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1. Introduction
Capacity investments, such as construction of semicon-
ductor fabrication or power plants, share four important
characteristics. First, capacity investments are often very
expensive and irreversible. The cost of unused capacity can
be only partially recovered (if at all) by salvaging at a min-
imum value. Second, demand for the capacity is uncertain
at the time of the capacity decision. Demand uncertainty
is often quite significant because the capacity decision is
taken well in advance of the sales season. Third, adjust-
ing capacity during sales and production is often difficult
or impossible. Hence, the amount of capacity built defines
how much can be produced and sold during the sales sea-
son. Fourth, management often has some leeway about the
timing of when to build capacity. The latest time to install
capacity is the beginning of the sales period minus the con-
struction leadtime necessary to build the capacity. Many
strategic investments share these common characteristics
(see, for example, Dixit and Pindyck 1994).
In an environment driven by demand uncertainty, a

“build it and they will come” strategy requires a capacity

provider to bear considerable risk in making the expensive
capacity investment. In this paper, we explore a different
strategy. We allow some customers to commit to buying
prior to the capacity decision and the provider to build the
capacity later; i.e., “let them come and build it later.” In
this paper, we refer to the capacity provider as the man-
ufacturer because she also produces and delivers the final
product.
Advance selling is a strategy that can help the manufac-

turer enhance her understanding of the market potential for
her product and reduce demand uncertainty. By offering the
product at a time preceding the regular sales period, the
manufacturer can capture some of the market demand in
advance and thereby moderates overall demand uncertainty.
In addition, the amount of advance purchase commitments
provides the manufacturer with information on the market
demand potential of the product and enables her to plan
capacity according to more accurate demand information.
She also starts collecting revenue earlier. Advance sell-
ing strategy may be attractive to some customers as well.
By committing earlier to purchase, customers reserve their
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products and therefore are not vulnerable to possible capac-
ity shortages. Furthermore, customers may garner discounts
for committing early (Neslin et al. 1995).
When the manufacturer postpones the capacity invest-

ment to acquire advance sales information, she may face an
additional trade-off due to capacity building costs. There
are always leadtimes associated with obtaining sites, equip-
ment and other resources when the manufacturer builds new
capacity. When these investments are delayed, the man-
ufacturer may face a tighter deadline for building capac-
ity, which would result in a nondecreasing capacity cost
structure due to various expediting costs (e.g., second shift
premium, premium transportation). Alternatively, if expe-
diting is not possible (i.e., the leadtime is constant), then
the manufacturer runs the risk of completing the capacity
installment after the start of the sales season, in which case
she may lose some potential revenue. This can also be cast
as a nondecreasing capacity cost structure.
Advance selling strategy is commonly used in the service

sector. The prime example is the airline industry. However,
as Xie and Shugan (2001) point out, advance selling does
not require industry-specific characteristics; it can be used
to enhance profits provided that customers can purchase the
service at a time preceding consumption, which is possi-
ble for most services. New technology such as electronic
tickets, on-line prepayments and smart cards enable more
service providers to experiment with advance selling. Cus-
tomers can buy advance tickets to concerts, sports events, or
festivals. They can book hotel rooms, buy railroad tickets,
and acquire some other services in advance. The advance
sales information is often used to plan and manage capacity.
For example, conference organizers offer early registration
at discounted prices and use this information in planning
the hotel rooms to reserve, meeting rooms to book, as well
as catering.
Advance selling is also used in the manufacturing sec-

tor, although it is not as prevalent as in the service sector.
This may be due to the presence of organizational silos
which often decouples demand management and capacity
planning. Recent advances in information technology and
management practices, however, are enabling firms to coor-
dinate actions across functional areas, such as marketing
and operations. Some manufacturers in high technology and
apparel industries started to use advance selling strategy
to better plan for capacity and production. For example,
Ericsson, a telecommunications equipment manufacturer,
recently explored this strategy to improve its long-range
forecasting for planning the capacity of a new factory for its
third-generation (3G) wireless network equipment. Accord-
ingly, the company announced the date for the launch
of its 3G stations. Before securing the capacity, Ericsson
“presold” 3G wireless base stations to some of its cus-
tomers such as NTTdocomo, the regional cellular phone
operator in Japan.1 Apparel manufacturers have also been
using early sales information to decide on production.
To do so, this industry developed several initiatives to

reduce the cost of excess inventory and shortage. Fisher
and Raman (1996) discuss how apparel manufacturers, such
as Sport Obermeyer, commit part of production capac-
ity to certain SKUs after observing some initial demand.
Zara uses early market sales information to preposition
and decide how much sewing capacity to reserve (Fraiman
and Singh 2002). Advance selling is also used in construc-
tion projects. Commercial developers sell some units at an
advance sales price before construction begins. Revenue
from advance sales is used in part to finance the construc-
tion. This information can also be used to decide whether
to purchase additional land and build more units. Another
example is from e-tailers (such as Amazon.com) that col-
lect pre-orders for certain items before their market intro-
duction. As discussed at the outset, the trade-off between
delaying a decision and proactively acquiring information
(such as demand) versus deciding early (such as building
capacity up front) is inherent to many strategic investment
decisions. The present paper takes a step in the direction
of providing an understanding of this trade-off in capacity
planning.
In summary, our primary objective is to determine the

effectiveness of advance selling in conjunction with a “let
them come and build it later” capacity strategy. In partic-
ular, we study a manufacturer who decides on the level
of capacity to build for a product that faces price-sensitive
stochastic demand. The manufacturer has one opportunity
to invest in capacity before the sales season starts. The
amount of capacity built defines the upper bound on how
much the manufacturer can produce and sell during the
sales season. By delaying the capacity decision and offering
advance sales, the manufacturer can mitigate the demand
uncertainty and obtain additional information about the
market potential. We also consider the manufacturer’s pric-
ing problem. We study the case in which the manufacturer
determines advance sales and sales season prices optimally,
as well as the case in which these prices are exogenously
specified. For each scenario, we establish the optimality
of control-band policies that prescribe the optimal time to
stop collecting advance sales information. Under this pol-
icy, the manufacturer monitors the prevailing advance sales
information including the total number of commitments to
date, and if this quantity falls within the control band, it
is optimal to stop advance selling and to decide on the
capacity. Otherwise, the manufacturer continues advance
selling. Through an extensive numerical study, we com-
pare the optimal expected profits with and without advance
selling, and we show that an advance selling strategy can
increase expected profit significantly. We also quantify the
value of knowing exactly when to stop advance selling.
Our study generates managerial insights on how the value
of information acquired through advance selling is influ-
enced by operating and market characteristics, by quantify-
ing the profit-impact of such characteristics. Consequently,
we identify the conditions under which advance selling
offers the most value (e.g., when demand uncertainty or
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cost of building capacity is high). Finally, we study the
joint benefits of acquiring information for capacity plan-
ning through advance selling and revenue management of
installed capacity through dynamic pricing. Modeling and
studying this scenario bridges the revenue and capacity
management literatures.

2. Literature Review
There is an extensive body of research dealing with capac-
ity management in different environments. When product
lifecycles and sales seasons are long and production lead-
times are short, adjustment of the capacity level over time
could be possible. Examples for such products are cement
and steel. For such products, Manne (1967) establishes
optimal expansion policies for a market with stochastic
growth patterns. Luss (1982) provides a comprehensive
review of joint capacity expansion and production manage-
ment problems. This literature assumes steady growth in
demand. More recently, Angelus and Porteus (2002) char-
acterize an optimal policy for simultaneous management of
capacity and production, whereby stochastic demand can
reduce over time. Bradley and Glynn (2002) study a con-
tinuous version of a simultaneous capacity and inventory
decision problem. Lovejoy and Li (2002) study capacity
decisions for hospital operating rooms that consider the
objectives of patients, surgical staff and hospital adminis-
tration. Van Mieghem (2003) provides an extensive review
of the recent capacity literature, in which demand is always
modeled as an exogenous process. As pointed out by Van
Mieghem (2003), the capacity literature has not paid much
attention to the more realistic demand models which are
partially exogenous and partially endogenous. The present
paper takes a step in this direction.
When the capacity cannot be adjusted during the sales

horizon and when the capacity is perishable after the sales
horizon, the firm can increase expected profit through
dynamic pricing and revenue management. Bitran and
Caldentey (2003) and Elmaghraby and Keskinocak (2003)
provide comprehensive reviews of this topic. The text-
book treatment of this literature can be found in Talluri
and van Ryzin (2004) and Phillips (2005). This literature
takes capacity as given and maximizes revenue by adjust-
ing prices over time based on the level of left-over capac-
ity and price-sensitive customer arrival rates (e.g., Gallego
and van Ryzin 1994, Feng and Gallego 1995, Bitran and
Mondschein 1997). Carr and Lovejoy (2000) provide an
alternative method in which the capacitated firm selects
a portfolio of demand distributions from a set of poten-
tial customer segments. All these authors also point out
that frequent price adjustments could be costly and hence
should be exercised with care. In the manufacturing sector,
where customer relationships are important, selling capac-
ity and the product at different prices is generally not con-
sidered to be a relationship-preserving strategy. In our basic
model, a finite number of price adjustments are made prior

to the capacity decision, but once advance selling stops
and the capacity is set, the sales price remains uniform for
all remaining customers. In this way, we retain focus on
the capacity planning problem, which constitutes the core
of our study. Nevertheless, we also consider an extension
that allows installed capacity to be sold via dynamic pric-
ing. This extension bridges capacity planning with revenue
management through an advance selling strategy.
A recent line of research in dynamic pricing investigates

the effect of demand parameter learning (Braden and Oren
1994; Aviv and Pazgal 2005a, b; Araman and Caldentey
2009 and the references therein). This line of research
focuses on the pricing problem for which the perishable
capacity at the beginning of a regular sales season is given.
These authors extend the pricing model of Gallego and
van Ryzin (1994) in various interesting directions, in par-
ticular, to account for learning demand parameters. They
provide methods to compute optimal (and close-to-optimal)
prices for left-over inventory until all remaining capacity is
sold. Araman and Caldentey (2009) introduce the option of
stopping sales before consuming all capacity if the value
function is lower than an exogenously specified profit level
(which can be interpreted as the reservation profit obtained
from selling an alternative product). Unlike these papers,
we do not assume that capacity level at the beginning of a
regular period is given. Instead, we focus on pricing sched-
ules that collect commitments to purchase earlier, i.e., dur-
ing advance sales periods, and we use this information to
decide on the capacity at the beginning of the regular sales
season. These studies explicitly examine the role of demand
parameter learning in a Bayesian context. In our conclud-
ing remarks, we discuss how our proposed model can also
account for such a learning process.
Additionally, there is a large body of research that stud-

ies how capacity can be used effectively through managing
production and inventory. In this literature, capacity is an
upper bound on production quantity and it is exogenously
specified (see Aviv and Federgruen 1997, Özer and Wei
2004 and references therein). Within this line of research,
there is a growing literature that studies advance demand
information and its use in capacity constrained production
and inventory systems (see Gallego and Özer 2001, Özer
and Wei 2004, Hu et al. 2004, Wang and Toktay 2008,
Gayon et al. 2009). These papers establish optimal produc-
tion policies for various environments and show, for exam-
ple, that advance demand information is a substitute for
capacity. This literature takes advance demand information
as exogenous to the system. For an inventory system with
ample capacity, Weng and Parlar (1999) and Chen (2001)
explore the cost and benefit of price incentives to induce
time-and-price-sensitive customers to place advance orders.
Prasad et al. (2010) consider a newsvendor retailer serving
heterogenous customers with uncertain future valuations of
a product, and they explore the benefits of advance selling
at discounted prices.
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Another group of researchers studies how advance pur-
chase or selling affects the allocation of inventory risk
within a supply chain (Dana 1998, Cachon 2004, Netessine
and Rudi 2006, Taylor 2006, Özer et al. 2007, Dong and
Zhu 2007 and references therein). Although advance sell-
ing strategy forms the common ground, the primary focus
of this stream is different from ours. Modeling inventory
decisions within a supply chain under exogenous stochas-
tic demand, these papers focus on allocation of inventory
risk, division of profits, and incentives and coordination in
a supply chain. In contrast, we investigate how pricing and
advance selling can be used to manage demand for the pur-
pose of capacity planning.
The rest of the paper is organized as follows. In §3, we

describe the basic elements of our model. In §§4 and 5,
we establish the optimality of control-band policies for
offering advance sales for exogenous and optimal pricing
strategies, respectively. In §6, we present a numerical study
and generate managerial insights regarding the value of
an advance selling strategy for capacity planning. In §7,
we provide an extension where installed capacity can be
sold via dynamic pricing. In §8, we conclude and suggest
directions for future research. Proofs of all propositions are
deferred to the appendix. Some extensions are also dis-
cussed in the electronic companion, which is available as
part of the online version at http://or.journal.informs.org/.

