
A Segmented Measurement Error Model for Modeling

and Analysis of Method Comparison Data

Lak N. K. Rankothgedara and Pankaj K. Choudhary1

Department of Mathematical Sciences, FO 35

University of Texas at Dallas

Richardson, TX 75080-3021, USA

Abstract

Method comparison studies are concerned with estimating relationship between two

clinical measurement methods. The methods often exhibit a structural change in the

relationship over the measurement range. Ignoring this change would lead to an inac-

curate estimate of the relationship. Motivated by a study of two digoxin assays where

such a change occurs, this article develops a statistical methodology for appropriately

analyzing such studies. Specifically, it proposes a segmented extension of the classical

measurement error model to allow a piecewise linear relationship between the methods.

The changepoint at which the transition takes place is treated as an unknown param-

eter in the model. An expectation-maximization type algorithm is developed to fit

the model and appropriate extensions of existing measures are proposed for segment-

specific evaluation of similarity and agreement. Bootstrapping and large-sample theory

of maximum likelihood estimators are employed to perform the relevant inferences. The

proposed methodology is evaluated by simulation and is illustrated by analyzing the

digoxin data.
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1 Introduction

Method comparison studies are generally concerned with estimation of relationship between

two clinical measurement methods to determine if they can be used interchangeably [1, 2].

The variable being measured is continuous. The methods are assumed to have the same

unit of measurement and none of them is considered error-free. Such studies are common

in biomedical literature. For example, the article [3] that proposed the limits of agreement

approach for analysis of method comparison data has over 25,000 citations.

The motivation for this article comes from a study comparing two assays, labelled 1

and 2, for measuring concentration of digoxin [4], a medication for treating certain heart

conditions such as atrial fibrillation and heart failure. The data consist of natural logarithm

of concentrations (ng/ml) of digoxin measured by the assays on n = 134 specimens. Figure 1

presents a scatterplot of measurements of assay 2 (Y2) against those of assay 1 (Y1). A plot

of difference (D = Y2 − Y1) against the average of these measurements — popularly known

as the Bland-Altman plot [3] — is also presented in Figure 2. The scatterplot shows that the

underlying trend is piecewise linear. The initial linear trend appears to undergo a change in

slope around y1 = −0.5. The assays behave quite differently in the left and right segments

formed by this changepoint. For example, they have higher correlation and higher agreement

in the right segment than the left segment. The change in behavior can be seen more clearly

in the Bland-Altman plot where a downward linear trend is followed by a flattening of the

trend, with points on the right centered near zero. In [4], it is concluded from this plot that

“the two assays are not comparable at low analyte levels” but “may be equivalent above

some cut-off level.”

The digoxin data are an example of paired method comparison data. Such data are often

analyzed by modeling them using the classical measurement error model — also known as

errors-in-variables model — or its variants, see, e.g., [1, 4–7]. The literature on measurement
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error models, especially in the context of regression analysis, is vast and the books [8–10]

may be consulted for an introduction to this topic. The readers specifically interested in

measurement error models for method comparison studies may begin with [1]. The clas-

sical measurement error model assumes a linear trend over the entire measurement range.

However, it is clear from Figure 1 that this model must be extended to allow incorporating

the change of slope that is observed in the digoxin data. What is necessary is a segmented

measurement error model that allows a piecewise linear trend over two segments of the mea-

surement range and treats the changepoint at which the trend lines join as an unknown

parameter in the model. Studying this extension is the goal of this article.

Segmented models, also known as multiphase or piecewise models, for linear regression

where the regression function either has different forms or involves different parameters over

different segments of the covariate domain have been studied at least since [11], with early

contributions including [12, 13]. These articles studied inference for piecewise simple linear

regression model over two segments. The changepoint, also known as join point, break point,

or knot, represents a value of the covariate at which the regression functions join and it may

be known or unknown. The overall regression function may be continuous or discontinuous

at the changepoint. A survey of the early literature on segmented regression models can

be found in [14, Chapter 9]. More recently, segmented models in the context of logistic

and other regressions have been studied by [15–19]. See [20–23] for segmented models for

longitudinal data.

When the covariate in regression is measured with error, giving rise to segmented mea-

surement error models, the changepoint represents a value of the error-free covariate. An

early article on this topic is [24]. It considered a threshold model — a special case of a

segmented model where it is assumed that the exposure has no relation with the response

up to a threshold — and focussed on estimation of the threshold (i.e., the changepoint) in

the context of linear and logistic regression. It found that ignoring the measurement error
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led to asymptotically biased estimator of the threshold. Moreover, the standard methods

for correcting for such bias in classical measurement error models, namely, regression cali-

bration, simulation extrapolation, and maximum likelihood (ML), behaved quite differently

when the model is segmented. In particular, if the assumed model was plausible, the ML

estimator outperformed the other two estimators in terms of bias and variance. Other arti-

cles on segmented measurement error models include [25–27]. They respectively considered

probit regression with mixture of normals as the error distribution, logistic regression from

a Bayesian perspective, and making use of external and internal validation data in addition

to the main data. Bias of the estimated changepoint was a primary focus of these articles.

To our knowledge, none of the existing segmented measurement error models allows the

kind of piecewise linear trend that is needed for digoxin data. Such a model is also simple

enough to allow closed-form expressions for the likelihood function. In addition to studying

this model, another novel contribution of this work is that we apply the proposed model

to analyze method comparison data. The eventual goal in the analysis of these data is

not just to perform inference regarding regression coefficients or the changepoint, which is

typically the case in regression, but to evaluate similarity and agreement of the measurement

methods [2, Chapters 1 and 2]. Evaluation of similarity refers to a comparison of marginal

characteristics of the methods such as their biases and precisions. Whereas, evaluation of

agreement essentially refers to an examination of how close the bivariate distribution of the

methods is to being degenerate on the 45o line. In this case, the methods have perfect

agreement because their measurements are identical, or equivalently, their difference is zero

with probability one, making them interchangeable. Agreement is evaluated by performing

inference on agreement measures such as concordance correlation coefficient [28] and total

deviation index [29, 30](see Section 4). These measures are functions of parameters of the

model. In case of a segmented model, the evaluation of similarity and agreement has to be

performed separately in each segment because the relationship between the methods may be
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different in the two segments. This is exemplified by the digoxin data in Figures 1 and 2.

The rest of this article is organized as follows. In Section 2, we present the classi-

cal measurement model for method comparison data and propose its segmented extension.

Section 3 considers an expectation-maximization (EM) type algorithm [31] for fitting the

proposed model and discusses tests for changepoint. Section 4 considers segment-specific

evaluation of similarity and agreement under the new model. A simulation study is pre-

sented in Section 5. The digoxin data are analyzed in Section 6. Section 7 concludes with a

discussion. Appendix A presents some necessary distributional results under the new model.

The statistical package R [32] has been used for all the computations in this article.

2 Segmented modeling of method comparison data

Let (Yi1, Yi2), i = 1, . . . , n denote paired measurements data collected in a method compari-

son study. These data are assumed to be a random sample from the distribution of (Y1, Y2),

where Yj represents the measurement by the jth method, j = 1, 2, on a randomly selected

subject from the underlying population. Here method 1 is assumed to be the standard

method that serves as a reference and method 2 is the test method in the comparison.

2.1 Classical measurement error model

The classical measurement error model for paired measurements (Y1, Y2) from a method

comparison study is [1, 4]

Y1 = b+ e1, Y2 = β0 + β1b+ e2, (1)

where β0 and β1 are fixed regression coefficients, b is a random quantity representing the

underlying true unobservable measurement, and e1 and e2 are random errors associated with

the two measurement methods. The true value b is measured with error by method 1 as

Y1 and by method 2 as Y2. The conditional means of the two methods — E(Y1|b) = b
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and E(Y2|b) = β0 + β1b — represent their error-free values. These are linearly related.

