

\[p(w) = \prod_j \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{w_j^2}{2\sigma^2}\right) \]

• “Pushes” parameters towards zero

• Regularization

 • Helps avoid very large weights and overfitting
Priors as Regularization

- The log-MAP objective with this Gaussian prior is then

\[
\ln \prod_{i=1}^{N} p(y^{(i)}|x^{(i)}, w, b) p(w)p(b) = \left[\sum_{i} \ln p(y^{(i)}|x^{(i)}, w, b) \right] - \frac{\lambda}{2} \|w\|_2^2
\]

- Quadratic penalty: drives weights towards zero
- Adds a negative linear term to the gradients
- Different priors can produce different kinds of regularization
Priors as Regularization

- The log-MAP objective with this Gaussian prior is then

\[
\ln \prod_{i=1}^{N} p(y^{(i)}|x^{(i)}, w, b) p(w)p(b) = \left[\sum_{i} \ln p(y^{(i)}|x^{(i)}, w, b) \right] - \frac{\lambda}{2} \|w\|_2^2
\]

- Quadratic penalty: drives weights towards zero
- Adds a negative linear term to the gradients
- Different priors can produce different kinds of regularization

Sometimes called an \(\ell_2 \) regularizer
Regularization
NB vs. LR (on UCI datasets)

- **liver disorders (continuous)**
- **sonar (continuous)**
- **adult (discrete)**
- **promoters (discrete)**
- **lymphography (discrete)**
- **breast cancer (discrete)**

Sample size m

Naïve bayes

Logistic Regression

[Ng & Jordan, 2002]
LR in General

• Suppose that \(y \in \{1, \ldots, R\} \), i.e., that there are \(R \) different class labels.

• Can define a collection of weights and biases as follows:

 • Choose a vector of biases and a matrix of weights such that for \(y \neq R \)

 \[
p(Y = k| x) = \frac{\exp(b_k + \sum_i w_{ki}x_i)}{1 + \sum_{j<R} \exp(b_j + \sum_i w_{ji}x_i)}
 \]

 and

 \[
p(Y = R| x) = \frac{1}{1 + \sum_{j<R} \exp(b_j + \sum_i w_{ji}x_i)}
 \]