Sliding bifurcations of limit cycles - derivation of canonical forms

Piotr Kowalczyk

CICADA, School of Mathematics, University of Manchester

Workshop on Resonance Oscillations and Stability of Nonsmooth Systems, London 2009
Outline

1 Introduction
 - Filippov systems
 - Sliding bifurcations of limit cycles

2 Grazing-sliding – Analysis
 - Grazing-sliding, conditions
 - Map derivation

3 Grazing-sliding in 3-dimensional Filippov type flows

4 Example

5 Summary
Consider Filippov systems (dynamical systems governed by discontinuous but piecewise smooth ordinary differential equations) of the form

\[
\dot{x} = \begin{cases}
 f_+(x, \mu), & \text{if } h(x, \mu) \geq 0, \\
 f_-(x, \mu), & \text{if } h(x, \mu) < 0
\end{cases}
\]

\[f_+, f_- : \mathbb{R}^N \times \mathbb{R} \rightarrow \mathbb{R}^N\] and \[h : \mathbb{R}^N \times \mathbb{R} \rightarrow \mathbb{R}\]
Consider Filippov systems (dynamical systems governed by discontinuous but piecewise smooth ordinary differential equations) of the form

\[
\dot{x} = \begin{cases}
 f_+(x, \mu), & \text{if } h(x, \mu) \geq 0, \\
 f_-(x, \mu), & \text{if } h(x, \mu) < 0
\end{cases}
\]

\(f_+, f_- : \mathbb{R}^N \times \mathbb{R} \rightarrow \mathbb{R}^N\) and \(h : \mathbb{R}^N \times \mathbb{R} \rightarrow \mathbb{R}\)

The boundary \(\mathcal{H}_s := \{h(x, \mu) = 0\}\) is termed as the switching manifold.
On \mathcal{H}_s we observe switching between f_- and f_+ (or *vice versa*) or *sliding* (see Figure)
system evolution on \mathcal{H}_s is termed as sliding; sliding motion is governed by the vector field $f_s = \alpha f_+ + (1 - \alpha)f_-$, $0 \leq \alpha(x) \leq 1$
Denote the boundaries of the region where sliding is possible by $\partial \hat{\Sigma}^{\pm}$.
Denote the boundaries of the region where sliding is possible by $\partial \hat{\Sigma}^\pm$.

Suppose that there exists a limit cycle, say $L(x, \mu)$, built from one or distinct segments generated by vector fields f_+, and/or f_-, and/or f_s.
Denote the boundaries of the region where sliding is possible by $\partial \hat{\Sigma}^\pm$

Suppose that there exists a limit cycle, say $L(x, \mu)$, built from one or distinct segments generated by vector fields f_+, and/or f_-, and/or f_s

Suppose that under the variation of μ at some μ^* the limit cycle generated by f_+, or f_-, or f_s has one point $x^* \in \partial \hat{\Sigma}^\pm$, or the limit cycle built from distinct segments switches between f_+ and f_- (or f_+ and f_-), at one point $x^* \in \partial \hat{\Sigma}^\pm$.
Denote the boundaries of the region where sliding is possible by \(\partial \Sigma^\pm \)

Suppose that there exists a limit cycle, say \(L(x, \mu) \), built from one or distinct segments generated by vector fields \(f_+ \), and/or \(f_- \), and/or \(f_s \)

Suppose that under the variation of \(\mu \) at some \(\mu^* \) the limit cycle generated by \(f_+ \), or \(f_- \), or \(f_s \) has one point \(x^* \in \partial \Sigma^\pm \), or the limit cycle built from distinct segments switches between \(f_+ \) and \(f_- \) (or \(f_+ \) and \(f_- \)), at one point \(x^* \in \partial \Sigma^\pm \). Then we say that the limit cycle undergoes a codimension one sliding bifurcation.
Denote the boundaries of the region where sliding is possible by $\partial \hat{\Sigma}^\pm$

Suppose that there exists a limit cycle, say $L(x, \mu)$, built from one or distinct segments generated by vector fields f_+, and/or f_-, and/or f_s

Suppose that under the variation of μ at some μ^* the limit cycle generated by f_+, or f_-, or f_s has one point $x^* \in \partial \hat{\Sigma}^\pm$, or the limit cycle built from distinct segments switches between f_+ and f_- (or f_+ and f_-), at one point $x^* \in \partial \hat{\Sigma}^\pm$. Then we say that the limit cycle undergoes a codimension one sliding bifurcation

We can distinguish between four different cases of codimension-one sliding bifurcations of limit cycles
Sliding bifurcations of limit cycles