It is assumed that b ∼ N(µb, σ
2
b ), e1 ∼ N(0, σ2

e1), and e2 ∼ N(0, σ2
e2); and b, e1, and e2

are mutually independent. It follows that (Y1, Y2) has a bivariate normal distribution with

parameters

E(Y1) = µb, var(Y1) = σ2
b + σ2

e1, E(Y2) = β0 + β1µb, var(Y2) = β2
1σ

2
b + σ2

e2, cov(Y1, Y2) = β1σ
2
b .

By design, method 1 is assumed to have no bias in that its error-free value equals the

true value b. The intercept β0 and the slope β1 are respectively known as the fixed bias

and proportional bias of method 2 [2, Chapter 1]. If β1 = 1, the methods are said to have

the same scale. If the methods have unequal scales, their precisions are measured by their

squared sensitivity — 1/σ2
e1 for method 1 and β2

1/σ
2
e2 for method 2 [33]. The sensitivities are

compared using the squared sensitivity ratio, β2
1(σ2

e1/σ
2
e2) [2, Chapter 1]. If (β0, β1) = (0, 1),

the two methods have the same fixed and proportional biases and hence the same mean. If

(β1, σ
2
e1/σ

2
e2) = (1, 1), they have the same precision.

It follows from (1) that the model for the observed data (Yi1, Yi2), i = 1, . . . , n is

Yi1 = bi + ei1, Yi2 = β0 + β1bi + ei2, (2)

where bi, ei1, and ei2 are mutually independent draws from the respective distributions of b,

e1, and e2. This model is not identifiable on the basis of paired measurements data and one

constraint must be imposed on its parameters to make it identifiable. Although a number of

possibilities exist, see, e.g., [9, Chapter 1], three are common in method comparison studies.

One is β1 = 1, in which case the model becomes a mixed-effects model and is often known

as the Grubbs’ model after [34]. Another is σ2
e1 = σ2

e2, see, e.g., [4] and [8, Chapter 1]. The

third is that the ratio σ2
e1/σ

2
e2 is known, in which case Deming regression is a widely known

procedure to fit the model; see, e.g., [6]. See also [1, Chapter 3] and [4] for a discussion of

relative merits and demerits of the three approaches. In this article, just as in [4], we work

under the equal error variance assumption and denote the common value by σ2
e .
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2.2 Segmented measurement error model

The proposed extension of the classical measurement error model (1) for (Y1, Y2) is a seg-

mented model,

Y1 = b+ e1, Y2 = β0 + β1b+ β2(b− ψ)+ + e2, (3)

where (b − ψ)+ = max{0, b − ψ}. We can write (b − ψ)+ = (b − ψ)I(b > ψ), with I(A)

denoting the indicator function of A. Here ψ is the changepoint. It follows from (3) that

the conditional mean E(Y2|b) of method 2, which represents its error-free value, follows the

piecewise linear model,

E(Y2|b) =


β0 + β1b, b ≤ ψ,

(β0 − β2ψ) + (β1 + β2)b, b > ψ.

(4)

Thus, E(Y2|b) undergoes a change in slope from β2 to β1 + β2 at the changepoint b = ψ and

it is continuous in b at the changepoint. The latter necessitates a change in intercept also —

from β0 to β0 − β2ψ at the changepoint. For the distributions of the random terms in (3),

we assume as in (1) that

b ∼ N(µb, σ
2
b ), e1 ∼ N(0, σ2

e), e2 ∼ N(0, σ2
e), (5)

and b, e1, and e2 are mutually independent. Thus, the segmented model for the observed

data is

Yi1 = bi + ei1, Yi2 = β0 + β1bi + β2(bi − ψ)+ + ei2, i = 1, . . . , n, (6)

where bi, ei1, and ei2 are mutually independent draws from the respective distributions of

b, e1, and e2 given by (5). The classical model (2) becomes a special case of the segmented

model (6) when β2 = 0 or in the limit as ψ →∞. Appendix A presents some distributional

results under the segmented model (3) that are needed in this article for development of the

proposed methodology.
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3 Fitting the segmented model

The segmented model (6) has 7 unknown parameters, (µb, β0, β1, β2, σ
2
b , σ

2
e , ψ). Let θ be the

7× 1 vector of these parameters. Its log-likelihood function can be written as

L(θ) =
n∑
i=1

log{f(yi1, yi2|θ)}, (7)

where the density f is given by (A.4) in Proposition A.3 in Appendix A. The parameter

vector θ is now explicitly included as an argument of f . We may numerically maximize

L(θ) by a Newton-Raphson type algorithm to get ML estimate θ̂ of θ. However, in our

experience, a direct maximization of this function is sensitive to starting points and often

leads to unstable estimates. Therefore, we consider an alternative approach. It is a variant

of the EM algorithm, specifically the ECM algorithm [31], in which the M-step of EM is

replaced by a sequence of computationally simpler constrained maximization (CM) steps.

Each iteration of ECM increases the likelihood function and the algorithm often converges

to a maxima [35, Chapter 5].

The ECM algorithm is presented in Appendix B. As is true with any EM-type algorithm,

one needs to try a number of starting points to have some assurance that the algorithm

converges to a global maxima θ̂. Next, let I = −∂2 log{L(θ)}/∂θ2|θ=θ̂ denote the Hessian

matrix of−L(θ) evaluated at the MLE. This matrix is also known as the observed information

matrix. It can be computed by numerical differentiation. Analytical expressions for the

elements of this matrix are also available in [36, Chapter 3]. However, we avoid presenting

them here as they are rather tedious. When n is large, it follows from the large-sample

theory of ML estimators [37, Chapter 7] that the distribution of θ̂ can be approximated by

a N(θ, I−1) distribution. This result can be used to perform inference on θ.

Once the model (6) is fit to the data, we can replace the unknown parameters in the

expression (A.11) for the best linear predictor of bi with their ML estimates to get the
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estimated predictor b̂i. Then, the fitted values can be computed as

Ŷi1 = b̂i, Ŷi2 = β̂0 + β̂1b̂i + β̂2(b̂i − ψ̂)+, i = 1, . . . , n.

3.1 Testing for changepoint

In the segmented model (6), we are particularly interested in checking whether or not there

is a need to include the changepoint. Without the changepoint, the model reduces to the

classical model (2). Thus, the null hypothesis H0 of interest is that the data follow (2) against

the alternative H1 that the data follow (6). We consider a likelihood ratio test for this. The

test statistic is Λ = −2(Lreduced − Lfull), where Lfull and Lreduced, respectively, represent the

log-likelihood functions under the full model (6) and the reduced model (2) evaluated at the

corresponding ML estimates. Closed-form expressions for ML estimates in case of (2) are

available in [8, Chapter 1]. Let Λobs be the observed value of the test statistic.

Oftentimes, when n is large, the null distribution of a likelihood ratio statistic can be

approximated by a χ2-distribution with degrees of freedom equal to the number of free

parameters in the full model that are fixed to get the reduced model. However, since in our

case, the reduced model (2) can be obtained from full model (6) by setting either β2 = 0

or taking limit ψ → ∞, the standard χ2 approximation does not apply. A similar issue is

encountered in segmented linear regression models and some authors, e.g., [13], deal with it

by using a χ2 approximation with 3 degrees of freedom. Asymptotic likelihood ratio tests

under certain nonstandard conditions are also discussed by [38], but the condition of interest

here that includes the limit of a parameter going to infinity is not covered by that article.

We may follow along the lines of [13] and use a χ2 approximation with degrees of freedom

equal to 2 or 3. Alternatively, we may use bootstrap to approximate the null distribution

of Λ and use it to compute the p-value [39, Chapter 4]. The steps in this calculation are as

follows:

Step 1: Simulate n independent pairs of observations (Y ∗i1, Y
∗
i2), i = 1, . . . , n following
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model (2) with parameters set equal to their ML estimates obtained by fitting (2) to the

original data. The starred observations represent a parametric resample of the original data.

Step 2: Fit the full and reduced models to the resample in Step 1 and compute the test

statistic Λ.

Step 3: Repeat Steps 1 and 2 a large number of times, say, B, resulting in B values

Λ∗1, . . . ,Λ
∗
B for the test statistic. Take the proportion of these values that are greater than

or equal to Λobs as the approximate p-value for the test.