3. The Model

3.1. Preliminaries

We consider a planning horizon with T time units that con-
sists of the regular sales season and the prior capacity plan-
ning period. We do not make any assumptions about the
length of each period. The regular sales season is indexed
as T . Periods 1� � � � � T −1 represent possible advance sales
periods, during which the firm can collect advance com-
mitments from customers before the capacity decision is
made and before the start of the regular season, hence
the term advance selling. The manufacturer faces random,
price-sensitive stochastic demand in each period.
The manufacturer has one opportunity to invest in capac-

ity before the regular sales season starts. When the manu-
facturer stops offering advance sales in period t, she builds
capacity at unit cost ct , based on the acquired advance
sales information. The remaining demand is served during
the regular sales season. The installed capacity defines the
upper bound on how much the manufacturer can produce
and sell during the sales season. If the manufacturer under-
invests in capacity, she loses potential sales revenue. If she
over-invests in capacity, she incurs a unit cost cu for unused
capacity at the end of the sales season. The unit production
cost is denoted as cp.
Let � denote the nominal leadtime for capacity construc-

tion. By expediting the building process, the manufacturer
can reduce this leadtime to �. Consequently, the latest time
for the manufacturer to decide on the capacity level to build

is the beginning of period T −�� For expositional clarity,
we assume � = 0� which means that the manufacturer can
postpone the capacity decision until the beginning of the
sales season T � A positive � can easily be incorporated
into the model without changing the nature of the results.
As noted earlier, expediting the building of capacity typi-
cally results in additional costs, implying that the capacity
costs �ct� should be nondecreasing. Although this is plausi-
ble, we do not posit such an assumption as it is not required
in our analysis.
Note that by delaying the capacity investment decision,

the manufacturer can acquire demand information through
advance selling and use this information for better capac-
ity planning. She also collects revenue earlier. Hence, she
may earn interest on advance sales. However, the manu-
facturer may incur additional costs if this delay results in
higher construction costs. The revenue collected later is
also discounted. Furthermore, depending on the advance
sales prices, she also runs the risk of selling capacity at
a lower profit margin. In the presence of such multiple
tradeoffs, the manufacturer needs to address two key ques-
tions: (i) how much advance sales information is sufficient
to decide on the capacity? and (ii) given this information,
what is the optimal capacity level? To answer these ques-
tions, we develop a dynamic programming formulation of
the manufacturer’s problem and determine the optimal time
for ending advance selling and building capacity.
We also consider the manufacturer’s pricing decision. In

particular, we study two fundamental pricing strategies that
differ in the degree of pricing control the manufacturer can
exert during the advance sales and the regular sales periods.
First, we study the exogenous pricing scenario in which
the manufacturer has a predetermined sequence of prices
for the advance sales periods as well as the regular selling
season. These prices may represent a mark-up or a mark-
down structure (see, for example, Feng and Gallego 1995 or
Bitran and Mondschein 1997). This prevalent case is mod-
eled by taking an arbitrary sequence of prices �p1� � � � � pT �
as given. Next, we study the optimal pricing scenario in
which the manufacturer determines the advance and regular
sales prices optimally in addition to the capacity decision.
For each of the pricing strategies, the manufacturer’s

decision process is as follows: At the beginning of each
period t < T , the manufacturer first observes the pre-
vailing advance sales information and the total revenue
from advance sales. Based on this information, she decides
to either (i) stop advance selling and build capacity, or
(ii) delay the capacity investment for one period and con-
tinue advance selling at an optimally set price (resp., or an
exogenously set price depending on the pricing policy we
address). If she stops, she determines the optimal level of
capacity based on the advance sales information and the
remaining uncertain demand in the market, and she sets
the regular sales price (resp., or takes this price as given).
At the beginning of regular sales season, i.e., t = T , if the
capacity investment decision has not already been taken,
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the manufacturer builds the capacity. As before, she deter-
mines the optimal level of capacity and sets the regular
sales price (resp., or takes it as given). Next, we describe
the demand model, the updating mechanism, and the man-
ufacturer’s expected profit.

3.2. Demand Model

We model market demand using an iso-elastic, price-
sensitive aggregate demand model with a multiplicative
form of uncertainty. Demand in each period depends on
the uncertain potential market size �t , the price pt charged
in that period, the cumulative commitments qt , and rele-
vant historical information2 �	t available at the beginning of
period t. The pair �qt� �	t� defines the advance sales infor-
mation available at the beginning of period t. The actual
demand in period t has the form

Dt�pt � qt� �	t� = ft�qt� �	t��tp
−b
t �

The price elasticity b is assumed to be the same across
periods for ease of exposition. The potential market size
�t in each period is uncertain. They are independent ran-
dom variables that have increasing failure rates (IFR) with
support on 
0���.
The nonstationary function ft�qt� �	t� � 0 models

the information that the commitments qt� in relation to the
history �	t , provide about future demand. It captures the
predictive value of commitments. We call this the market
signal imparted by the advance sales information regard-
ing the demand potential of the product. Based on the
level of this signal, future demand is scaled up or down.
For t = 1, q1 ≡ 0� �	1 ≡ � and hence f1�q1� �	1� ≡ 1� We
assume that ft�qt� �	t� is linear increasing in qt for any
given �	t and for all t > 1.3 Based on the information avail-
able at time zero, E
ft�qt� �	t�� = 1 for any selection of past
prices p̄t = �p1� � � � � pt−1� and for all t > 1.4 This property
implies that at time zero, before the manufacturer starts
to gather advance sales information, she expects demand
in any period t to be E
�t�p

−b
t , which is independent of

prices charged in periods s < t. This property ensures that
the manufacturer cannot use prices to artificially increase
the potential market size for the product. When the manu-
facturer engages in advance selling, however, the acquired
information can have predictive value regarding current and
future demand. Depending on the demand realization, the
next period’s market signal ft+1�qt+1� �	t+1� can be lower or
higher than or equal to ft�qt� �	t�. We do not impose any
assumption on its evolution.5 Our framework and structural
results are robust to various forms of market signal func-
tion and evolution. This flexibility enables us to model a
variety of scenarios as discussed later. In §§6 and 8, we
provide specific market signal functions, including those
arising from Bayesian learning models, and we show that
they satisfy the above assumptions. Hence, in the rest of
the paper, we do not restrict ourselves to a specific form

but instead study the problem given the above general func-
tional form.
The evolution of demand is as follows. At the beginning

of period t, if the manufacturer decides to offer advance
sales, the uncertainty �t is realized as �t , and accordingly
the actual demand dt = ft�qt� �	t��tp

−b
t is observed. The

cumulative commitments and the history are updated as
qt+1 = qt + dt� and �	t+1 = 
� �	t�pt� dt� for some function

� · ��6 If the manufacturer decides to stop offering advance
sales, the remaining customers are served during the reg-
ular sales season. This remaining demand is a function of
the current market signal ft�qt� �	t�, the remaining potential
market size �t ≡ ∑T

j=t �j , the price p charged in the sell-
ing season, and is given by Xt�p � qt� �	t� ≡ ft�qt� �	t��tp

−b�
Since IFR property is closed under convolutions (Barlow
and Proschan 1975), �t is also IFR. Notice also that �t is
stochastically decreasing in t. Note that the model accounts
for a reduction of future demand due to a longer advance
sales period. (In other words, advance sales cannibalizes
some portion of future demand.)

3.3. The Manufacturer’s Expected Profit

When the manufacturer continues advance selling in period
t� she collects the revenue ptdt� Consider an arbitrary
period t ∈ �1� � � � � T �, and suppose that at the beginning of
period t the manufacturer has decided to stop advance sell-
ing and invest in capacity. The manufacturer already has
qt committed customers at some past prices. At the begin-
ning of period t, the total revenue obtained from advance
selling, i.e.,

∑t−1
k=1 pkdk is deterministic. The manufacturer

is required to serve the committed customers, so she would
set the capacity level Qt above qt to also meet the remain-
ing demand Xt�p � qt� �	t� she will face during the selling
season at price p. For this reason, it is convenient to write
Qt = qt + St� where St � 0 denotes the surplus capacity.
The manufacturer’s expected (undiscounted) profit at the
time when she stops advance selling and invests in capacity
for a given qt and �	t is

�t�p�St �qt� �	t�=
t−1∑
k=1

pkdk +�t�p�St �qt� �	t�

−�cp +ct�qt� where (1)

�t�p�St �qt� �	t�=�p−cp�E
min�Xt�p �qt� �	t��St��−ctSt

−cuE
St −Xt�p �qt� �	t��
+� (2)

Note that x+ ≡ max�0� x�� and the expectation is taken
at time t with respect to the remaining uncertain market
demand Xt�p � qt� �	t�. Note that maximizing (1) is equiv-
alent to maximizing (2) when the optimization is over the
surplus capacity. Next, we analyze the manufacturer’s prob-
lem of acquiring information through advance selling and
pricing for capacity planning. We start with the exogenous
pricing case followed by the case where prices are deter-
mined optimally.
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4. Exogenous Prices
Consider an arbitrary sequence of prices � =
�p1� p2� � � � � pT �� where prices p1 through pT −1 are for
advance selling periods and pT is the price for the regular
sales season. At the beginning of period t, the manufac-
turer observes the advance sales information �qt� �	t� and
decides whether or not to continue advance sales. If the
manufacturer decides to stop advance sales, she determines
the optimal surplus capacity S∗

t to build. We assume
pT � cp + ct for t � T . This assumption ensures that the
manufacturer makes positive profit from customers who
buy during the regular sales season. Otherwise, there is no
reason to build capacity more than the total commitments
qt .

7 The manufacturer determines S∗
t by maximizing the

profit function in Equation (2), which yields

S∗
t ≡min

{
S � P�Xt�pT � qt� �	t� > S� = ct + cu

pT − cp + cu

}
�

The resulting optimal expected (undiscounted) net profit
from the remaining customers is then

�∗
t �qt� �	t� = �t�pT � S∗

t � qt� �	t��

By letting s∗
t = S∗

t /ft�qt� �	t�� we can rewrite �∗
t �qt� �	t� as

�∗
t �qt� �	t� = ft�qt� �	t��

∗
t , where

� ∗
t = �pT − cp�E
min��tp

−b
T � s∗

t �� − cts
∗
t

− cu E
s∗
t − �tp

−b
T �+� (3)

The manufacturer’s optimal capacity level is Q∗
t = qt + S∗

t

and optimal total expected profit is

�∗
t �qt� �	t� = �t�pT � S∗

t � qt� �	t�

=
t−1∑
k=1

pkdk + �∗
t �qt� �	t� − �cp + ct�qt�

Next we formulate a dynamic program to determine the
optimal time for the manufacturer to stop acquiring advance
sales information. The state space is given by the cumula-
tive commitments qt and the history �	t . We introduce an
auxiliary state (N ) in the commitment space to indicate that
the capacity decision has already been taken; i.e., qt = N if
the capacity decision has been made, and qt 	= N otherwise.
Let ut�qt� �	t� denote the manufacturer’s action in period t:

ut�qt� �	t�=

⎧⎪⎪⎨
⎪⎪⎩

uc� continue advance sales at price pt ,

us� stop advance sales, set price to pT

and capacity level to Q∗
t .

(4)

At the end of period t, the cumulative commitments and
the history are updated as

qt+1=
⎧⎨
⎩

qt +dt� if qt 	=N and ut�qt� �	t�=uc�

N � if qt 	=N and ut�qt� �	t�=us� or qt =N ,

�	t+1 =

⎧⎪⎪⎨
⎪⎪⎩


� �	t�pt� dt�� if qt 	= N and ut�qt� �	t� = uc�

�	t� if qt 	= N and ut�qt� �	t� = us�

or qt = N .