Sliding bifurcations – different case

- **Crossing-sliding**
 - Flow transitions from one surface to another.
- **Switching-sliding**
 - Flow switches between surfaces.
- **Grazing-sliding**
 - Flow grazes along a boundary.
- **Adding-sliding**
 - Flow adds to a surface from another.
At grazing-sliding point \mathbf{x}^* the following conditions have to hold

(i) $H(\mathbf{x}^*, \mu^*) = 0$,

$$H(\mathbf{x}^*, \mu^*) = 0.$$
At grazing-sliding point x^* the following conditions have to hold

(i) $H(x^*, \mu^*) = 0$,

(ii) $H_x F_1(x^*, \mu^*) = 0$,

\[x_f \quad PDM \quad x_s \]
Grazing-sliding, conditions

Grazing-sliding

At grazing-sliding point \mathbf{x}^* the following conditions have to hold

(i) $H(\mathbf{x}^*, \mu^*) = 0$,
(ii) $H_x F_1(\mathbf{x}^*, \mu^*) = 0$,
(iii) $(H_x F_1)_x F_1(\mathbf{x}^*, \mu^*) > 0$,

\[\mathbf{x}^* \]
Grazing-sliding

At grazing-sliding point \mathbf{x}^* the following conditions have to hold

(i) $H(\mathbf{x}^*, \mu^*) = 0$,
(ii) $H_x F_1(\mathbf{x}^*, \mu^*) = 0$,
(iii) $(H_x F_1)_x F_1(\mathbf{x}^*, \mu^*) > 0$,
(iv) $\frac{\partial H(P(\mathbf{x},\mu))}{\partial \mu} < 0$, where $P : \Pi \hookrightarrow \Pi$ (ignoring the switching).
The PDM is computed as a map from $\Pi := \{H_x F_1(x) = 0\}$ back to itself. Define $H(x) + y^2 = 0$.
The PDM is computed as a map from $\Pi := \{H_x F_1(x) = 0\}$ back to itself. Define $H(x) + y^2 = 0$.

The PDM map is computed as the following composition of flows

$$\text{PDM}(x) = \phi_s(\phi_1(x, \delta), s)$$

where δ (negative) can be found by solving $H(\phi(x, \delta)) = 0$ and expressed as a power series in y. We then solve $H(\phi_s(\phi_1(x, \delta), s))F_1(\phi_s(\phi_1(x, \delta), s)) = 0$ for s (s is positive).
Map derivation

- The PDM is computed as a map from \(\Pi := \{ H_x F_1(x) = 0 \} \) back to itself. Define \(H(x) + y^2 = 0 \).
- The PDM map is computed as the following composition of flows

\[
PDM(x) = \phi_s(\phi_1(x, \delta), s)
\]

where \(\delta \) (negative) can be found by solving \(H(\phi(x, \delta)) = 0 \) and expressed as a power series in \(y \). We then solve \(H(\phi_s(\phi_1(x, \delta), s))_x F_1(\phi_s(\phi_1(x, \delta), s)) = 0 \) for \(s \) (\(s \) is positive).

- To leading order we have

\[
PDM(x) = \begin{cases}
 x & \text{for } H(x) \geq 0, \\
 x - H(x)(C_0F_2(x^*) - C_1F_1(x^*)) & \text{for } H(x) < 0.
\end{cases}
\]
The map $P(x, \mu)$ can be approximated by an affine map P_A

$$P_A = Ax + B\mu,$$

where A is an $n \times n$ matrix, and it is characterized by the full rank, and B is a $1 \times n$ column vector (assume $(x^*, \mu^*) = (0, 0)$)
The map $P(x, \mu)$ can be approximated by an affine map P_A

$$P_A = Ax + B\mu,$$

where A is an $n \times n$ matrix, and it is characterized by the full rank, and B is a $1 \times n$ column vector (assume $(x^*, \mu^*) = (0, 0)$)

Composing the map P_A with the PDM gives a map, say P_F, that captures the system dynamics about grazing-sliding
The map $P(x, \mu)$ can be approximated by an affine map P_A

$$P_A = Ax + B\mu,$$

where A is an $n \times n$ matrix, and it is characterized by the full rank, and B is a $1 \times n$ column vector (assume $(x^*, \mu^*) = (0, 0)$).

Composing the map P_A with the PDM gives a map, say P_F, that captures the system dynamics about grazing-sliding

$$P_F(x, \mu) = \begin{cases}
Ax + B\mu & \text{for } H(x) \geq 0, \\
A(I - F_C H_x)x + B\mu & \text{for } H(x) < 0
\end{cases}$$

$F_C = F_2(x^*)C_0 - C_1F_1(x^*)$ or $F_C = F_2(x^*)C_0$ (for non-autonomous systems)
Consider 3-dimensional Filippov type system where a limit cycle undergoes a grazing-sliding bifurcation at \((x^*, \mu^*) = (0, 0)\), and the grazing cycle is generated by \(F_1\).
Consider 3-dimensional Filippov type system where a limit cycle undergoes a grazing-sliding bifurcation at \((x^*, \mu^*) = (0, 0)\), and the grazing cycle is generated by \(F_1\).