We may also use model selection criteria such as Akaike Information Criterion (AIC) and

Bayesian Information Criterion (BIC) to compare the two models.

4 Evaluation of similarity and agreement

Under the classical model (1), similarity of two measurement methods is evaluated by exam-

ining their biases using intercept β0 and slope β1 and their precisions using squared sensitivity

ratio β2
1(σ2

e1/σ
2
e2). If (β0, β1, σ

2
e1/σ

2
e2) = (0, 1, 1), the methods have the same fixed and propor-

tional biases and precisions, and hence are similar. In this case, the measurement methods

have the same marginal distributions. Agreement between the methods is evaluated using

measures of agreement such as CCC and TDI [28, 29]. These are defined as follows:

CCC =
2cov(Y1, Y2)

{E(Y1)− E(Y2)}2 + var(Y1) + var(Y2)
,

TDI(p) = pth quantile of |D|, (8)

where p is a large probability specified by the practitioner. Typically, p ∈ {0.85, 0.90, 0.95}

is used in application. By definition, |CCC| ≤ 1 and TDI(p) ≥ 0. Good agreement is implied

by a large value for CCC or a small value for TDI. Agreement is perfect in the limiting case

when CCC = 1 or TDI = 0. We generally use two-sided confidence intervals for the measures

of similarity and one-sided confidence intervals for the measures of agreement.
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In case of the segmented model (3), due to the change in the relationship between the

methods over the two segments, the evaluation of similarity and agreement must be done

separately in each segment using segment-specific versions of the measures. Thus, for sim-

ilarity evaluation, it follows from (4) that fixed and proportional biases can be compared

using β0 and β1 in the left segment and β0 − β2ψ and β1 + β2 in the right segment. Al-

though the precisions can be compared using squared sensitivity ratio but, under the equal

error variance assumption in (3), it equals β2
1 in the left segment and (β1 + β2)

2 in the right

segment, whose square-roots are already examined as part of the bias evaluation. Thus,

the methods can be considered similar over a segment if the intercept and slope over that

segment equal zero and one, respectively.

The segment-specific versions of CCC and TDI are obtained by evaluating (8) under the

marginal distribution of (Y1, Y2) when b is truncated to be either b ≤ ψ (left segment) or

b > ψ (right segment). For CCC, this amounts to substituting in (8) the relevant conditional

moments from Proposition A.2 in Appendix A. However, such closed-form expressions are

not available in case of TDI. For a given p, these are obtained numerically by solving p =

P (|D| ≤ q|b ≤ ψ) and p = P (|D| ≤ q|b > ψ) for q where the probabilities are obtained by

integrating the relevant marginal density of D from Proposition A.5. We may also compute

a single CCC and TDI for the entire measurement range by using the marginal moments of

(Y1, Y2) given by Proposition A.1 and the marginal density of D given by Proposition A.4.

But, unless there is no changepoint in which case the segmented model reduces to the classical

model, these overall measures may be misleading.

The various measures needed for evaluation of similarity and agreement are functions of

the model parameter vector θ. As in the classical model, they are estimated by replacing θ

in their definitions with its ML estimate θ̂ and their one- and two-sided confidence intervals

are computed using the multivariate delta method [37, Chapter 5]. To improve accuracy of

confidence intervals for parameters or parameter functions whose range is not the entire real
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line, the intervals are computed after applying a normalizing transformation and the results

are inverted back to the original scale. Specifically, a log transformation is applied to σ2
e , σ

2
b ,

and TDI and the Fisher’s z-transformation is applied to CCC. Alternatively, the confidence

intervals can also be computed using a bootstrap method, e.g., the normal approximation

bootstrap that uses bias and standard error computed using bootstrap [39, Chapter 5].

5 A simulation study

A simulation study is performed to evaluate performance of point and interval estimators of

parameters in the proposed model and the test for changepoint. We are specifically interested

in examining the following: (i) biases and mean squared errors (MSEs) for ML estimators;

(ii) accuracy of standard large-sample and bootstrap confidence intervals; (iii) accuracy of

the test for changepoint where p-value is computed by bootstrap and by approximating the

null distribution of the test statistic by a χ2 distribution with 2 and 3 degrees of freedom;

and (iv) the benefits of the proposed method for evaluating similarity and agreement over

the naive method that involves fitting the classical model.

We begin with (i) and (ii) for model parameters and measures of similarity and agree-

ment. The model is fit by both ECM algorithm and direct maximization upon using a log

transformation for σ2
e and σ2

b to obtain an unconstrained parameterization. The resulting

estimates are denoted by marking them as ECM and DIR, respectively. For the latter, we

use optim function in R with method argument of the function set as BFGS, which is a quasi-

Newton method. We initially consider five settings presented in Table 1 for parameters of

the segmented model (6). These are motivated by the point and interval estimates reported

in Table 7 for digoxin data. The number of subjects is set to n ∈ {30, 50, 100}. The num-

ber of bootstrap replications is taken to be B = 500. We also choose 0.95 as the nominal

confidence level and p = 0.90 as the probability for TDI. For each combination of param-

eter setting and n, the data are simulated from the model (6) and the point and interval
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estimates are computed as described in Section 3. Then, this process is repeated 500 times

and the estimated biases and MSEs of the point estimators and coverage probabilities of the

confidence intervals are computed. The results for the three values of n under setting 1a are

summarized in Tables 2, 3, and 4. The ratio of MSEs of ML estimates obtained by ECM

and direct maximization, with former in the denominator, are also presented in these tables.

The results for other parameter settings are omitted as they are qualitatively similar.

From the results regarding point estimates, we conclude that, with a few notable excep-

tions in case of n = 30, both ECM and direct maximization lead to nearly identical MSEs of

the estimates. When the exceptions do occur, ECM leads to slightly smaller MSE than di-

rect maximization. Although, in principle, both ECM and direct maximization are expected

to provide identical ML estimates, but in practice, direct maximization is more sensitive to

starting points than ECM, especially when n is not large, and this explains the difference

in the two sets of estimates. Also, as expected, both bias and MSE for estimators of all

parameters decrease as n increases.

The coverage probabilities of the standard large-sample confidence intervals are mostly

less than the nominal level. Although the situation improves as n increases to 100, these

intervals cannot be considered accurate. With a few notable exceptions, the bootstrap

intervals are generally more accurate than the standard intervals and may be considered

to have acceptable accuracy even with n = 30. There is some evidence that in case of

n = 100 the coverage probabilities for the intervals for agreement measures in the right

segment may be higher than the nominal level. Additional simulations in case of n = 200

(not presented) show that the coverage probabilities of the standard intervals are quite

close to the nominal level. Therefore, on the whole, unless n is 200 or more, bootstrap

should be preferred over the standard intervals. We have also explored three other bootstrap

methods for constructing confidence intervals, namely, basic bootstrap, studentized bootstrap,

and percentile bootstrap [39, Chapter 5]. Among the settings investigated, there is little
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practical difference in the accuracy of the various bootstrap methods (results omitted).

Now, we consider the issue (iii) by examining how close the estimated type I error prob-

abilities of the changepoint tests are to the nominal level of α = 0.05. For this, the data

are simulated under the null hypothesis from the classical model (2) with parameter values

as in settings 1a through 5a except that the parameters β2 and ψ are omitted. We refer to

these settings as 1b through 5b, respectively. The results presented in Table 5 show that the

χ2
3 approximation is quite conservative in that the corresponding type I error probabilities

are much smaller than the nominal level. In contrast, the χ2
2 approximation appears slightly

liberal in that the corresponding type I error probabilities are a bit larger than the nominal

level for n = 30, 50 but seems quite accurate for n = 100. These conclusions hold for both

ECM and direction maximization methods. In case of ECM, the bootstrap approximation

also works well and it may be considered the best of the three approximations. However,

this is not the case for bootstrap when direct maximization is used. On the whole, these

results suggest that both χ2
2 and bootstrap approximations can be used to perform the test

of changepoint.