Let us now introduce � ∈ �0�1� as the discount factor.8

Revenue is realized at the end of the period when cus-
tomers place advance orders and at the end of the regu-
lar sales period when remaining customers purchase. The
costs are incurred in the sales period. All results remain
valid if revenues from advance orders are collected at the
time of delivery and/or capacity costs are incurred when
the investment decision is taken. The reward function for
t ∈ �1� � � � � T − 1� is given by

gt�qt� �	t� =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ptdt� if qt 	= N and ut�qt� �	t� = uc,

�T −t��∗
t �qt� �	t� − �cp + ct�qt��

if qt 	= N and ut�qt� �	t� = us ,

0� otherwise�

and for t = T , it is given by

gT �qT � �	T � =
⎧⎨
⎩

�∗
T �qT � �	T � − �cp + cT �qT � if qT 	= N ,

0� otherwise�

The function gt�qt� �	t� records the revenue from two
sources. The first source is from customers who pur-
chase in period t when the manufacturer decides to con-
tinue advance selling (i.e., ut�qt� �	t� = uc). This revenue
source is from advance purchases. The second source is
the expected revenue from satisfying the remaining market
demand (as much as possible) minus the cost of building
capacity and the cost of production (i.e., ut�qt� �	t� = us).
The manufacturer’s problem is to maximize the total
expected profit discounted to the first period:

max
u1� u2� ���� uT

E

[ T∑
t=1

�t−1gt�qt� �	t�

]
�

where the expectation is taken at time zero over
Dt�pt � qt� �	t� for all t. The solution to this problem is
obtained by the following functional equation:

JT �qT � �	T � =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

�∗
T �qT � �	T � − �cp + cT �qT �

if qT 	= N then uT �qT � �	T � = us

(forced decision),

0� if qT = N ,

(5)

and for t = 1� � � � � T − 1, we solve

Jt�qt� �	t� =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

max��T −t
�∗
t �qt� �	t� − �cp + ct�qt��

E
ptDt�pt � qt� �	t�

+ �Jt+1�qt+1� �	t+1���� if qt 	= N�

0� if qt = N�

(6)

where the expectation is taken at time t with respect to
Dt�pt � qt� �	t�. When the maximum in Equation (6) is
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attained by �T −t
�∗
t �qt� �	t� − �cp + ct�qt�, it is optimal to

stop advance selling, set the regular sales price to pT , and
set the capacity level to Q∗

t ; otherwise, it is optimal to con-
tinue advance selling at price pt .
For a clearer representation of the above optimal

stopping problem, we define Vt�qt� �	t� = Jt�qt� �	t� −
�T −t
�∗

t �qt� �	t� − �cp + ct�qt� and substitute Vt�qt� �	t� +
�T −t
�∗

t �qt� �	t� − �cp + ct�qt� for Jt in Equations (5), (6)
and subtract �T −t
�∗

t �qt� �	t�− �cp + ct�qt� from both sides
of these equations to obtain an equivalent formulation. The
resulting dynamic program for t = 1� � � � � T −1, is given by

Vt�qt� �	t�=max�0�Ht�qt� �	t�+�E
Vt+1�qt+1� �	t+1���� (7)

where

Ht�qt� �	t� ≡ E
�pt − �T −t�cp + ct+1��Dt�pt � qt� �	t�

+ �T −t��∗
t+1�qt+1� �	t+1� − �∗

t �qt� �	t���

− �T −t�ct+1 − ct�qt� (8)

and VT �qT � �	T � = 0� Under this formulation, if Ht�qt� �	t�+
�E
Vt+1�qt+1� �	t+1�� > 0, it is optimal to continue advance
selling. Note that the function Ht�qt� �	t� can be interpreted
as the myopic expected profit that the manufacturer can
make by delaying the capacity decision one more period
and collecting advance sales without considering the pos-
sible benefit of continuing advance selling beyond period
t + 1. The function �EVt+1�qt+1� �	t+1� is the additional
expected profit due to the impact of the “continue” deci-
sion, i.e., advance selling during future profits.
To characterize an optimal policy, we define 
Ht�qt� �	t� ≡

Ht�qt� �	t�+�E
Vt+1�qt+1� �	t+1�� and identify if and when

Ht�qt� �	t� crosses the zero line. For t = 1� q1 ≡ 0, and
�	1 = �, and hence the decision is based on V1�0���. For
t = 2� � � � � T − 1� we define

Lt� �	t� =min�qt � qt � 0� 
Ht�qt� �	t�� 0�� (9)

and we set Lt� �	t� = −� if min�qt � qt � 0� 
Ht�qt� �	t�� 0�
= 0 and Lt� �	t� = � if min�qt � qt � 0� 
Ht�qt� �	t� � 0�
= �� Similarly, we define

Ut� �	t� =max�qt � qt � 0� 
Ht�qt� �	t�� 0�� (10)

and we set Ut� �	t� = � if max�qt � qt � 0� 
Ht�qt� �	t� � 0�
= ��

Theorem 1. The following statements hold for all
t ∈ �1� T �:
1. The function 
Ht�qt� �	t� is convex in qt for any �	t .
2. A state-dependent control-band policy is optimal; the

optimal decision is

u∗
t �qt� �	t� =

⎧⎨
⎩

us� if Lt� �	t�� qt �Ut� �	t�,

uc� if qt < Lt� �	t� or qt > Ut� �	t�.

3. The function Vt�qt� �	t� is convex in qt for any �	t .

Theorem 1 shows that a state-dependent control-band
policy is optimal. Under this policy, given the history �	t ,
the manufacturer optimally stops advance selling when the
cumulative commitments fall between the control bands,
i.e., qt ∈ 
Lt� �	t��Ut� �	t��. When the cumulative com-
mitments are lower than Lt� �	t�, it is optimal to con-
tinue acquiring information about future market potential
through advance sales. In this case, the benefits of delay-
ing a capacity decision (e.g., acquiring demand informa-
tion, resolving part of market uncertainty, and collecting
revenue) outweighs the costs (e.g., higher cost of building
capacity, risk of selling at a lower profit margin later, and
earning a discounted revenue). When the cumulative com-
mitments are higher than Ut� �	t�, the commitments signal a
strong, significantly more than expected, expanding future
market potential. Such a strong market potential allows
the manufacturer to have one more opportunity to sell at
a different price point by postponing the capacity invest-
ment decision for another period when doing so is not too
costly. We note that the proposition does not rule out the
cases when the upper threshold is very large or infinite.
Intuitively, when commitments have no predictive value or
delaying the capacity decision is too costly, one may expect
the upper threshold to be infinity. The next theorem for-
malizes this observation and identifies the conditions under
which a threshold policy is indeed optimal.

Theorem 2. The following statements hold for all for
t ∈ �1� T �:
1. Suppose that the advance commitments have no pre-

dictive value (i.e., ft�qt� �	t� = 1 for all qt� �	t , and t). If
ct+1 > ct ∀ t, then a threshold policy is optimal, i.e.,

u∗
t �qt� =

⎧⎨
⎩

us� if qt � Lt�

uc� if qt < Lt�

If ct+1 = ct ∀ t, then the optimal policy does not depend on
the advance sales information, and the functions 
Ht� · � · �
equal constants 
Ht for each t� In this case, the optimal
stopping time is the first t ∈ 
1� T � such that 
Ht = 0.

2. Suppose that ct+1 is sufficiently larger than ct for all t.
Then a state-dependent threshold policy is optimal.

Theorem 2, shows that even when commitments carry
no predictive value;9 i.e., ft� · � = 1 for all t, it can be opti-
mal to engage in advance selling. Recall that the manufac-
turer collects revenue earlier by advance selling. Hence, she
earns interest on advance sales. She also reduces demand
uncertainty by inducing customers to place early orders,
reducing her risk of excess capacity and shortage. Yet,
delaying the capacity decision is costly when the con-
struction cost is increasing, i.e., ct+1 > ct . The theorem
characterizes when it is optimal for the manufacturer to
stop advance selling. It also shows that if it is optimal
to stop advance selling when the commitments exceed the
threshold Lt , then it is never optimal to continue advance
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selling for total commitments above this threshold. So,
part 1 of Theorem 2 shows that in the absence of the pre-
dictive value of commitments, there is no reason for the
manufacturer to reverse the stopping decision. In this case
the manufacturer also does not need to take the history
�	t into account. She only needs to know the cumulative
commitments because the cost of building capacity depends
on t and hence qt . Hence, an optimal stopping policy for
advance sales is a threshold policy and is state indepen-
dent. In addition, if the cost of capacity does not depend on
t� then the manufacturer does not need to track cumulative
commitments either. Part 2 of Theorem 2 shows that a state-
dependent threshold policy is optimal when the capacity
cost in period t +1 is sufficiently larger than that of period
t for all periods. In short, the optimal policy is provably a
threshold one when commitments have no predictive value
or when capacity cost increases excessively over time.

5. Optimal Prices for Advance Sales and
Regular Season

We study a manufacturer who sets the advance sales prices
and the price for the regular sales season. We first char-
acterize the manufacturer’s optimal pricing and capacity
decisions and the resulting profits when she stops advance
selling. We conclude by characterizing the optimal advance
sales prices and the optimal stopping policy.

Theorem 3. Suppose that the manufacturer decides to stop
advance selling and to build capacity in period t with an
existing level of cumulative commitments qt and history �	t ,
and that cp � cu� Let zt = St/�ft�qt� �	t�p

−b
t �. Then, there

exists a unique optimal regular sales price ps
t given as

ps
t =pt�z

∗
t �=

(
b

b−1

)(
cp + ctz

∗
t +cuE
z∗

t −�t�
+

z∗
t −E
z∗

t −�t�
+

)
� (11)

where z∗
t is the unique solution of P��t > zt� = �ct + cu�/

�pt�zt� − cp + cu�. The resulting optimal surplus capacity
is S∗

t = ft�qt� �	t�z
∗
t �p

s
t �

−b and optimal expected profit from
remaining customers is �∗

t �qt� �	t� = ft�qt�	�� ∗
t , where

� ∗
t = 1

b
�ps

t �
−�b−1��z∗

t −E
z∗
t − �t�

+�� (12)

The optimal capacity level is Q∗
t = qt + S∗

t and optimal
expected undiscounted profit �∗

t �qt� �	t� is

�∗
t �qt� �	t� = �t�p

s
t � S∗

t � qt� �	t�

=
t−1∑
k=1

pkdk + �∗
t �qt� �	t� − �cp + ct�qt� (13)

Theorem 3 provides closed-form solutions for both opti-
mal surplus capacity and sales price during the regular
season. Note that the manufacturer uses the market sig-
nal, hence the advance sales information, to set the optimal
capacity level. Intuitively, the manufacturer is prompted to

build optimal surplus capacity to account for the market
signal accordingly. As a result, the manufacturer’s expected
profit from the remaining customers already takes into con-
sideration the market signal. Hence, the optimal regular
sales prices ps

t do not need to depend on the advance sales
information. To elaborate more on the structure of the opti-
mal prices for the regular selling season, we establish the
following basic properties:

Theorem 4. Suppose that the manufacturer has decided
to stop advance selling in period t. The optimal regular
sales season price satisfies ps

t > cp + ct . Furthermore, ps
t

is increasing in ct� cp, and cu� Consequently, the optimal
capacity level Q∗

t is decreasing in ct� cp, and cu.