Choose the coordinate system \((x, y, z)\) such that \(H(x) = x\) and the Poincaré section \(\Pi\) is given by \(H_x F_1(x) = 0 = y\).
Consider 3-dimensional Filippov type system where a limit cycle undergoes a grazing-sliding bifurcation at $(x^*, \mu^*) = (0, 0)$, and the grazing cycle is generated by F_1.

Choose the coordinate system (x, y, z) such that $H(x) = x$ and the Poincaré section Π is given by $H_x F_1(x) = 0 = y$.

Then using the formula for the PDM it can be expressed as

$$PDM(x, z) = \begin{cases}
\begin{pmatrix} x \\ 0 \\ Cx + z \end{pmatrix} & \text{for } x \geq 0, \\
0 & \text{for } x < 0.
\end{cases}$$
Consider 3-dimensional Filippov type system where a limit cycle undergoes a grazing-sliding bifurcation at \((x^*, \mu^*) = (0, 0)\), and the grazing cycle is generated by \(F_1\).

Choose the coordinate system \((x, y, z)\) such that \(H(x) = x\) and the Poincaré section \(\Pi\) is given by \(H_x F_1(x) = 0 = y\).

Then using the formula for the PDM it can be expressed as

\[
PDM(x, z) = \begin{cases}
 x & \text{for } x \geq 0, \\
 0 & \text{for } x < 0.
\end{cases}
\]

The affine map \(P_A : \Pi \mapsto \Pi\) can be written as

\[
P_A(x, z; \mu) = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} x \\ z \end{pmatrix} + \mu \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}
\]

where \(a_{11}, a_{12}, a_{21}, a_{22}, b_1, b_2\) are arbitrary but fixed constants and the coefficient matrix is full rank and \(b_1\) is non-zero.
Composing \(PDM \) and \(P_A \) and scaling \(\mu \) gives

\[
G(x, z) = \begin{cases}
\left(\begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array} \right) \left(\begin{array}{c} x \\ z \end{array} \right) + \mu \left(\begin{array}{c} 1 \\ 0 \end{array} \right) & \text{for } x \geq 0, \\
\left(\begin{array}{cc} a_{21} C & a_{21} \\ a_{22} C & a_{22} \end{array} \right) \left(\begin{array}{c} x \\ z \end{array} \right) + \mu \left(\begin{array}{c} 1 \\ 0 \end{array} \right) & \text{for } x < 0.
\end{cases}
\]
Composing $P_{D M}$ and P_A and scaling μ gives

\[
G(x, z) = \begin{cases}
\begin{pmatrix}
 a_{11} & a_{12} \\
 a_{21} & a_{22}
\end{pmatrix}
\begin{pmatrix}
 x \\
 z
\end{pmatrix}
+ \mu \begin{pmatrix}
 1 \\
 0
\end{pmatrix}
& \text{for } x \geq 0, \\
\begin{pmatrix}
 a_{21} C & a_{21} \\
 a_{22} C & a_{22}
\end{pmatrix}
\begin{pmatrix}
 x \\
 z
\end{pmatrix}
+ \mu \begin{pmatrix}
 1 \\
 0
\end{pmatrix}
& \text{for } x < 0.
\end{cases}
\]

Alternative form of the full map is given by

\[
g(\tilde{x}, \tilde{z}) = \begin{cases}
\begin{pmatrix}
 \tilde{a}_{11} & 1 \\
 \tilde{a}_{21} & 0
\end{pmatrix}
\begin{pmatrix}
 \tilde{x} \\
 \tilde{z}
\end{pmatrix}
+ \mu \begin{pmatrix}
 1 \\
 0
\end{pmatrix}
& \text{for } \tilde{x} \geq 0, \\
\begin{pmatrix}
 \tilde{a}_{12}' & 1 \\
 0 & 0
\end{pmatrix}
\begin{pmatrix}
 \tilde{x} \\
 \tilde{z}
\end{pmatrix}
+ \mu \begin{pmatrix}
 1 \\
 0
\end{pmatrix}
& \text{for } \tilde{x} < 0.
\end{cases}
\]

in this case $\{\tilde{x} = 0\}$ does not correspond to the switching surface.
Consider a Filippov type system of the form

\[\ddot{x} + x = \alpha_4 \cos(\omega t) + \alpha_1 \text{sgn}(1 - \dot{x}) + \alpha_2 (1 - \dot{x}) - \alpha_3 (1 - \dot{x})^3. \]