Next, we consider the issue (iv) about benefits of the proposed method over the naive

method for evaluating similarity and agreement. For this, we compare biases and MSEs

of the various measures estimated using the two methods under the scenario that the true

model is the segmented model (6) with parameters given by setting 1a. Ignoring reality, the

naive method provides common estimates for both segments, whereas, the proposed method

aptly provides separate estimates (using ECM algorithm) for the two segments. Table 6

presents biases and MSEs for the two sets of estimates for n = 30 and 100. We see that the

proposed estimates are substantially more accurate than the naive estimates as the former

have much smaller bias (in absolute value) and MSE than the latter. Furthermore, there is

little difference in the bias and MSE of the naive estimates between n = 30 and n = 100.

However, both absolute bias and MSE of the proposed estimates decrease as n increases.
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On the whole, the practical implications of the results from the simulation study may be

summarized as follows: (a) When the true model is segmented, fitting the classical model

leads to estimates with higher bias and MSE than the segmented estimates. Moreover, the

bias and MSE of the classical model estimates decrease little as n increases. (b) To fit

the segmented model, one may use either direct maximization or the ECM algorithm when

n ≥ 50, otherwise the latter should be preferred. (c) To compute confidence intervals, one

may use the standard large-sample approach when n ≥ 200, otherwise bootstrap should be

preferred. (d) To perform the test for changepoint, one may use either the χ2
2 approximation

or bootstrap.

6 Illustration: Analysis of digoxin data

We now return to the digoxin data introduced in Section 1 and analyze them using the

proposed methodology. First, we fit the model (6) by ML using both ECM algorithm and

direct maximization of the log-likelihood function. Table 7 presents point estimates obtained

by ECM, standard errors of the estimates, and 95% bootstrap confidence intervals for model

parameters. Estimates produced by direct maximization are nearly identical and hence are

omitted. None of the standard errors appears unusually high. We see that the interval

(0.39, 0.57) for β2 does not contain zero, suggesting the need for a changepoint. Next, we

test the null hypothesis that the data follow the classical model (2) using the likelihood

ratio test. The observed value of the test statistic is 118.12 and the p-value computed using

bootstrap with B = 500 is practically zero. This confirms the need for the changepoint.

Even AIC and BIC prefer the segmented model (6) over the classical model (2) as their

respective values for the two models are 215.6 and 329.7 (AIC) and 235.8 and 344.2 (BIC).

The estimated changepoint is ψ̂ = −0.71. Substituting the unknowns in (4) with their

estimates gives the fitted piecewise straight line for E(Y2|b). The resulting line is−0.29+0.46b

in the left segment (b ≤ −0.71) and 0.05 + 0.94b in the right segment (b > −0.71). They
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are superimposed on the scatterplot in Figure 1. They seem to provide a good fit to the

underlying trend in the data. For comparison, also superimposed on the plot is the line

0.16 + 0.79b obtained by fitting the classical model. It clearly does not fit the data well.

Under the fitted segmented model (6), the bivariate distribution of (Y1, Y2) has mean

(−1.32,−0.90), variance (0.27, 0.06), and correlation 0.92 in the left segment; and mean

(0.57, 0.59), variance (0.69, 0.61), and correlation 0.99 in the right segment. These are ob-

tained by replacing the unknowns in the moments given by Proposition A.2 with their

estimates. It follows that the fitted distribution of D = Y2 − Y1 has mean 0.42 and variance

0.09 in the left segment and 0.01 and 0.02 in the right segment. Thus, assay 2 has higher

mean and lower variance than assay 1 in both segments but the difference is much smaller

in the right segment than the left segment. The correlation between the assays is also higher

in the right segment. These findings are consistent with what we saw in Figure 1.

Next, we consider evaluation of similarity of the assays. Table 8 presents estimates and

95% confidence intervals for the segment-specific similarity measures considered in Section 4.

None of the intervals appears unusually wide. In the left segment, the intervals for the

intercept β0 and slope β1 are (−0.42,−0.16) and (0.38, 0.55), respectively. In the right

segment, they are (0.02, 0.08) and (0.91, 0.97) for the intercept β0 − β2ψ and slope β1 + β2,

respectively. None of the intercept intervals covers zero. Likewise, none of the slope intervals

covers one. Thus, because their fixed and proportional biases are not equal, the assays cannot

be regarded as similar in either segment. That said, the biases differ considerably in the left

segment and only moderately so in the right segment.

Our next task is to evaluate agreement between the assays. Estimates and 95% one-sided

confidence bounds for the segment-specific agreement measures considered in Section 4 are

also presented in Table 8 on transformed scale. These estimates and bounds are transformed

back to the original scale by applying the inverse transformation. In the left segment, the

lower bound for CCC is 0.36 and it is 0.98 in the right segment. Further, the upper bounds
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for TDI(0.90) in the left and right segments are 1.04 and 0.25, respectively. Thus, on the

basis of both measures, the assays exhibit much higher agreement in the right segment than

in the left segment. This is consistent with what we saw in Figure 1. Focusing on the right

segment, we see that the CCC estimate and lower bound are nearly one, indicating potentially

excellent agreement between the assays. But this conclusion may be misleading considering

that, in these data, σ̂2
e = exp(−4.87) ≈ 0.01 is much smaller than σ̂2

b = exp(0.17) ≈ 1.19.

In such a scenario, the CCC estimate tends to be high [40]. A better picture of agreement

is given by the TDI upper bound which indicates that 90% of ratios of measurements by

the two assays are estimated to fall within exp(−0.25) ≈ 0.78 to exp(0.25) ≈ 1.28 with 95%

confidence. Given how wide this range is around one, the extent of agreement between the

assays cannot be considered strong.

Thus, altogether we see that the two digoxin assays exhibit considerably more similarity

and agreement at higher analyte levels than at low levels. However, even at high analyte

levels, the assays cannot be regarded as similar in the sense of having equal fixed and

proportional biases or having well enough agreement for interchangeable use.

There appear to be two outlying observations in the bottom right quadrant of the Bland-

Altman plot in Figure 2. To assess their impact, we repeat the analysis by excluding them.

The estimated changepoint moves slightly to the left to ψ̂ = −1.13. Further, the fitted

piecewise line for E(Y2|b) is −0.55 + 0.35b in the left segment (b ≤ −1.13) and 0.07 + 0.90b

in the right segment (b > −1.13). Moreover, the 95% lower bound for CCC is 0.16 in the

left segment and 0.98 in the right segment; and the 95% upper bound for TDI(0.90) in the

left and right segments are 1.15 and 0.27, respectively. Thus, upon removal of the outliers,

the assays appear slightly less similar and have slightly less agreement than before. This

reinforces the earlier conclusion that the assays cannot be regarded as similar or having well

enough agreement for interchangeable use.
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7 Discussion

This article develops a segmented extension of the classical measurement error model for

method comparison data wherein the measurement methods exhibit a piecewise linear rela-

tionship. Extensions of existing measures are derived under the model to perform segment-

specific evaluation of similarity and agreement. R code for implementing the proposed

methodology is publicly available at http://utdallas.edu/~pankaj/. Although our seg-

mented model assumed equality of error variances, one may easily relax this assumption (see

[36, Chapter 3]). While we restrict attention to piecewise linear relationship that is contin-

uous at the changepoint, some extensions of the approach may be of interest. These include

allowing for nonlinear relationships, abrupt as well as smooth change in the relationship,

and more than one changepoint. Further research is needed to develop these extensions.