This result shows that when setting the selling season
prices, the manufacturer guarantees herself a positive mar-
gin from sales. This margin ensures that the optimal surplus
capacity S∗

t is positive. Intuitively, when the manufacturer
has the ability to set the regular sales price, she would set
the price such that building surplus capacity is profitable.
Furthermore, the higher the costs, the higher the prices
charged to customers. Higher prices reduce demand, and
prompt the manufacturer to build less capacity.
To derive the manufacturer’s optimal stopping policy and

the optimal advance sales prices, we modify the dynamic
programming in §4. For t < T , the functional equation is
given by

Vt�qt� �	t�

=max
{
0�max

pt∈�t

E
�pt −�T −t�cp +ct+1��Dt�pt �qt� �	t�

+�T −t��∗
t+1�qt+1� �	t+1�−�∗

t �qt� �	t���

−�T −t�ct+1−ct�qt +�E
Vt+1�qt+1� �	t+1��
}

(14)

≡max
{
0�max

pt∈�t

�Ht�pt�qt� �	t�+�E
Vt+1�qt+1� �	t+1���
}

(15)

≡max
{
0�max

pt∈�t

Rt�pt�qt� �	t�
}

(16)

≡max�0� 
Ht�qt� �	t��� (17)

and VT � · � · � ≡ 0. The expectations are taken at period t

with respect to �t . �t is a convex set of possible advance
sales prices for each period t. Let pc

t denote the optimal
advance sales price in period t� To state the optimal stop-
ping result, we define if and when 
Ht� · � · � crosses the zero
line. As before, these points are Lt� �	t� and Ut� �	t�� which
are defined as in (9) and (10), respectively.

Theorem 5. The following statements hold for all
t ∈ �1� T �:
1. The function Rt�pt� qt� �	t� is convex in qt for any pt

and �	t .
2. The function 
Ht�qt� �	t� is convex in qt for any �	t .
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3. A state-dependent control-band policy is optimal, i.e.,

u∗
t �qt� �	t� =

⎧⎨
⎩

us� if Lt� �	t�� qt �Ut� �	t�,

uc� if qt < Lt� �	t� or qt > Ut� �	t�.

4. The function Vt�qt� �	t� is convex in qt for any �	t .

This result shows that the structure of the optimal stop-
ping policy for acquiring advance sales information remains
the same when the manufacturer determines advance and
regular sales prices optimally. The actual threshold values,
however, depend on sales prices. Optimal advance sales
prices and thresholds can be determined numerically, for
example, by a backward induction algorithm.

6. Numerical Study
We conduct a numerical study to illustrate the impact
of different operating and market/demand factors on the
advance selling policy and on the manufacturer’s profit
using a specific a market signal function. We base this
analysis on the scenario in which the manufacturer sets
advance and regular sales prices optimally in addition to
the capacity.

6.1. A Specific Market Signal Function

So far, we have characterized the optimal advance selling
policy under a generic market signal function. The manu-
facturer keeps track of the total commitments qt and the
history �	t in order to specify and update the market sig-
nal and demand. Hence, the dimension of the state space
depends on the functional form of ft�qt� �	t�. In certain
cases, it may increase as time progresses, for example,
when one needs to keep track of all past prices. Neverthe-
less, when �	t is a scalar representing summary statistics of
the advance sales information, then the state space is given
by the two-tuple �qt� �	t�, achieving state-space reduction.
Consider the following market signal function, which we
use in our numerical experiments:

ft�qt� �	t� = 1+ �

(
qt − �	t

�	t

)

= �1− �� + �
qt

�	t

for t = 2� � � � � T � (18)

where �	t = ∑t−1
j=1 E
�j �pj

−b and � ∈ 
0�1� is a constant.
Note that given the past prices �p1� � � � � pt−1�, the manu-
facturer’s estimate of the demand for each period t, based
on the information available at time zero, is E
�t�pt

−b.
Hence, before acquiring any advance sales information, i.e.,
at time zero, the manufacturer expects to collect �	t units of
commitments by period t. Note that when the expectation
is taken at time zero, E
ft�qt� �	t�� = 1 for all t and any
price path. Depending on the demand realizations, however,
the actual commitment level qt can exceed or fall below
the expected amount �	t and the market signal fluctuates

around 1. If qt exceeds �	t , the manufacturer has collected
more advance sales than she initially expected, and vice
versa. In consequence, next period’s expected market sig-
nal can be higher or lower than ft�qt� �	t�� The parameter
� ∈ 
0�1� is akin to a smoothing constant in forecasting and
defines the extent of correlation between the market signal
provided by advance sales and future demand. Note that
as the manufacturer continues advance selling, the cumula-
tive commitments and the summary statistics for advance
sales information are updated as qt+1 = qt + dt = qt +
ft�qt� �	t��tp

−b
t and �	t+1 = �	t +E
�t�pt

−b� respectively.10

6.2. Numerical Study Setup

Market Signal and the Predictive Value of Commit-
ments. We use the market signal function ft� · � · � spec-
ified in Equation (18). The extent of correlation between
advance purchase commitments and future demand is mea-
sured through the smoothing constant �. When � = 0,
demand in each period is independent of prior commit-
ments, and as � → 1� the signal provided by the commit-
ments is a very strong indicator of future demand. A strong
dependence between past and future demand could be
observed, for example, in fashion products and the apparel
industry. In contrast a low level of � would likely apply
more to mature consumer products.

Customer Time Preferences. We model �t+1 as an
independent random variable with a distribution identical to
the distribution of �1+k��t for t > 1 and k ∈ �−1�1�. Note
that k (k > −1) is a measure of customers’ time preference
for purchasing decisions. When k > 0 (resp., k < 0), more
customers prefer to purchase later (resp., earlier), indi-
cating a higher (resp., lower) anticipation in the market
for potential shortages in capacity. In other words, when
k > 0 the distribution of the future period’s market potential
�t+1 is stochastically larger than the previous period’s �t .
When k = 0, there is no clear time preference. Hence,
we refer to k as the “late purchase tendency.” We also
model �t as normally distributed random variables with
mean 
�1+k�t−1/

∑T
j=1�1+k�j−1�	 and standard deviation


�1 + k�t−1/
√∑T

j=1�1+ k�2�j−1���� Hence, the total mar-

ket potential
∑T

t=1 �t is normally distributed with mean 	
and � , and it is independent of k�

Capacity Cost. The unit cost of capacity ct is of the
form ct = c0 + �t� where c0 is the base cost of capacity
and � (� � 0) is the measure of how this cost increases as
the sales season is approached. By varying c0 we inves-
tigate the effects of overall cost of capacity, whereas dif-
ferent � values indicate the importance of time in building
capacity.

Price Sensitivity and Set of Advance Sales Prices �t .
The price sensitivity of customers in the model is mea-
sured by the parameter b. The set �t has n > 0 finite num-
ber of prices that are uniformly distributed in the region
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�1 − a�ps
t � �1 + a�ps

t �, where a > 0 and ps
t is defined in

Equation (11), i.e., �t = ��1−a�ps
t � � � � � ps

t � � � � � �1+a�ps
t �.

We include the optimal price for the regular selling sea-
son ps

t among the possible prices to be offered during the
advance selling period. For practical motivations of consid-
ering discrete prices, see Gallego and van Ryzin (1994).

6.3. Measures of Interest

In addition to the optimal policy, the manufacturer can fol-
low two advance selling strategies. One extreme is to set the
regular sales price and capacity in period 1 without advance
selling. We refer to this scenario as the no advance selling
scenario, for which the corresponding expected profit Gno

is given by �T −1�∗
1�0���, where �∗

1�0��� is defined in
Equation (13). The other extreme is to continue advance
selling until the last advance sales period, T − 1. We refer
to this one as the full advance selling scenario. The cor-
responding expected profit Gf is obtained by policy eval-
uation in which the decision ut�qt� �	t� is forced to be uc

instead of choosing the maximum in Equation (17). The
expected optimal profit G∗ is given by V1�0��� in Equa-
tion (14). The difference between the optimal strategy and
the first extreme is the expected value of advance selling
or value of information acquisition. To quantify this value,
we report Ino = 
�G∗ −Gno�/Gno�×100%. The profit differ-
ence between the optimal strategy and the second extreme
is the expected value of knowing when to stop advance sell-
ing or the value of optimal advance selling. To quantify
this measure, we report If = 
�G∗ − Gf �/Gf �×100%. Fig-
ure 1 illustrates the resulting expected profits under optimal
advance selling, no advance selling, and full advance sell-
ing. The resulting percentages are Ino = 10�93% and If =
1�02%. For this example, the expected profit to advance
sell and build capacity later is 50�85, which is larger than
the profit of stopping and building capacity of 45�84 in the
first period. The figure also illustrates the optimal lower
threshold Lt� �	t� as a function of expected commitments
�	t when t = 2. For example, if the manufacturer expects

Figure 1. Expected profits and thresholds for T = 5� 	 = 1�000, � = 80, cu = 2� cp = 3, c0 = 1�2, � = 0�18� k = 0�
b = 2� � = 0�95, � = 0�3, a = 0�1, and n = 7.
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more commitments at the beginning of period two (such
as �	2 = 3) and the quantity committed so far is low (such
as q2 = 2), then it is optimal to continue advance sell-
ing. Note also that the threshold increases with �	2. Intu-
itively, the manufacturer is more likely to continue advance
selling and acquiring information when the expected com-
mitments are high. We note that the upper threshold Ut

was large relative to the Lt and the mean demand, or it
was infinite in our structured numerical study. However, it
is possible to construct cases where both Lt and Ut are
finite, and are relatively close to each other. For example,
when T = 5, cp = 3, cu = 2, c0 = 1�2, � = −0�1, b = 2, 	 =
1�000, � = 80, � = 0�3, � = 1, k = 0, for the pricing policy
� = �4�2�4�1�4�0�3�9�4�65�, the optimal control band for
the second period is L2 = 11�33 and U2 = 24�66� resulting
in optimal expected profit of 18�79� and Ino = 4�06% and
If = 4�78%.

6.4. Effect of the Environment

We quantify the effect of various operating and mar-
ket/demand factors on the optimal advance selling strategy.
In particular, we investigate how these factors affect the
optimal expected profit, the value of advance selling, and
the value of knowing when to stop. We use the following
parameters in the base scenario: T = 5� 	 = 1�000� � =
100, cu = 2� cp = 3, c0 = 1�2, � = 0�3� k = 0� b = 2� � =
0�95� � = 0�3� a = 0�1, and n = 7. For this base case, the
expected optimal profit is G∗ = 48�02, the value of advance
selling is Ino = 4�75%, and the value of knowing when to
stop is If = 4�73%. To have a balanced view, we chose the
base parameter set such that these two measures of value
are equal. We change one parameter at a time while keep-
ing the others constant.

Impact of Overall Market Uncertainty. We test the
effect of the coefficient of variation of the total market
demand potential by varying � ∈ 
40�110�� The results
are illustrated in Figure 2. The expected profit decreases
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Figure 2. The impact of overall market demand variability (�).
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with higher demand variability. This is consistent with
known results for the traditional newsvendor problem. We
also observe that the value of information acquisition (or
advance selling) increases with market uncertainty while
the value of knowing when to stop decreases. Intuitively,
when the market uncertainty is high, the value, of acquiring
information through advance selling is high. Hence, stop-
ping closer to the last period is more likely to be an optimal
policy. In most cases, the two measures If and Ino would
be complements. While one is increasing, the other will be
decreasing. These observations suggest that advance selling
mitigates the adverse effect of demand uncertainty.

Impact of Capacity Cost Structure. Figure 3 illus-
trates the effects of the incremental cost of capacity as
measured by � (i.e., how rapidly cost of building capac-
ity increases as the regular sales season nears). In gen-
eral, increasing capacity construction costs reduces profit.
Note also that the value of information acquisition through
advance selling is also decreasing with �. Essentially,
large � penalizes late construction. If the late construction
is too expensive, the optimal solution is to build capac-
ity sooner rather than later and not to acquire information.

Figure 3. The impact of incremental cost of capacity ���.
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From the above results we conclude that the value of infor-
mation acquisition is greater when time is not a major con-
straint for the manufacturer in building capacity.
Figure 4 illustrates the effects of base capacity cost

c0 (i.e., how expensive capacity cost is in general). Note
that the manufacturer’s profit naturally decreases as capac-
ity becomes more costly, but the reduction in profits is
even higher when the manufacturer does not offer advance
sales. Consequently, the benefit of advance selling actu-
ally increases as base capacity cost increases. These results
show that the value of information acquisition is higher
when capacity is more expensive relative to the penalty cost
of late construction.