Setting the variables \(x_1 = x, \ x_2 = \dot{x}, \) and \(x_3 = \omega t \mod 2\pi \) we obtain a Filippov system

\[
F_{1,2} = \begin{cases}
-\dot{x}_1 & \pm \alpha_1 - \alpha_2 (1 - x_2) + \alpha_3 (1 - x_2)^3 + \alpha_4 \cos(x_3) \\
\omega & \end{cases}
\]

with + sign for \(F_1, \) and \(H(x) = 1 - x_2. \)
We set the parameters to $\alpha_1 = \alpha_2 = 1.5$, $\alpha_3 = 0.45$, $\alpha_4 = 0.7$
To prove our numerical finding we will study the normal form map \(g(\tilde{x}_1, \tilde{x}_2) \)
To prove our numerical finding we will study the normal form map $g(\tilde{x}_1, \tilde{x}_2)$

the non-trivial Floquet multipliers of the grazing cycle viewed as not interacting with the boundary of the sliding region and as a cycle with a zero-length sliding segment determine the traces and determinants of the matrix coefficients and hence the structure of the map
To prove our numerical finding we will study the normal form map
\[g(\tilde{x}_1, \tilde{x}_2) \]
the non-trivial Floquet multipliers of the grazing cycle viewed as not interacting with the boundary of the sliding region and as a cycle with a zero-length sliding segment determine the traces and determinants of the matrix coefficients and hence the structure of the map.

We found that the Floquet multipliers of the non-sliding cycle are \(\lambda_{1s} = -5.732288 \) and \(\lambda_{2s} = -0.016799 \) and of the sliding one are \(\lambda_{1ns} = 0.619648 \) and \(\lambda_{2ns} = 0 \).
\[
\Sigma(\ddot{x}_1, \ddot{x}_2, \tilde{\mu}) = \begin{cases}
\begin{pmatrix}
-5.7490869 & 1 \\
0.0965801 & 0 \\
0.6196484 & 1
\end{pmatrix}
\begin{pmatrix}
\ddot{x}_1 \\
\ddot{x}_2
\end{pmatrix}
+ \tilde{\mu}
\begin{pmatrix}
1 \\
0
\end{pmatrix}
& \ddot{x}_1 > 0 \\
\begin{pmatrix}
0 & 0 \\
0 & 0
\end{pmatrix}
\begin{pmatrix}
\ddot{x}_1 \\
\ddot{x}_2
\end{pmatrix}
+ \tilde{\mu}
\begin{pmatrix}
1 \\
0
\end{pmatrix}
& \ddot{x}_1 < 0,
\end{cases}
\]
Grazing-sliding in 3-dimensional Filippov type flows

\[
\Sigma(\tilde{x}_1, \tilde{x}_2, \tilde{\mu}) = \begin{cases}
\begin{pmatrix} -5.7490869 & 1 \\ 0.0965801 & 0 \\ 0.6196484 & 1 \end{pmatrix} \begin{pmatrix} \tilde{x}_1 \\ \tilde{x}_2 \end{pmatrix} + \tilde{\mu} \begin{pmatrix} 1 \\ 0 \end{pmatrix} & \tilde{x}_1 > 0 \\
\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \tilde{x}_1 \\ \tilde{x}_2 \end{pmatrix} + \tilde{\mu} \begin{pmatrix} 1 \\ 0 \end{pmatrix} & \tilde{x}_1 < 0,
\end{cases}
\]

We prove the existence of robust chaos in the map for $\tilde{\mu} > 0$ by reducing the map to a 1-dimensional map.
Using local theory we can analyze sliding bifurcations of limit cycles in n-dimensional Filippov type flows
Using local theory we can analyze sliding bifurcations of limit cycles in n-dimensional Filippov type flows.

The system analysis is reduced to analysis of piecewise smooth maps.
Using local theory we can analyze sliding bifurcations of limit cycles in n-dimensional Filippov type flows.

The system analysis is reduced to analysis of piecewise smooth maps.

In the case of grazing-sliding bifurcations that canonical map that captures the systems dynamics is piecewise affine to leading order.
Using local theory we can analyze sliding bifurcations of limit cycles in \(n \)-dimensional Filippov type flows.

The system analysis is reduced to analysis of piecewise smooth maps.

In the case of grazing-sliding bifurcations that canonical map that captures the systems dynamics is piecewise affine to leading order.

In the case of 3-dimensional Filippov type flows the analysis of the system around grazing-sliding bifurcations is reduced to the analysis of 1-dimensional map.