Data availability statement: The data used in this paper are from [4] and are publicly

available at http://www.stat.umn.edu/hawkins/.
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Appendix A. Distribution theory under the segmented model

We now present some distributional results under the segmented model (3) that are of interest

in this article. Their proofs are available in [36, Chapter 3]. Let φ(x) and Φ(x) respectively

denote the probability density function and the cumulative distribution function of a N(0, 1)

distribution. Next, define the following quantities:

g1(x, µ, σ) =
x− µ
σ

,

g2(x, µ, σ) =
φ (g1(x, µ, σ))

1− Φ (g1(x, µ, σ))
,

g3(x, µ, σ) =
φ (g1(x, µ, σ))

Φ (g1(x, µ, σ))
,

g4(β, σ1, σ2) =

(
1

σ2
1

+
(β1 + β)2

σ2
2

+
1

σ2
b

)−1
,

g5(β, σ1, σ2) =

(
y1
σ2
1

+
(y2 − β0 + βψ)(β1 + β)

σ2
2

+
µb
σ2
b

)
,

g6(β, σ1, σ2) = g4(β, σ1, σ2)g5(β, σ1, σ2),

g7(β, µ, σ
2, σ1, σ2) =

√
2πσ2√
σ2
1σ

2
2σ

2
b

φ

(
y1
σ1

)
φ

(
y2 − β0 + βψ

σe2

)
φ

(
µb
σb

)
exp

(
µ2

2σ2

)
. (A.1)

The functions g4 to g7 depend on other quantities as well in addition to those explicitly spec-

ified as the arguments. However, this dependence is suppressed for notational convenience.

Proposition A.1. Consider (Y1, Y2) following the model (3). The mean and variance of Y1

and Y2 and their covariance are as follows:

(a) E(Y1) = µb and var(Y1) = σ2
b + σ2

e ,

(b) E(Y2) = β0 + β1µb + β2m1 and var(Y2) = β2
1σ

2
b + β2

2m3 + 2β1β2m4 + σ2
e ,

(c) cov(Y1, Y2) = β1σ
2
b + β2m4,
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where

m1 = E[(b− ψ)+] = {1− Φ (g1(ψ, µb, σb))} (µb − ψ) + φ (g1(ψ, µb, σb))σb,

m2 = E
[
{(b− ψ)+}2

]
= {1− Φ (g1(ψ, µb, σb))}

{
(µb − ψ)2 + σ2

b

}
+
(
g1(ψ, µb, σb)σ

2
b + 2µbσb − 2ψσb

)
φ (g1(ψ, µb, σb)) ,

m3 = var [(b− ψ)+] = m2 −m2
1,

m4 = cov [b, (b− ψ)+] = {1− Φ (g1(ψ, µb, σb))}σ2
b

+
{
g1(ψ, µb, σb)σ

2
b + µbσb − ψσb

}
φ (g1(ψ, µb, σb)) . (A.2)

Proposition A.2. Consider (Y1, Y2) following the model (3). The mean and variance of Y1

and Y2 and their covariance when b is truncated to be either b ≤ ψ or b > ψ are as follows:

(a) E(Y1|b ≤ ψ) = E(b|b ≤ ψ) and var(Y1|b ≤ ψ) = var(b|b ≤ ψ) + σ2
e ,

(b) E(Y2|b ≤ ψ) = β0 + β1E(b|b ≤ ψ) and var(Y2|b ≤ ψ) = β2
1var(b|b ≤ ψ) + σ2

e ,

(c) cov(Y1, Y2|b ≤ ψ) = β1var(b|b ≤ ψ),

(d) E(Y1|b > ψ) = E(b|b > ψ) and var(Y1|b > ψ) = var(b|b > ψ) + σ2
e ,

(e) E(Y2|b > ψ) = (β0−β2ψ)+(β1+β2)E(b|b > ψ) and var(Y2|b > ψ) = (β1+β2)
2var(b|b >

ψ) + σ2
e ,

(f) cov(Y1, Y2|b > ψ) = (β1 + β2)var(b|b > ψ),

where

E(b|b ≤ ψ) = µb − σbg3(ψ, µb, σb),

var(b|b ≤ ψ) = σ2
b

{
1− g1(ψ, µb, σb)g3(ψ, µb, σb)− g23(ψ, µb, σb)

}
.

E(b|b > ψ) = µb + σbg2(ψ, µb, σb),

var(b|b > ψ) = σ2
b

{
1 + g1(ψ, µb, σb)g2(ψ, µb, σb)− g22(a1, µb, σb)

}
. (A.3)
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Proposition A.3. The joint probability density function of (Y1, Y2) following the model (3)

is

f(y1, y2) = f1(y1, y2) + f2(y1, y2), (A.4)

where

f1(y1, y2) =

∫ ψ

−∞
f(b, y1, y2)db = g7(0, g6(0, σe, σe), g4(0, σe, σe), σe, σe)

× Φ
(
g1(ψ, g6(0, σe, σe),

√
g4(0, σe, σe))

)
f2(y1, y2) =

∫ ∞
ψ

f(b, y1, y2)db = g7(β2, g6(β2, σe, σe), g4(β2, σe, σe), σe, σe)

×
[
1− Φ

(
g1

(
ψ, g6(β2, σe, σe),

√
g4(β2, σe, σe)

))]
. (A.5)

Proposition A.4. Consider (Y1, Y2) following the model (3). The probability density func-

tion of D = Y1 − Y2 is

h(d) = h1(d) + h2(d), (A.6)

where

h1(d) =

∫ ψ

−∞
f(d, b)db =

√
2πc1√
σ2σ2

b

φ

(
d− β0
σ

)
φ

(
µb
σb

)
exp

(
c22
2c1

)
Φ(g1(ψ, c2,

√
c1),

h2(d) =

∫ ∞
ψ

f(d, b)db =

√
2πc3√
σ2σ2

b

φ

(
d− β0 + β2ψ

σ

)
φ

(
µb
σb

)
exp

(
c24
2c3

)
× [1− Φ(g1(ψ, c4,

√
c3))] , (A.7)

and

σ2 = 2σ2
e ,

c1 =

(
(β1 − 1)2

σ2
+

1

σ2
b

)−1
,

c2 =

(
(d− β0)(β1 − 1)

σ2
+
µb
σ2
b

)
c1

c3 =

(
(β1 + β2 − 1)2

σ2
+

1

σ2
b

)−1
c4 =

(
(d− β0 + β2ψ)(β1 + β2 − 1)

σ2
+
µb
σ2
b

)
c3. (A.8)
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Proposition A.5. Consider (Y1, Y2) following the model (3). The probability density func-

tion of D = Y1 − Y2 when b is truncated to be either b ≤ ψ or b > ψ are as follows:

h(d|b ≤ ψ) =
h1(d)

Φ(g1(ψ, µb, σb))
, h(d|b > ψ) =

h2(d)

1− Φ(g1(ψ, µb, σb))
, (A.9)

where h1(d) and h2(d) are given by (A.7) in Proposition A.4.

Proposition A.6. Consider (Y1, Y2) following the model (3). The first and second moments

of b and (b− ψ)+ conditional on (Y1, Y2) = (y1, y2) are as follows:

(a) E[b|y1, y2] = (A1 + A2)/f(y1, y2),

(b) E[b2|y1, y2] = (A3 + A4)/f(y1, y2),

(c) E [(b− ψ)+|y1, y2] = (A2 − ψf2(y1, y2))/f(y1, y2),

(d) E [{(b− ψ)+}2|y1, y2] = (A4 − 2ψA2 + ψ2f2(y1, y2))/f(y1, y2),

(e) E [b(b− ψ)+|y1, y2] = (A4 − ψA2)/f(y1, y2),

where

A1 =

∫ ψ

−∞
bf(b, y1, y2)db = f1(y1, y2)

{
g6(0, σe, σe)−

√
g4(0, σe, σe)

×g3
(
ψ, g6(0, σe, σe),

√
g4(0, σe, σe)

)}
A2 =

∫ ∞
ψ

bf(b, y1, y2)db = f2(y1, y2)
{
g6(β2, σe, σe) +

√
g4(β2, σe, σe)

×g2
(
ψ, g6(β2, σe, σe),

√
g4(β2, σe, σe)

)}
A3 =

∫ ψ

−∞
b2f(b, y1, y2)db = f1(y1, y2)

{
g4(0, σe, σe) + g26(0, σe, σe)

−g1(ψ, g6(0, σe, σe),
√
g4(0, σe, σe))

×g4(0, σe, σe)g3
(
ψ, g6(0, σe, σe),

√
g4(0, σe, σe)

)
−2
√
g4(0, σe, σe)g6(0, σe, σe)g3

(
ψ, g6(0, σe, σe),

√
g4(0, σe, σe)

)}
A4 =

∫ ∞
ψ

b2f(b, y1, y2)db = f2(y1, y2)
{
g4(β2, σe, σe) + g26(β2, σe, σe)
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+g1(ψ, g6(β2, σe, σe),
√
g4(β2, σe, σe))

×g4(β2, σe, σe)g2
(
ψ, g6(β2, σe, σe),

√
g4(β2, σe, σe)

)
+2
√
g4(β2, σe, σe)g6(β2, σe, σe)g2

(
ψ, g6(β2, σe, σe),

√
g4(β2, σe, σe)

)}
, (A.10)

and f1, f2, and f are given by A.4 and (A.5) in Proposition A.3.