Impact of Predictive Value of Commitments. Fig-
ure 5 shows the impact of the predictive value of com-
mitments, as measured by the smoothing parameter ��
Observe that as � increases, the value of advance selling
first increases. However, when � is very high, the com-
mitments send strong signals of future demand, indicating
a potential for high mean and variance. High uncertainty
reduces the expected profit, the value of information acqui-
sition, as well as knowing when to stop. Consequently,
advance selling is most beneficial when the predictive value
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Figure 4. The impact of base capacity cost (c0).
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Figure 5. The impact of predictive value of commitments ���.
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Figure 6. The impact of customer time preferences �k�.
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of commitments is moderate. Note, however, that the abso-
lute scale of changes is quite small.

Impact of Customer Time Preferences. The value of
information acquisition is also related to whether customers
anticipate shortages or not. In the event of potential short-
ages in supply, customers would be more tempted to com-
mit to advance purchases and also to commit earlier in time.
Figure 6 demonstrates the influence of customers’ time

preferences through the late purchase tendency parame-
ter k. As more customers tend to commit earlier (smaller k),
the profit and the value of information acquisition increases.
Figure 6 supports the claim that advance selling yields a
higher benefit when there is more anticipation of capacity
shortages in the market.

Impact of Price Sensitivity. Figure 7 illustrates the
effects of customer price sensitivity. When customers are



Boyacı and Özer: Information Acquisition for Capacity Planning via Pricing and Advance Selling
1340 Operations Research 58(5), pp. 1328–1349, © 2010 INFORMS

Figure 7. The impact of customer price sensitivity �b�.
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more price concerned, the manufacturer’s profitability is
reduced. This results in a lower value of information acqui-
sition. Note also that when the customers are not price sen-
sitive, acquiring information until the last period becomes
more likely. Hence the expected value of knowing when to
stop advance selling decreases. These observations suggest
that low customer price sensitivity is another condition for
maximizing the gains from advance selling.
These numerical results help identify that advance selling

coupled with a let-them-come-and-build-it-later approach is
a profitable strategy, in particular, when (i) demand uncer-
tainty is high, (ii) more customers anticipate capacity short-
ages in the market, (iii) building capacity is expensive but
timing is not a major concern, (iv) commitments have mod-
erate predictive value about market potential, and (v) cus-
tomer price sensitivity is relatively low. We note that, with
these conditions, one can construct cases where the value
of advance selling Ino is arbitrarily high.

6.5. Optimal Prices

To quantify the value of advance selling and the value of
knowing when to stop in the previous section, we compute,

Figure 8. Optimal advance selling and regular season prices.
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for each period, the optimal advance selling price pc
t and

the optimal regular season price ps
t when the manufacturer

decides to stop advance selling.
Figure 8 plots the optimal prices as a function of commit-

ments qt for a given expected commitment level �	t = 2�2
when t = 2. The base data set is the same as in Figure 1.
Note that the optimal market price ps

2 does not depend on
the commitments (Theorem 3). The optimal advance selling
price pc

2, however, is increasing in the number of commit-
ments. This is because having more commitments suggests
a stronger market and allows the manufacturer to charge
higher advance selling prices. Figure 8 also depicts the
evolution of the prices over time for different commitment
levels, qt = 0�7�	t� qt = �	t , qt = 1�3�	t for each t� corre-
sponding to low, medium, and high levels of commitment.
For t = T = 5� the manufacturer is forced to build capacity.
As before, for a given t� pc

t is nondecreasing in qt (high
commitments induce high advance sales prices). Further-
more, both the advance sales prices and the regular sea-
son prices are increasing over time. Finally, note that the
advance sales prices are always lower than the regular sea-
son prices, implying that the customers committing to buy
earlier are garnering discounts.
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Figure 9. Optimal advance sales prices as � changes for qt = 0�7�	t� qt = �	t , and qt = 1�3�	t .
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Figure 9 depicts the optimal advance sales prices as the
incremental cost of building capacity � changes for differ-
ent commitment levels qt = 0�7�	t� qt = �	t , and qt = 1�3�	t .
Note that for any given t where pc

t is not reported, it
is optimal for the manufacturer to stop advance selling
in that period. It is possible to infer from Figure 9 that
for any capacity cost structure, higher levels of commit-
ment, induce the manufacturer to stop advance selling ear-
lier. Generally speaking, increasing the incremental cost of
capacity � results in higher advance selling prices. The
exceptions are due to discretization of the advance selling
price set �t� which are set based on the optimal regu-
lar season price ps

t � When � changes, so does the set of
advance prices considered during that period, which can
result in nonmonotonic results. Consequently, the optimal
advance sales prices can display nonmonotonic behavior
over time as well (although within a fairly restricted range).
We note that the changes in other cost or market parame-
ters have rather predictable effects on optimal prices, and
hence are omitted for brevity.

6.6. Computational Aspects, Algorithmical
Complexity, and a Heuristic

In determining the optimal advance selling prices,
we search n uniformly distributed prices in the range

Figure 10. The impact of price set �.
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�1−a�ps
t � �1+a�ps

t � for each period t� Figure 10 illustrates
the optimal expected profit as a function of the number of
prices n and the price range a. We highlight two observa-
tions. First, the expected profit increases with either factor.
Essentially, increasing n and a is equivalent to relaxing the
constraint set, which in turn increases the optimal expected
profit. Second, note that the marginal return on profit is
decreasing with these factors. For example, when a = 0�1
considering seven or more prices does not change the profit
significantly. Hence, there is a decreasing return to con-
sidering larger price sets, which require significantly more
computational effort.
The algorithm to solve the general case is of complexity

O�nT �, which implies that finding optimal advance and reg-
ular season prices is a computationally expensive task. For
this reason we examined heuristic pricing policies. Recall
that ps

t is the optimal price for the regular sales season when
the manufacturer stops collecting commitments at period
t. Consider a heuristic advance sales pricing policy under
which the manufacturer charges the same price ps

t even
when she continues to collect commitments in period t�
The computational effort required to numerically solve this
heuristic is the same as that of the exogenous pricing case
(i.e., O�T �). We have tested the performance of this heuris-
tic for different values of �, c0, and � and used regression to
compare the heuristic profit to the optimal profit (for details
refer to the electronic companion to this paper). The result-
ing that R2 was close to 1 for all factors, suggesting that
the heuristic can safely be used to investigate the impact of
parameter changes. The average optimality gap across all
experiments was also very small (0�535%).

7. Dynamic Pricing to Sell Capacity
Our objective here is to investigate the tradeoff between
two strategies that mitigate the adverse effect of demand
uncertainty: (1) information acquisition for capacity plan-
ning through advance selling, and (2) revenue manage-
ment of installed capacity through pricing during the regu-
lar sales season. To do so, we study a manufacturer who,
in addition to employing advance selling and pricing to
determine the capacity level, sets prices dynamically to sell
the installed capacity during the regular sales season. The
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manufacturer first acquires information through pricing and
advance selling. When it is optimal to do so, she stops col-
lecting advance sales information and uses this information
to build capacity optimally. During the regular sales sea-
son, the manufacturer sells the installed capacity through
dynamically setting prices. Note that this selling process
combines a strategic pricing and capacity decision with
an operational pricing decision. Hence, the time scale and
periods for a strategic versus tactical level decision could
be different. All actual sales and deliveries take place in
the regular sales season during which the manufacturer is
allowed to adjust prices M times, M � 1.11

In order to solve this problem, we have to embed a
second-stage dynamic program that prescribes the optimal
dynamic pricing policy and the resulting profit during
the regular sales season for a given level of capac-
ity and then determine the optimal capacity level. Since
the manufacturer has M opportunities to adjust prices over
the regular sales season, let At�m� m = 1� � � � �M denote the
random market demand potential she will face in the mth
pricing epoch (or subperiod). We assume that At�ms are
independently distributed IFR random variables with sup-
port on 
0���� Recalling that �t is the remaining demand
potential the manufacturer serves after stopping advance
selling, for logical consistency it is desirable that the dis-
tribution of

∑M
m=1 At�m is the same as the distribution

of �t� Denoting the price charged in the mth epoch as
pT �m, the random demand during the mth pricing epoch
is DT �m�pT �m � qt� �	t� = ft�qt� �	t�At�mp−b

T �m� Note that our
original model corresponds to the case when M = 1� For
a given pricing policy � = �pT �1� � � � � pT �M�, the manufac-
turer’s expected profit from remaining customers during the
regular sales season is

�t�St� qt� �	t ���

=
M∑

m=1

�pT �m − cp�E
min�Sm�DT �m�pT �m � qt� �	t���

− cu E
SM − DT �m�pT �m � qt� �	t��
+

=
M∑

m=1

pT �m E
min�Sm�DT �m�pT �m � qt� �	t���

+ �cp − cu�E
SM − DT �m�pT �m � qt� �	t�� �+ − cpS1

= ft�qt� �	t�

( M∑
m=1

pT �m E
min�sm�At�mp−b
T �m��

+ �cp − cu�E
sM − At�mp−b
T �M�+ − cps1

)

≡ ft�qt� �	t� 
�t�st ����

where we define Sm ≡ St for m = 1� and Sm+1 =

Sm − At�mp−b

T �m�+ for m > 1� and sm ≡ Sm/ft�qt� �	t�. The
second equality holds because total sales during the reg-
ular season plus the remaining capacity equals the total
capacity at the beginning of regular sales season, i.e.,

S1 = ∑M
m=1 min�Sm�DT �m� + 
SM − DT �M�+� The objective

is to solve 
�t�st� = min�∈P 
�t�st � ��, where P denotes the
set of all policies. Finding 
�t�st� involves solving the fol-
lowing dynamic program:


�m
t �sm� =max

pT �m

�pT �m E
min�sm�At�mp−b
T �m��

+E
 
�m+1
t �
sm − At�mp−b

T �m�+���

for 1�m < M� (19)


�M
t �sM� =max

pT �M

�pT �M E
min�sM�At�mp−b
T �M��

+ �cp − cu�E
sM − At�mp−b
T �M�+�� (20)

where the expectation is with respect to the random variable
At�m in each period m� Notice that by definition 
�t�st� ≡

� 1
t �s1�.
The manufacturer’s optimal net profit from remaining

customers when she stops advance selling in period t and
sells the surplus capacity St via dynamic pricing is given by

ft�qt� �	t�

[

�t

(
St

ft�qt� �	t�

)
− �ct + cp�

St

ft�qt� �	t�

]

= ft�qt� �	t�
 
�t�st� − �ct + cp�st�

= ft�qt� �	t�
 
� 1
t �s1� − �ct + cp�s1��

Optimizing over the capacity level also, the manufacturer’s
optimal net profit from remaining customers becomes

�∗
t �qt� �	t� = ft�qt� �	t�
 
�t�s

∗
t � − �ct + cp�s∗

t �

= ft�qt� �	t�
 
� 1
t �s∗

1� − �ct + cp�s∗
1 �� (21)

Defining � ∗
t ≡ 
�t�s

∗
t �− �ct +cp�s∗

t � we have a similar struc-
ture as in Equation (3), i.e., �∗

t �qt� �	t� = ft�qt� �	t��
∗
t � This

implies that all of the preceding results regarding the opti-
mal stopping policy for acquiring advance sales information
hold with the profit �∗

t �qt� �	t� replaced by its new defini-
tion above. We formalize this in the next theorem, which
we state without proof.

Theorem 6. When the manufacturer sells installed capac-
ity by dynamically adjusting prices, the optimal stopping
policy for advance selling is a state-dependent control-band
policy.

The above result establishes the structure of the opti-
mal policy. Yet, computing policy parameters, such as the
optimal prices and thresholds, remains a difficult task.
Essentially, the problem is a two-stage, nested, stochastic
dynamic program with multiple decision epochs and con-
tinuous, multidimensional state spaces. The first stage is
the optimal stopping problem whose solution depends on
the second-stage dynamic program specified in Equations
(19)–(20). Even this second-stage problem is a challenging
one to solve numerically. Monahan et al. (2004) study a
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Figure 11. Multiple pricing opportunities to sell capacity during the regular sales season.
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similar problem as the second-stage DP and report that effi-
cient results can only be obtained when cp = cu� For this
case, they show that 
�m

t �sm� = r∗
m�sm�n� where

r∗
m =max

z

z −E
z − At�m�+ + r∗
m+1E�
z − At�m�+�n

zn
�

s∗
1 =

(
nr∗

1

ct + cp

)b

�


�t�s
∗
t � − �ct + cp�s∗

t = 1− n

n
�ct + cp�

(
nr∗

1

ct + cp

)b

�

where n = 1 − 1/b and r∗
M+1 = 0. Hence, �∗

t �qt� �	t� =
ft�qt� �	t��

∗
t � where � ∗

t = �1− n�/n�nr∗
1 /ct + cp�b.