Proposition A.7. Consider the model (3). The best linear predictor of b using (Y1, Y2) is

b̂ = µb + [σ2
b , β1σ

2
b + β2m4]

(
var
([

Y1
Y2

]))−1 [ Y1−µb
Y2−E(Y2)

]
, (A.11)

where m4 is given by (A.2) and the moments involved are given by Proposition A.1.

Appendix B. ECM algorithm for model fitting

To develop the ECM algorithm, we take bi in (6) as the missing data and (bi, Yi1, Yi2) as the

complete data for the ith subject. The logarithm of the joint density f(b, y1, y2|θ) can be

written as

log{f(b, y1, y2|θ)} = log f{(y1|b,θ)}+ log{f(y2|b,θ)}+ log{f(b|θ)}

= c− 1

2σ2
e

(
−2y1b+ b2

)
− 1

2σ2
e

{
−2(y2 − β0)(β1b+ β2 (b− ψ)+)

+
(
β2
1b

2 + 2β1β2b (b− ψ)+
)

+ β2
2 (b− ψ)2+

}
− 1

2σ2
b

(
b2 − 2µbb

)
,

(B.1)

where c consists of terms that do not involve b and is given as

c = −3

2
log(2π)− 1

2
log(σ2

e)−
1

2
log(σ2

e)−
1

2
log(σ2

b )−
1

2σ2
e

y21−
1

2σ2
e

(y2 − β0)2−
1

2σ2
b

µ2
b . (B.2)

It follows that the complete data log-likelihood function is

n∑
i=1

log{f(bi, yi1, yi2|θ)}

=
n∑
i=1

{
ci −

1

2σ2
e

(
−2yi1bi + b2i

)
− 1

2σ2
e

{
−2(yi2 − β0)(β1bi + β2 (bi − ψ)+)
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+
(
β2
1b

2
i + 2β1β2bi (bi − ψ)+

)
+ β2

2 (bi − ψ)2+
}
− 1

2σ2
b

(
b2i − 2µbbi

)}
, (B.3)

where ci is the value of c given by (B.2) evaluated for the ith subject.

In the rth ECM iteration, let θ(r) be the value of θ and Q(θ|θ(r)) be the expectation of the

complete data log-likelihood (B.3) with respect to the conditional distribution of bi|yi1, yi2

evaluated at θ(r), i.e., E
[∑n

i=1 log{f(bi, yi1, yi2|θ)}|yi1, yi2,θ(r)
]
. Letting E(r) denote the

expectation over the conditional distribution of bi|yi1, yi2 evaluated at θ(r), which can be

computed using the expressions given by Proposition A.6 in Appendix A, we can write

Q(θ|θ(r)) =
n∑
i=1

{
ci −

1

2σ2
e

(
−2yi1E

(r)[bi] + E(r)[b2i ]
)
− 1

2σ2
e

{−2(yi2 − β0)

(
β1E

(r)[bi] + β2E
(r) [(bi − ψ)+

])
+ β2

1E
(r)[b2i ]

+2β1β2E
(r)
[
bi (bi − ψ)+

]
+ β2

2E
(r) [(bi − ψ)2+

]}
− 1

2σ2
b

(
E(r)[b2i ]− 2µbE

(r)[bi]
)}

. (B.4)

Next, we find derivative of Q(θ|θ(r)) with respect to θ so that we can perform the CM

steps. For this, let E
(r)
i1 and E

(r)
i2 respectively denote the values of E(r)[bi] and E(r)[b2i ]

and A
(r)
i1 , . . . , A

(r)
i4 respectively denote the values of A1, . . . , A4 given by (A.10) in Proposi-

tion A.6, evaluated at (θ, y1, y2) = (θ(r), yi1, yi2). Further, let f (r)(yi1, yi2) denote the value

of f(y1, y2) given by (A.4) in Proposition A.3, also evaluated at (θ, y1, y2) = (θ(r), yi1, yi2).

The derivatives of Q(θ|θ(r)) with respect to the elements of θ are as follows:

∂Q(θ|θ(r))
∂µb

= − 1

2σ2
b

n∑
i=1

2
{
−E(r)

i1 + µb

}
∂Q(θ|θ(r))

∂β0
= − 1

2σ2
e

n∑
i=1

2

β1E(r)
i1 +

β2

(
A

(r)
i2 − ψf

(r)
2 (yi1, yi2)

)
f (r)(yi1, yi2)

− (yi2 − β0)


∂Q(θ|θ(r))

∂β1
= − 1

2σ2
e

n∑
i=1

2

{
−(yi2 − β0)E(r)

i1 + β1E
(r)
i2 +

β2(A
(r)
i4 − ψA

(r)
i2 )

f (r)(yi1, yi2)

}

∂Q(θ|θ(r))
∂β2

= − 1

2σ2
e

n∑
i=1

2

−(yi2 − β0)
(
A

(r)
i2 − ψf

(r)
2 (yi1, yi2)

)
+ β1(A

(r)
i4 − ψA

(r)
i2 )

f (r)(yi1, yi2)
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+
β2(A

(r)
i4 − 2ψA

(r)
i2 + ψ2f

(r)
2 (yi1, yi2)

f (r)(yi1, yi2)

}
∂Q(θ|θ(r))

∂σ2
b

= − n

2σ2
b

+
1

2σ4
b

n∑
i=1

{
E

(r)
i2 − 2µbE

(r)
i1 + µ2

b

}
∂Q(b, Y1, Y2)

∂σ2
e

= − n

σ2
e

+
1

2σ4
e

n∑
i=1

{
−2(Yi2 − β0)

[
β1E

(r)
i1 +

β2(A
(r)
i2 − ψf

(r)
2 (Yi1, Yi2))

f (r)(Yi1, Yi2)

]

+β2
1E

(r)
i2 +

2β1β2(A
(r)
i4 − ψA

(r)
i2 ) + β2

2(A
(r)
i4 − 2ψA

(r)
i2 + ψ2f

(r)
2 (Yi1, Yi2))

f (r)(Yi1, Yi2)

+(Yi2 − β0)2 − 2Yi1E
(r)
i1 + E

(r)
i2 + Y 2

i1

}

∂Q(θ|θ(r))
∂ψ

= − 1

2σ2
e

n∑
i=1

2


(yi2 − β0)β2f (r)

2 (yi1, yi2)− β1β2A(r)
i2

+ β2
2(−A(r)

i2 + ψf
(r)
2 (yi1, yi2))

f (r)(yi1, yi2)

 (B.5)

By setting each of the derivatives in (B.5) equal to zero and solving for the corresponding

parameter, we get:

µb =

∑n
i=1E

(r)
i1

n

β0 =

∑n
i=1

{
yi2 − β1E(r)

i1 −
β2
(
A

(r)
i2 −ψf

(r)
2 (yi1,yi2)

)
f (r)(yi1,yi2)

}
n

β1 =

∑n
i=1

{
(yi2 − β0)E(r)

i1 −
β2
(
A

(r)
i4 −ψA

(r)
i2

)
f (r)(yi1,yi2)

}
∑n

i=1E
(r)
i2

β2 =

∑n
i=1

{
(yi2−β0)

(
A

(r)
i2 −ψf

(r)
2 (yi1,yi2)

)
−β1

(
A

(r)
i4 −ψA

(r)
i2

)}
f (r)(yi1,yi2)∑n

i=1
A

(r)
i4 −2ψA

(r)
i2 +ψ2f

(r)
2 (yi1,yi2)

f (r)(yi1,yi2)

σ2
b =

∑n
i=1

{
E

(r)
i2 − 2µbE

(r)
i1 + µ2

b

}
n

σ2
e =

1

2n

n∑
i=1

{
y2i1 + (yi2 − β0)2 − 2yi1E

(r)
i1 + E

(r)
i2 − 2(yi2 − β0)

[
β1E

(r)
i1

+
β2(A

(r)
i2 − ψf

(r)
2 (yi1, yi2))

f (r)(yi1, yi2)

]
+ β2

1E
(r)
i2

+
2β1β2(A

(r)
i4 − ψA

(r)
i2 ) + β2

2(A
(r)
i4 − 2ψA

(r)
i2 + ψ2f

(r)
2 (yi1, yi2))

f (r)(yi1, yi2)

}
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ψ =

∑n
i=1

{
(β1+β2)A

(r)
i2 −(yi2−β0)f

(r)
2 (yi1,yi2)

f (r)(yi1,yi2)

}
β2
∑n

i=1
f
(r)
2 (yi1,yi2)

f (r)(yi1,yi2))

. (B.6)

Taken together, the E and CM steps in the rth iteration of our ECM algorithm are as follows:

E-step: Compute A
(r)
i1 , . . . , A

(r)
i4 and hence the conditional expectations in Q(θ|θ(r)).

CM-step 1: Update µb by maximizing Q(θ|θ(r)) with respect to µb while holding all other

parameters at their current values. This yields µ
(r+1)
b as the value of µb given in (B.6).

CM-step 2: Update β0 by maximizing Q(θ|θ(r)) with respect to β0 while holding µb at the

updated value and all other parameters at their current values. This yields β
(r+1)
0 as the

value of β0 given in (B.6).

CM-step 3: Update β1 by maximizing Q(θ|θ(r)) with respect to β1 while holding µb and β0

at their updated values and all other parameters at their current values. This yields β
(r+1)
1

as the value of β1 given in (B.6).

CM-step 4: Update β2 by maximizing Q(θ|θ(r)) with respect to β2 while holding µb, β0,

and β1 at their updated values and all other parameters at their current values. This yields

β
(r+1)
2 as the value of β2 given in (B.6).

CM-step 5: Update σ2
b by maximizing Q(θ|θ(r)) with respect to σ2

b while holding µb, β0,

β1, and β2 at their updated values and all other parameters at their current values. This

yields σ
2,(r+1)
b as the value of σ2

b given in (B.6).

CM-step 6: Update σ2
e by maximizing Q(θ|θ(r)) with respect to σ2

e while holding µb, β0,

β1, β2, and σ2
b at their updated values and all other parameters at their current values. This

yields σ
2,(r+1)
e as the value of σ2

e given in (B.6).

CM-step 7: Update ψ by maximizing Q(θ|θ(r)) with respect to ψ while holding all other

parameters at their updated values. This yields ψ(r+1) as the value of ψ given in (B.6).
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Figure 1: Scatterplot for log-scale digoxin data superimposed with the estimated straight

line for E(Y2|b) under the classical model (dotted line) given by (2) and the piecewise straight

line (solid and dashed lines) under the segmented model given by (6).
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Figure 2: Bland-Altman plot for log-scale digoxin data superimposed with a horizontal line

at zero.
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Table 1: Parameter settings for simulation study.

Setting (µb, β0, β1, β2, log(σ2
e), log(σ2

b ), ψ)

1a (0.180,−0.292, 0.461, 0.480,−4.871, 0.172,−0.707)

2a (−0.005,−0.387, 0.406, 0.417,−4.871, 0.172,−0.707)

3a (0.365,−0.197, 0.516, 0.543,−4.871, 0.172,−0.707)

4a (0.180,−0.292, 0.461, 0.480,−5.110,−0.069,−0.707)

5a (0.180,−0.292, 0.461, 0.480,−4.632, 0.413,−0.707)
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Table 2: Bias, MSE, and ratio of MSEs of estimates obtained by ECM and direct maximiza-

tion (DIR) and coverage probabilities for 95% standard and bootstrap confidence intervals

in case of n = 30.

Bias MSE
Coverage Probability

MSE Standard Bootstrap

Parameter ECM DIR ECM DIR Ratio ECM DIR ECM DIR

µb -0.002 -0.002 0.037 0.037 1.000 0.930 0.930 0.908 0.908

β0 -0.060 -0.065 0.047 0.054 0.872 0.866 0.862 0.928 0.928

β1 -0.044 -0.049 0.026 0.031 0.835 0.886 0.884 0.938 0.956

β2 0.050 0.055 0.026 0.032 0.826 0.892 0.890 0.938 0.954

log(σ2
e) -0.154 -0.154 0.089 0.089 0.999 0.922 0.922 0.950 0.952

log(σ2
b ) -0.118 -0.118 0.076 0.076 1.000 0.924 0.924 0.938 0.938

ψ -0.001 -0.001 0.049 0.048 1.018 0.832 0.834 0.872 0.890

β − β2ψ -0.004 -0.004 0.001 0.001 1.017 0.894 0.898 0.908 0.910

β1 + β2 0.005 0.005 0.001 0.001 1.023 0.916 0.922 0.940 0.944

z(CCC) (L)† -0.034 -0.037 0.054 0.058 0.939 0.918 0.918 0.952 0.964

z(CCC) (R)† -0.013 -0.013 0.027 0.027 0.993 0.966 0.966 0.980 0.980

log(TDI) (L)† -0.030 -0.026 0.048 0.050 0.949 0.928 0.924 0.950 0.966

log(TDI) (R)† -0.033 -0.034 0.021 0.021 1.003 0.912 0.910 0.952 0.952

† L and R respectively denote left and right segments.
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Table 3: Bias, MSE, and ratio of MSEs of estimates obtained by ECM and direct maximiza-

tion (DIR) and coverage probabilities for 95% standard and bootstrap confidence intervals

in case of n = 50.

Bias MSE
Coverage Probability

MSE Standard Bootstrap

Parameter ECM DIR ECM DIR Ratio ECM DIR ECM DIR

µb 0.008 0.008 0.024 0.024 1.000 0.934 0.934 0.914 0.914

β0 -0.036 -0.035 0.022 0.023 0.936 0.896 0.890 0.940 0.940

β1 -0.024 -0.023 0.012 0.013 0.928 0.916 0.908 0.952 0.956

β2 0.025 0.024 0.012 0.013 0.930 0.926 0.920 0.964 0.960

log(σ2
e) -0.066 -0.066 0.040 0.040 1.001 0.952 0.952 0.964 0.964

log(σ2
b ) -0.084 -0.084 0.045 0.045 1.000 0.922 0.922 0.930 0.930

ψ -0.012 -0.009 0.027 0.028 0.965 0.858 0.850 0.906 0.910

β − β2ψ -0.002 -0.003 0.001 0.001 0.997 0.934 0.934 0.930 0.932

β1 + β2 0.002 0.002 0.001 0.001 0.997 0.944 0.944 0.968 0.962

z(CCC) (L)† -0.022 -0.019 0.027 0.029 0.940 0.944 0.942 0.970 0.972

z(CCC) (R)† -0.023 -0.023 0.015 0.015 0.995 0.978 0.978 0.982 0.982

log(TDI) (L)† -0.030 -0.033 0.029 0.030 0.951 0.908 0.904 0.952 0.956

log(TDI) (R)† -0.007 -0.008 0.009 0.009 0.998 0.960 0.960 0.978 0.978

† L and R respectively denote left and right segments.
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Table 4: Bias, MSE, and ratio of MSEs of estimates obtained by ECM and direct maximiza-

tion (DIR) and coverage probabilities for 95% standard and bootstrap confidence intervals

in case of n = 100.