We use this result to numerically solve the second-stage
dynamic program and embed its solution to the optimal
stopping problem and solve for the optimal advance sales
prices and stopping thresholds. Figure 11 illustrates the
results of a numerical study in which At�m is normally dis-
tributed with same mean and variance across all m. The
parameters of this example are the same as the base set,
except � = 40 and � = 0�2�
Three observations are worth noting. First note that the

expected profit is increasing with the number of pricing
opportunities. The percentage increase in expected profit
between having M = 7 pricing epochs to having one
is 1�25% = �65�83 − 65�02�/65�02. Second, the marginal
increase in profit is decreasing. Third, the expected value
of advance selling is decreasing, but the marginal decrease
is also decreasing. This observation suggests that dynamic
pricing during the regular sales season is only a partial sub-
stitute for dynamic pricing during advance sales periods.
Altogether, these observations suggest that using a small
number of price adjustments or even a single price dur-
ing the regular sales season is reasonably close to optimal,
considering also the fact that such price adjustments are
costly due to transaction costs (e.g., due to advertising new
prices). Similar observations for this second-stage problem
are also reported in Gallego and van Ryzin (1994).

8. Summary and Discussion
In this paper, we study the strategy of obtaining information
about market potential through advance sales for a better
capacity decision. In particular, we consider a manufacturer
who collects revenue and information through advance sell-
ing prior to building capacity. Using advance sales infor-
mation, the manufacturer sets the capacity and satisfies the
remaining demand during the regular season as much as
possible, subject to the available capacity. We establish the
optimal pricing strategy both for the advance and regu-
lar selling seasons and the optimal capacity to build. We
also establish the optimality of a control-band policy that
prescribes when to stop collecting advance sales informa-
tion. This policy is also optimal when prices are set exoge-
nously (e.g., as mark-up or mark-down schedules). Through
a numerical study, we quantify the expected value of this
capacity planning strategy under different market and oper-
ating conditions. We show that advance selling coupled
with a let-them-come-and-build-it-later approach is a prof-
itable strategy, in particular, when (i) demand uncertainty
is high, (ii) more customers anticipate capacity shortages in
the market, (iii) building capacity is expensive but timing
is not a major concern, (iv) commitments have moderate
predictive value about market potential, and (v) customer
price sensitivity is relatively low. We also show that the
extreme strategy of collecting full advance selling informa-
tion or not collecting any information leads to inferior solu-
tions in comparison to the optimal pricing strategy. These
results suggest that the practice of advance selling is of
most value for, e.g., high technology, apparel, and phar-
maceutical industries. For example, telecommunication and
semiconductor industries face high capacity building costs.
They often introduce new products for which the market
uncertainty is also high relative to commodity type prod-
ucts. Finally, we study a scenario in which the manufacturer
continues to sell installed capacity through dynamic pric-
ing. Modeling this scenario bridges the revenue and capac-
ity management literatures. We show that selling capacity
by dynamically adjusting regular sales prices increases the
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expected profit but only to a limited extent. Next, we revisit
a few aspects of our framework.

Other Market Signal Functions. In our numerical
examples we have utilized a specific form of the mar-
ket signal function, which smoothed the predictive value
of cumulative commitments over time. As noted earlier,
it is possible to envision a case where next period’s
expected market signal is the same as the current level
(i.e., E
ft+1�qt+1� �	t+1�� = ft�qt� �	t�) for any selected price
pt . In other words, the evolution of the market signal is
a martingale. This would correspond to an extreme case
where the current market signal is a firm indicator of future
demand, such that the manufacturer expects the current sig-
nal to sustain regardless of the price charged. As an exam-
ple, consider the following scenario where the manufacturer
tracks the value ft of the market signal itself and recur-
sively updates it:

ft = �1− ��ft−1 + �
dt−1

E
�t−1�p
−b
t−1

= �1− ��ft−1 + �ft−1

�t−1

E
�t−1�
� (22)

In this case, the manufacturer needs to know only ft to
update the market signal and the cumulative commitments
qt , to determine its profit and optimal course of action. This
does not suggest, however, that ft is independent of the
qt� As a matter of fact, substituting qt − qt−1 for dt and
accordingly taking �	t = �ft−1� qt−1� pt−1�, Equation (22)
can be stated equivalently as ft�qt� �	t� = �1−��ft−1 +
��qt −qt−1�/�E
�t−1�pt−1

−b�� which is a linear increasing
function of cumulative commitments qt . Also, at time zero,
E
ft�qt� �	t�� = 1 for any given t and price path. Hence,
our structural results on the form of the optimal policy for
acquiring advance sales information apply to this martingale
evolution model as well.
It is also possible to envision a case where the mar-

ket signal depends only on the cumulative commitments
qt and not on past prices or other historical informa-
tion. In this case, the linear increasing signal ft�qt� would
model strictly the “word-of-mouth effect” created by the
cumulative number of early purchasers. This type of depen-
dency of future demand on past sales is a common fea-
ture in new product diffusion models (as in Bass 1969).
This case may occur when the manufacturer announces the
prices privately to each potential customer without reveal-
ing historical information. Residential real estate developers
sometimes use such a selling strategy. Alternatively, such a
market signal function could approximately model a case
where early customers are relatively insensitive to prices.
Our structural results in §§4 and 5 would apply to this
case as well, with the added simplification that the optimal
control-band policies would be state independent.

Connection with Demand Learning Models. Although
there is no formal learning of demand parameters in our
demand model, the functional form of the market signal
makes it applicable to a class of Bayesian models. Bayesian
models of demand learning involve a multiple period hori-
zon whereby the demand in each period follows a known
distribution with an unknown parameter or vector of param-
eters (say, �). There is a known prior distribution of �,
which is updated on the basis of a sufficient statistic �t as
time progresses and demand realizes. For a certain class of
a conjugate family of distributions, �t is cumulative past
sales qt or a function of it, and its effect on the demand
distribution can be factored out as a scaling function in
the same spirit as our market signal function ft� · � · ��
This approach was first used by Scarf (1960) to solve the
dynamic inventory management problem efficiently, and it
was later extended by Azoury (1985). Next we provide
some specific examples to illustrate the applicability of our
framework and results in this setting. We refer the reader to
Azoury (1985) for a full account of the required conditions,
details, and other examples.
Suppose that the market demand potential in each

period �t are independent with distribution �t = kt�, where
kts �

∑T
t=1 kt = 1� are known scalars. Consider the case

kt = 1/T and an exogenous, fixed pricing scheme pt = p
for t = 1� � � � � T � This implies the demands across peri-
ods are independent and distributed identically. When the
distribution belongs to the Gamma family with unknown
scale parameter � that also has a Gamma prior distribu-
tion, cumulative sales qt is the sufficient statistic for updat-
ing demand (hence �	t = � for all t). Furthermore, the
Bayes estimate of demand in period t can be written as
ft�qt�Dt , where ft�qt� = a + qt and a > 0 is a known
constant, and the distribution of Dt only depends on t
(Scarf 1960, Azoury 1985). Notice that ft�qt� is increas-
ing linear in qt . Consequently, our optimal policy results
in §4 apply to this scenario. When kt and pt are noniden-
tical (but still exogenous), defining k′

t = ktp
−b
t , we have

�t = k′
t�, which are independent but no longer identically

distributed. In this case, qt is no longer a sufficient statistic;
it is necessary to know the history of past demand real-
izations (hence qts), causing a significant increase in the
dimensionality of the state space.12 When prices are deci-
sion variables, it becomes necessary to track past prices
that define the scalars k′

t . Nevertheless, given the history of
past prices and commitments, the scaling function can be
expressed as a linear function of qt , which implies that our
state-dependent optimal policy results apply. The details are
deferred to the electronic companion to this paper.

Other Price Functions. In a multiplicative demand
environment, there are alternatives to the iso-elastic price
function d�p� = p−b. This form facilitates the derivation of
unique optimal regular sales prices ps

t in Theorem 3. As
shown in Song et al. (2008), the uniqueness is guaranteed
when the curvature of d�p�� given as d�p��d′′�p�/d′�p�2��
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is increasing in p and is not too large (see their Assump-
tion 2 for details). A large class of price functions, includ-
ing the iso-elastic one, fits into this category. Some other
examples include d�p� = �a − bp���a > 0� b > 0� � > 0�,
d�p� = ae−bp�a > 0� b > 0�� d�p� = a − pb �a > 0� b > 1��
and a − e−bp�a > 0� b > 0�� Hence all the results remain
valid for more general price functions. The only compli-
cation would arise when the installed capacity is sold via
dynamic pricing because the iso-elastic function facilitates
solving the second-stage DP numerically.

Other Pricing Strategies. The flexibility to set
advance and regular sales prices optimally would generate
the highest profits for the manufacturer. However, as also
noted earlier, there are some practical scenarios in which
these prices are predetermined by the manufacturer or the
market. For example, Bitran and Mondschein (1997) dis-
cuss a pricing strategy with announced premiums or dis-
counts. Under this pricing strategy only the initial price p1

is a decision; the remaining prices are pt = �pt−1, where
� > 1 for the announced premium (mark-up pricing) strat-
egy and � < 1 for the announced discount (mark-down
pricing) strategy. Note that for any p1 and �, the result-
ing problem is equivalent to the exogenous pricing case.
Hence the optimal initial p1 and the resulting profit can
be obtained by taking one extra step and searching over
p1 ∈�1 to maximize expected profit.
The area of information acquisition for capacity plan-

ning offers a fertile avenue for future research. This paper
takes a first step toward addressing pricing strategies to
acquire demand information used for capacity planning.
There are other possible research directions. One possibility
is to explore the impact of advance selling when multiple
products can be produced given a flexible capacity or when
product substitution is a possibility. For example, Netessine
et al. (2002) show that one can gain significant benefits if
the capacity decision incorporates the possibility of upward
substitution, i.e., satisfying customer demand by a better
product. We consider the impact of pricing and advance
selling strategy implemented prior to the capacity decision,
whereas they consider the impact of a substitution strategy
implemented after capacity is set. An interesting research
avenue is to investigate the joint effect of both. We leave
these for future research.

9. Appendix. Proofs
We use the notation f�t

and F�t
to denote the pdf and cdf

of distribution �t�

Proof of Theorem 1. The proof is based on an induc-
tion argument. Before the inductive proof we first show
that Ht�qt� �	t� is linear in qt for all t� To do so, we substi-
tute �∗

t �qt� �	t� defined in (3) to Equation (8) and rearrange
terms to derive

Ht�qt� �	t�

=ft�qt� �	t���pt −�T −t�cp +ct+1��E
�t�p
−b
t −�T −t� ∗

t �

+�T −tE
ft+1�qt+1� �	t+1���
∗
t+1−�T −t�ct+1−ct�qt� (23)

The expectation of ft+1� · � · � is with respect to
Dt�pt � qt� �	t�. The third term is linear. As ft�qt� �	t� is lin-
ear, the first term is also linear in qt� Since qt+1 = qt +
ft�qt� �	t��tp

−b
t � by same reason, E
ft+1�qt+1� �	t+1�� is also

linear in qt . This proves the linearity of Ht�qt� �	t�.
To initiate the inductive argument, note for t = T − 1

that 
HT −1�qT −1� �	T −1� = HT −1�qT −1� �	T −1�� which is lin-
ear (and hence convex) in qT −1, proving part 1 for T − 1.
If 
HT −1�qT −1� �	T −1� is increasing in qT −1, then it can
cross zero either once or not at all. In the former case,
LT −1� �	T −1� = −� and UT −1� �	T −1� < �, and it is opti-
mal to continue advance selling if qT −1 > UT −1� �	T −1�� In
the latter case, LT −1� �	T −1� = UT −1� �	T −1� = � and it is
optimal to continue advance selling. If 
HT −1�qT −1� �	T −1�
is decreasing in qT −1, it can again hit zero either once or
not at all. In either case, we have LT −1� �	T −1� < � and
UT −1� �	T −1� = �, and it is optimal to continue advance
selling if qT −1 � LT −1� �	T −1� and stop otherwise. Notic-
ing that the function max�0� x� is increasing convex,
and recognizing that increasing convex transformation of
a convex function is still convex, VT −1�qT −1� �	T −1� =
max�0� 
HT −1�qT −1� �	T −1�� is convex, proving part 3 for
t = T − 1.
Suppose for an induction argument that part 1 is true

for some t + 1 < T − 1� This implies 
Ht+1�·� �	t+1�
can cross zero at most twice and those points are pre-
cisely defined by Lt+1� �	t+1� and Ut+1� �	t+1�. Hence, for
q ∈ 
Lt+1� �	t+1��Ut+1� �	t+1��, we have 
Ht+1�q� �	t+1� <
0, which implies it is optimal to stop advance selling.
Otherwise, it is optimal to continue advance selling, prov-
ing part 2 for t + 1. Since max�0� x� is increasing con-
vex and increasing convex transformation of a convex
function is still convex, Vt+1�q� �	t+1� is convex in q, prov-
ing part 4 for t + 1. To conclude the induction argu-
ment, we show that part 4 for t + 1 implies part 1 for t.
Note that �E�t


Vt+1�qt+1� �	t+1�� is convex because (i) the
update qt+1 = qt + ft�qt� �	t��tpt

−b is increasing convex in
qt , (ii) the composition of increasing convex function is
convex, and (iii) convexity is preserved under expectation.
Since Ht�qt� �	t� is linear, the sum 
Ht�qt� �	t� is also con-
vex, proving part 1 for t. This concludes the induction
argument. �

Proof of Theorem 2. To prove part 1, note that when
ft�qt� �	t� ≡ 1 ∀ t� qt� and �	t , Ht�qt� �	t� in Equation (8) is
independent of �	t and is given as

Ht�qt� = �pt − �T −t�cp + ct+1��E
�t�p
−b
t

− �T −t
�t
∗ − � ∗

t+1� − �T −t�ct+1 − ct�qt�

Hence, if ct+1 > ct for all t� then Ht�qt� is strictly decreas-
ing and linear in qt . Then it is easy to establish induc-
tively that 
Ht�qt� and Vt�qt� are also independent of �	t and
strictly decreasing convex functions of qt . Hence Ut = �
and Lt < � for all t, proving the optimality of state-
independent threshold policy.
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When ct+1 = ct ∀ t� the last term in Ht�qt� also drops.
Consequently, Ht�qt�, 
Ht�qt� and Vt�qt� are all indepen-
dent of qt and equal constants Ht , 
Ht , and Vt , respectively.
Then it is easy to verify that the optimal stopping time for
acquiring advance sales information is the first t ∈ 
1� T �
such that 
Ht = 0�

To prove part 2, recall from Theorem 1 and its proof that
the structure of the policy is driven by Ht�qt� �	t� given in
Equation (23), which is linear in qt . For any t, �	t , and ct ,
for a sufficiently large ct+1� the term in � · � is decreasing
because � ∗

t , defined in (3), does not depend on ct+1. The
second term is also decreasing in qt because � ∗

t+1 is neg-
ative for large ct+1 (the higher the cost of building capac-
ity, the lower will be optimal profit from remaining cus-
tomers), while E
ft+1�qt+1� �	t+1�� does not depend on ct+1.
The last terms are clearly decreasing. As a result, Ht�qt� �	t�
is decreasing in qt . This means that when ct+1 is suffi-
ciently larger than ct�, Ht�qt� �	t� would be decreasing in
qt� Next, one can establish inductively that 
Ht�qt� �	t� and
Vt�qt� �	t� are decreasing convex functions of qt because
this property is preserved under max�0� f �x�� operator.
Hence, Ut� �	t� = � for all t, proving the optimality of state-
dependent threshold policy. �

Proof of Theorem 3. Let pt denote the selling season
price set in period t, and ps

t is optimal value. Clearly, ps
t

maximizes �t�pt� St � qt� �	t� defined in (2) over pt� Substi-
tuting yt ≡ St/�ft�qt� �	t�� in (2), we get

�t�pt� St � qt� �	t� = ft�qt� �	t��̂t�pt� yt�� where

�̂t�pt� yt� = ��pt − cp − ct�yt

− �pt − cp + cu�E
yt − �tp
−b
t �+��

(24)

Hence, maximizing (2) for a given commitment qt and his-
tory �	t boils down to maximizing (24). Recall that since
IFR property is closed under convolutions (Barlow and
Proschan 1975), �t is also IFR, meaning its failure rate
ht�x� = f�t

�x�/�1− F�t
�x�� is increasing. Since �t is IFR,

it also has increasing generalized failure rate (IGFR), i.e.,
xht�x� is also increasing (Lariviere and Porteus 2001).
Song et al. (2008) study the optimal ordering and pricing

problem for a newsvendor with order-up-to level y, retail
price p� purchase cost w, and salvage value b (p > w >
b � 0). They establish (in Theorem 1) the existence of a
unique optimal �y∗� p∗� pair under multiplicative demand
for a large class of demand functions that includes the
iso-elastic function when the distribution of the underlying
uncertainty is IGFR. They derive the optimal pair �y∗� p∗�
sequentially, i.e., they first determine the unique optimal
price p�y� for a given y and then derive the unique opti-
mal y∗ and resulting p∗� Observe that (24) is equivalent to
the standard newsvendor function with p = pt , w = cp +ct ,
and b = cp − cu. Hence, their result applies as long as pt >
cp + ct > cp − cu � 0� Note that the second inequality is
immediately satisfied. Consequently, when cp � cu and the
first inequality holds, (24) has a unique optimal �y∗

t � ps
t ��

Next we show that the first inequality is true for a candidate
optimal stocking level and price pair and hence the pair is
also the unique maximizer.
To do so, it is convenient to conduct the stocking factor

transformation (Petruzzi and Dada 1999) zt = yt/p−b
t and

hence write (24) equivalently as

�̂t�pt� zt� = p−b
t ��pt − cp − ct�zt

− �pt − cp + cu�E
zt − �t�
+�� (25)

For a fixed zt , taking the derivative of (25), we obtain after
some manipulation

��̂t�pt� zt�

�pt

= �b − 1�p−�b+1�
t �zt −E
zt − �t�

+�

·
{

b

b − 1

(
cp + ctzt + cu E
zt − �t�

+

zt −E
zt − �t�
+

)
−pt

}
� (26)

Setting the derivative to zero and solving for pt yields the
unique optimal price

pt�zt� =
(

b

b − 1

)(
cp + ctzt + cu E
zt − �t�

+

zt −E
zt − �t�
+

)

as in (11) because pt�zt� > cp + ct for all zt � 0. Substitut-
ing pt�zt� in (25) results in

�̂t�zt� = �̂t�pt�zt�� zt�

= 1
b

pt�zt�
−�b−1��zt −E
zt − �t�

+�� (27)

Taking the derivative of (27) we get

��̂t�zt�

�zt

=pt�zt�
−b�1−F�t

�zt��

{
�pt�zt�−cp +cu�−

ct +cu

1−F�t
�zt�

}
�

Hence z∗
t is the unique solution of �pt�zt� − cp + cu� −

�ct + cu�/�1 − F�t
�zt�� = 0 as stated in the theorem, and

ps
t = pt�z

∗
t �.

By definition S∗
t = ft�qt� �	t�z

∗
t �p

s
t �

−b, so that Q∗
t =

qt +S∗
t � Substituting z∗

t in (27) results in � ∗
t given by (12)

and �∗
t �qt� �	t� = ft�qt� �	t��

∗
t � Hence, �∗

t �qt� �	t� =
�t�p

s
t � S∗

t � qt� �	t� = ∑t−1
k=1 pkdk − �cp + ct�qt +

ft�qt� �	t��
∗
t � �

Proof of Theorem 4. Note that ps
t > cp + ct follows

directly from (11) in Theorem 3, since b/�b − 1� > 1 and
zt/�zt − E
zt − �t�

+� > 1� In order to prove the remaining
results, it is convenient to change the order of optimization
of the profit function �̂t�pt� zt� given by (25). Suppose that
pt is fixed. Let zt�pt� denote the corresponding optimal
stocking factor, which is given uniquely by the equation

P��t > zt� = ct + cu

pt − cp + cu

� (28)
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Substituting zt�pt� into �̂t�pt� zt�, we can write

��̂t�pt� zt�pt��

�pt

= ��̂t�pt� zt�

�pt

+ ��̂t�pt� zt�

�zt

�zt

�pt

at zt = zt�pt�� Noting that the second term in
���̂t�pt� zt�pt���/�pt equals zero at zt = zt�pt�� it follows
from (26) that the optimal price ps

t is given as the unique
solution to(

b

b−1

){
cp + ctzt�pt�+cuE
zt�pt�−�t�

+

zt�pt�−E
zt�pt�−�t�
+

}
−pt =0� (29)

Furthermore, for pt < ps
t , the left-hand side of (29) is

positive and for pt > ps
t , it is negative.

We first characterize the change in the optimal stock-
ing factor (28) and then the resulting change in (29). This
enables us to prove the impact on optimal price ps

t . From
the joint effect, we can then establish the effect on opti-
mal capacity level Q∗

t = qt + ft�qt� �	t�z
∗
t �p

s
t �

−b. The proof
for each cost element (cp� ct� cu) follows identical logic
and intermediate steps. For this reason, in order to avoid
repetition, we provide a detailed proof for only one of
them, namely the production cost cp� Taking derivatives
with respect to cp, for a fixed pt , we have �zt�pt�/�cp =
−�ct + cu/��pt − cp + cu�

2f�t
�zt�pt��� < 0� Let

Õ�pt� = cp + ctzt�pt� + cuE
zt�pt� − �t�
+

zt�pt� − E
zt�pt� − �t�
+ �

Note from (29) that ps
t is increasing in cp if �Õ�pt�/

�cp > 0�

�Õ�pt�

�cp

=1+�ct +cu�
zt�pt�F�t

�zt�pt��−E
zt�pt�−�t�
+

�zt�pt�−E
zt�pt�−�t�
+�2

�zt�pt�

�cp

�

=1−
(

ct +cu

pt −cp +cu

)2 zt�pt�F�t
�zt�pt��−E
zt�pt�−�t�

+

f�t
�zt�pt���zt�pt�−E
zt�pt�−�t�

+�2
�

=1− �1−F�t
�zt�pt���

2

f�t
�zt�pt��

zt�pt�F�t
�zt�pt��−E
zt�pt�−�t�

+

�zt�pt�−E
zt�pt�−�t�
+�2

�

The last equality is from (28). Notice that

�1− F�t
�zt�pt���

2

f�t
�zt�pt��

zt�pt�F�t
�zt�pt�� − E
zt�pt� − �t�

+

�zt�pt� − E
zt�pt� − �t�
+�2

<
�1− F�t

�zt�pt���
2

f�t
�zt�pt��

F�t
�zt�pt��

zt�pt� − E
zt�pt� − �t�
+

< 1− F�t
�zt�pt�� < 1�

The first inequality is evident. The second one is obtained
by bounding the function zt − E
zt − �t�

+ using the fact
that �t is IFR. In particular,

zt −E
zt −�t�
+ =

∫ zt

0
�1−F�t

�u��du�
�1−F�t

�zt��

f�t
�zt�

F�t
�zt��

Consequently, �Õ�pt�/�cp > 0� and hence ps
t is increasing

in cp� With this result, using implicit differentiation on (29),
it is easy to verify that �ps

t /�cp > 1� which immediately
implies (from (28)) that �z∗

t /�cp < 0� Since ps
t is increasing

and z∗
t is decreasing, Q∗

t is decreasing in cp. �

Proof of Theorem 5. Similar to the proof of Theorem 1,
first note that Ht�pt� qt� �	t� in Equation (15) is linear
in qt for a given pt and �	t . The rest of the proof is
based on an induction argument. For t = T − 1, note
that RT −1�pT −1� q� �	T −1� = HT −1�pT −1� q� �	T −1� which
is linear in q, proving part 1 for T − 1. This implies
that if HT −1�pT −1� q� �	T −1� is increasing (resp., decreas-
ing) in q then RT −1�pT −1� q� �	T −1� is also increasing
(resp., decreasing) in q. Next we show that this implies

HT −1�q� �	T −1� is also increasing (resp., decreasing) in q.
Define q1 < q2 and let p1 ≡ argmaxp RT −1�p� q1� �	T −1�
and p2 ≡ argmaxp RT −1�p� q2� �	T −1�. When RT −1�p� q�

�	T −1� is decreasing in q, we have 
HT −1�q2� �	T −1� =
RT −1�p2� q2� �	T −1� < RT −1�p2� q1� �	T −1� < RT −1�p1� q1�
�	T −1� = 
HT −1�q1� �	T −1�. Hence, 
HT −1�q� �	T −1� is also
decreasing in q. When RT −1�p� q� �	T −1� is increasing
in q, we have 
HT −1�q1� �	T −1� = RT −1�p1� q1� �	T −1� <
RT −1�p1� q2� �	T −1� < RT −1�p2� q2� �	T −1� = 
HT −1�q2�
�	T −1�. Hence 
HT −1�q� �	T −1� is also increasing in q. This
implies parts 3 and 4 for T − 1 along the same arguments
as in the proof of Theorem 1.
Next, suppose for an induction argument that Part 1 is

true for t. This implies part 2 because convexity is pre-
served under maximization (Porteus 2002, p. 226). Hence,
given �	t


Ht�q� �	t� can cross zero at most twice, and those
points are given precisely as Lt� �	t� and Ut� �	t�� From con-
vexity, it follows also that 
Ht�q� �	t� � 0 on Lt� �	t� � q �

Ut� �	t�, in which case it is optimal to stop advance selling.
Otherwise, it is optimal to continue advance selling, prov-
ing part 3. Noting that the function max�0� x� is increasing
convex, and increasing convex transformation of a con-
vex function is still convex, Vt�q� �	t� =max�0� 
Ht�q� �	t��
is also convex, proving part 4 for t. To complete the
proof, we show that part 4 for t implies part 1 for t − 1.
Note that qt = qt−1 + ft−1�qt−1� �	t−1��t−1p

∗
t−1

−b is linear
increasing in qt−1� Hence, �E
Vt�qt� �	t�� is also convex in
qt−1. Since Ht−1�pt−1� qt−1� �	t−1� is linear in qt−1, the sum
Rt−1�pt−1� qt−1� �	t−1� is also convex in qt−1, proving part 1
for t − 1 and concluding the induction argument. �

10. Electronic Companion
An electronic companion to this paper is available as part
of the online version that can be found at http://or.journal
.informs.org/.

Endnotes
1. During September 2002, Christer Lundberg from Eric-
sson presented an advance selling strategy for long range
forecasting during the Ericsson Supply Chain Academy
Conference in Sweden.
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2. This information could be the vector of past prices p̄t ≡
�p1� � � � � pt−1� offered up until that period or some function
of them. It could also include any other relevant informa-
tion excluding qt .
3. Linear increasing means that higher commitments signal
the potential for stronger future demand. For example,
Carlson (1983) studies apparel sales data of a department
store and shows that given the regular and mark-down
prices, the post-mark-down sales rate is a linear function
of the pre-mark-down sales rate. Some Bayesian learning
models satisfy this assumption as well.
4. Note that E
ft�qt� �	t�� can be equal to any constant.
Without loss of generality, we take the constant to be 1.
5. Similarly, its expected value E
ft+1�qt+1� �	t+1�� taken at
time t can be higher than, lower than, or equal to ft�qt� �	t�.
This models a scenario where the current market signal is
only a partial determinant of (expected) future demand. In
the more extreme case, E
ft+1�qt+1� �	t+1�� = ft�qt� �	t� for
any price pt , which models a scenario where the predictive
value of the current market signal is very strong. In this
case the manufacturer expects the current signal to sustain
at the same level, regardless of the price charged.
6. The specification of 
� · � depends on the definition of
�	t . For example, it may not be necessary to know both pt

and dt to update �	t .
7. The manufacturer can also ensure positive return from
advance purchasers by requiring prices to be such that pt �

cp +maxt=1� ���� T �ct� for all t� This assumption, however, is
not required for our analysis.
8. A constant � implies that the discount factor is station-
ary over time and the length of the periods are not too
different. Otherwise, period-specific discount factors �t can
be used.
9. We remark that the optimal policy remains as a control-
band when predictive value is very strong, i.e., when expec-
tation E
ft+1�qt+1� �	t+1�� taken at time period t equals
ft�qt� �	t� for any price path.
10. Note that the market signal can also be expressed recur-
sively, i.e.,

ft+1�qt+1� �	t+1� = ft�qt� �	t� + ��tp
−b
t �ft�qt� �	t��	t − qt��

We observe that when qt > �	t (which implies ft�qt� �	t�
> 1), the next period’s expected market signal E
ft+1�qt+1�
�	t+1�� is still larger than 1 but is less than ft�qt� �	t�. Hence,
although the manufacturer has sold more than she initially
expected, she does not necessarily expect the future demand
to arrive at exactly the same strength. In other words, there
is smoothing of the advance sales information provided by
the market signal function, the extent of which is deter-
mined by �� The opposite scenario qt < �	t can be inter-
preted similarly.
11. An alternative way to model is to assume that the man-
ufacturer can change prices in periods t + 1� � � � � T where
t is the stopping time. Our structural results remain valid
under this model as well.

12. The sufficient statistics is �t =∑t−1
j=1�dj/k′

j �, where dj

is the realized demand in period j� and the scaling func-
tion is given as k′

t�a + �t�� Since dj = qj+1 − qj� taking
�	t = �q1� � � � � qj−1�� �t and hence the scaling function can
be stated equivalently as a linear increasing function of qt�
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Performance of the Heuristic Pricing Policy

We test the performance of this heuristic by comparing the resulting expected profit to that of

optimal pricing policy. To do so, we test nine settings for each δ, c0 and σ and report the resulting

profits and the optimality gap ε in Table 1. Let Gh be the optimal expected profit under the heuristic

pricing strategy. We use regression to compare Gh to the optimal profit G∗ and report the R2.

δ G∗ Gh ε(%) c0 G∗ Gh ε(%) σ G∗ Gh ε(%)
0.18 50.852 50.490 0.713 0 65.061 64.827 0.360 30 49.120 48.921 0.405
0.21 49.977 49.642 0.670 0.4 58.088 57.807 0.483 40 48.900 48.684 0.440
0.24 49.223 48.896 0.664 0.8 52.527 52.250 0.529 50 48.68 48.477 0.415
0.27 48.587 48.275 0.642 1.2 48.019 47.738 0.586 60 48.459 48.210 0.513
0.30 48.019 47.738 0.586 1.6 44.270 43.988 0.637 70 48.218 47.973 0.508
0.33 47.518 47.265 0.533 2.0 41.068 40.818 0.609 80 48.019 47.738 0.586
0.36 47.087 46.853 0.497 2.4 38.362 38.106 0.664 90 47.801 47.505 0.619
0.39 46.714 46.493 0.472 2.8 35.986 35.762 0.624 100 47.557 47.276 0.592
0.42 46.379 46.171 0.449 3.2 33.938 33.704 0.690 110 47.344 47.050 0.620
R2 = 99.99%, c0 = 2, σ = 80 R2 = 100%, δ = 0.03, σ = 80 R2 = 99.95%, δ = 0.03, c0 = 2

Table 1: Performance of the heuristic pricing policy

Connection with Demand Learning Models

Consider the following demand learning setting which is suitable to our decision problem and frame-

work. The market demand potential in each period is given as ξt ≡ ktξ for t = 1, ..., T, where ξ’s

in each period are iid, k′ts are known scalars, and hence ξt are independent random variables. One

practical way to interpret this setup is to think of ξ as the total random market size and kt the

fraction of customers who potentially buy in period t (in this case it makes sense to have
∑
kt = 1).

Let dt(pt) denote the deterministic price function, which captures the effects of prices. Although any
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function can be used, to be able to make parallels with our framework, suppose that dt(pt) = p−bt .

As a result, the distribution of demand in each period is given as dt(pt)ξt ≡ dt(pt)ktξ ≡ mt(pt)ξ.

Suppose that the distribution of ξ is unknown but belongs to a gamma distribution with unknown

scale parameter ω. The density of ξ for a fixed value of ω is: φ(z|ω) = ωλzλ−1e−ωz

Γ(λ) , λ > 0, z ≥ 0.

Suppose that the scale parameter ω itself has a gamma prior distribution g(ω) = baωa−1e−bω

Γ(a) , a, b >

0, ω ≥ 0, and the firm updates its information in a Bayesian manner over time as demand realizes.

Let dt denote the realized demand in period t. It is well-known from Scarf (1960) and Azoury

(1985) that the sufficient statistic St for updating the demand distribution is St =
∑t−1

j=1
dj

mj(pj)
.

Furthermore, the Bayesian estimate (i.e., posterior distribution) of demand in period t has density

φt(d|St) =
Γ(a+ λt)(b+ St)a+λ(t−1)(d/mt(pt))λ−1

mt(pt)Γ(λ)Γ(a+ λ(t− 1))(b+ St + d/mt(pt))a+λt
.

Furthermore, φt(d|St) = 1
ϕt(St)ψt(d/ϕt(St)), where ϕt(St) = mt(pt)(b + St) and ψt(u) = (Γ(a +

λt)uλ−1)/(Γ(λ)Γ(a + λ(t − 1))(1 + u)a+λt). The above states that ϕt(St) is a function that scales

random demand. Let Dt(pt|St) denote the random demand each period given the sufficient statistic

St. We have

Dt(pt|St) = ϕt(St)D̃t = mt(pt)(b+ St)D̃t, (30)

where the distribution of D̃t (given by ψt(u)) only depends on t. If the firm decides to stop ad-

vance selling in period t, then there is no more learning, so the demand distribution does not get

updated. For any given selling season price p, the remaining demand in the market is Xt(p|St) =∑T
j=tDj(p|St) = (b+ St)

∑T
j=tmj(p)D̃j , where D̃j ’s are iid with distribution given by ψt(u).

The demand function in (30) is consistent with our market signal based demand framework.

In particular, the function (b + St) is akin to our market signal function ft(qt, µ̄t). In fact, since

qt =
∑t−1
j=1 dj, we can write St as a function of qt and define ft(qt, µ̄t) accordingly. This would require

the knowledge of the entire past sequence of dj for j = 1, .., t−1. Hence the history µ̄t would contain

qj and pj for j = 1, ...t − 1, (hence mj(pj) will also be known). 14 This follows because S1 = 0,

S2 = q2
m1(p1) , . . . , St = qt

mt−1(pt−1) +
∑t−2
i=1 qt−i

(
1

mt−i−1(pt−i−1) −
1

mt−i(pt−i)

)
for t ≥ 2. Consequently,

for t = 1, q1 ≡ 0, µ̄1 ≡ ∅, f1(q1, µ̄1) ≡ 1, and for t ≥ 2, we have ft(qt, µ̄t)

ft(qt, µ̄t) = b+
qt

mt−1(pt−1)
+

t−2∑
i=1

qt−i

(
1

mt−i−1(pt−i−1)
− 1
mt−i(pt−i)

)
(31)

14Note that state space reduction is possible if the manufacturer tracks the value ft of the market signal itself. In

this case, the manufacturer would need (ft,dt, pt) to update the market signal and qt to determine the profit and the

optimal course of action.
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Observe that ft(qt, µ̄t) is linear increasing in qt given the history µ̄t. Hence the demand function given

by (30) can be equivalently stated as Dt(pt|qt, µ̄t) = ft(qt, µ̄t)p−bt
(
ktD̃t

)
, which is has the same form

as our demand model. Furthermore, when the firm stops advance selling in period t, the remaining

demand can be stated as Xt(pt|qt, µ̄t) = ft(qt, µ̄t)p−bt
∑T
j=t

(
kjD̃j

)
. Defining χt ≡

∑T
j=t

(
kjD̃j

)
, we

have, as in our framework Xt(pt|qt, µ̄t) = ft(qt, µ̄t)p−bt χt.
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