Bias MSE
Coverage Probability

MSE Standard Bootstrap

Parameter ECM DIR ECM DIR Ratio ECM DIR ECM DIR

µb -0.004 -0.004 0.012 0.012 1.000 0.936 0.936 0.938 0.938

β0 -0.008 -0.008 0.008 0.009 0.981 0.912 0.910 0.952 0.952

β1 -0.005 -0.005 0.004 0.004 0.980 0.904 0.902 0.952 0.952

β2 0.006 0.007 0.004 0.004 0.982 0.926 0.926 0.958 0.956

log(σ2
e) 0.011 0.011 0.017 0.017 1.000 0.972 0.972 0.956 0.956

log(σ2
b ) -0.069 -0.069 0.025 0.025 1.000 0.926 0.926 0.946 0.946

ψ 0.004 0.004 0.013 0.013 0.991 0.910 0.908 0.938 0.940

β − β2ψ -0.001 -0.001 0.000 0.000 0.999 0.942 0.940 0.962 0.960

β1 + β2 0.001 0.001 0.000 0.000 1.000 0.942 0.940 0.954 0.954

z(CCC) (L)† -0.009 -0.009 0.012 0.012 0.985 0.962 0.962 0.970 0.970

z(CCC) (R)† -0.040 -0.040 0.009 0.009 1.000 0.992 0.992 0.986 0.986

log(TDI) (L)† -0.029 -0.028 0.015 0.015 0.995 0.912 0.908 0.946 0.948

log(TDI) (R)† 0.012 0.012 0.006 0.006 0.999 0.970 0.970 0.980 0.980

† L and R respectively denote left and right segments.
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Table 5: Estimated type I error probabilities for the test of changepoint for when the null

distribution of the likelihood ratio test statistic is approximated by χ2 distributions with 2

and 3 degrees of freedom and bootstrap.

ECM DIR

Setting n χ2
2 χ2

3 Bootstrap χ2
2 χ2

3 Bootstrap

1b 30 0.066 0.024 0.052 0.064 0.024 0.052

50 0.068 0.028 0.056 0.054 0.018 0.060

100 0.044 0.026 0.044 0.036 0.014 0.042

2b 30 0.074 0.038 0.056 0.060 0.026 0.054

50 0.076 0.036 0.064 0.048 0.018 0.052

100 0.046 0.012 0.034 0.016 0.008 0.020

3b 30 0.064 0.032 0.054 0.048 0.022 0.060

50 0.040 0.024 0.036 0.028 0.012 0.050

100 0.048 0.018 0.050 0.020 0.012 0.054

4b 30 0.052 0.026 0.050 0.044 0.028 0.044

50 0.044 0.024 0.044 0.030 0.018 0.036

100 0.054 0.026 0.058 0.040 0.018 0.056

5b 30 0.052 0.024 0.046 0.040 0.022 0.046

50 0.052 0.020 0.050 0.050 0.028 0.068

100 0.040 0.022 0.036 0.024 0.008 0.030
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Table 6: Estimates of bias and MSE for measures of similarity and agreement when the

classical model is naively fit while the true model is segmented with parameters given by

setting 1a.

n = 30 n = 100

Naive Proposed Naive Proposed

Measure True Bias MSE Bias MSE Bias MSE Bias MSE

Left Segment

Intercept −0.292 0.413 0.172 −0.058 0.049 0.415 0.173 −0.015 0.006

Slope 0.461 0.389 0.153 −0.043 0.028 0.387 0.150 −0.009 0.003

z(CCC) 0.517 1.544 2.429 −0.035 0.049 1.520 2.325 −0.011 0.009

log(TDI) −0.181 −0.706 0.562 0.008 0.057 −0.667 0.464 −0.001 0.011

Right Segment

Intercept 0.047 0.074 0.007 −0.003 0.001 0.076 0.006 −0.001 0.000

Slope 0.941 −0.091 0.010 0.002 0.001 −0.093 0.009 0.000 0.000

z(CCC) 2.487 −0.427 0.228 0.010 0.032 −0.451 0.218 0.000 0.008

log(TDI) −1.514 0.627 0.458 −0.033 0.022 0.666 0.463 −0.010 0.006
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Table 7: ML estimates, their standard errors (SE), and 95% confidence intervals (CI) for

parameters of the segmented model (6) for digoxin data.

Parameter Estimate SE 95% CI

µb 0.18 0.09 (0.00, 0.36)

β0 −0.29 0.05 (−0.42,−0.16)

β1 0.46 0.03 (0.38, 0.55)

β2 0.48 0.03 (0.39, 0.57)

log(σ2
e) −4.87 0.12 (−5.07,−4.59)

log(σ2
b ) 0.17 0.12 (−0.05, 0.44)

ψ −0.71 0.13 (−0.90,−0.52)

Table 8: Summary of estimates for segment-specific measures of similarity and agreement.

Two-sided confidence intervals are presented for similarity measures and one-sided confidence

intervals are presented for agreement measures. The intercept and slope respectively refer

to β0 and β1 in the left segment and β0 − β2ψ and β1 + β2 in the right segment.

Left Segment Right Segment

Measure Estimate SE 95% CI Estimate SE 95% CI

Intercept −0.29 0.05 (−0.42,−0.16) 0.05 0.02 (0.02, 0.08)

Slope 0.46 0.03 (0.38, 0.55) 0.94 0.03 (0.91, 0.97)

z(CCC) 0.52 0.08 (0.37,∞) 2.49 0.09 (2.37,∞)

log{TDI(0.90)} −0.18 0.09 (−∞, 0.04) −1.51 0.09 (−∞,−1.40)
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S1 Distribution theory under the segmented model

We now present some distributional results under the segmented model (3) that are of interest

in this article. Their proofs are available elsewhere.1, Chapter 3 Let φ(x) and Φ(x) respectively

denote the probability density function and the cumulative distribution function of a N(0, 1)

distribution. Next, define the following quantities:

g1(x, µ, σ) =
x− µ
σ

,

g2(x, µ, σ) =
φ (g1(x, µ, σ))

1− Φ (g1(x, µ, σ))
,

g3(x, µ, σ) =
φ (g1(x, µ, σ))

Φ (g1(x, µ, σ))
,

g4(β, σ1, σ2) =

(
1

σ2
1

+
(β1 + β)2

σ2
2

+
1

σ2
b

)−1
,

g5(β, σ1, σ2) =

(
y1
σ2
1

+
(y2 − β0 + βψ)(β1 + β)

σ2
2

+
µb
σ2
b

)
,

g6(β, σ1, σ2) = g4(β, σ1, σ2)g5(β, σ1, σ2),

g7(β, µ, σ
2, σ1, σ2) =

√
2πσ2√
σ2
1σ

2
2σ

2
b

φ

(
y1
σ1

)
φ

(
y2 − β0 + βψ

σe2

)
φ

(
µb
σb

)
exp

(
µ2

2σ2

)
. (S1)

The functions g4 to g7 depend on other quantities as well in addition to those explicitly spec-

ified as the arguments. However, this dependence is suppressed for notational convenience.

Proposition S1. Consider (Y1, Y2) following the model (3). The mean and variance of Y1

and Y2 and their covariance are as follows:

(a) E(Y1) = µb and var(Y1) = σ2
b + σ2

e ,

S1



(b) E(Y2) = β0 + β1µb + β2m1 and var(Y2) = β2
1σ

2
b + β2

2m3 + 2β1β2m4 + σ2
e ,

(c) cov(Y1, Y2) = β1σ
2
b + β2m4,

where

m1 = E[(b− ψ)+] = {1− Φ (g1(ψ, µb, σb))} (µb − ψ) + φ (g1(ψ, µb, σb))σb,

m2 = E
[
{(b− ψ)+}2

]
= {1− Φ (g1(ψ, µb, σb))}

{
(µb − ψ)2 + σ2

b

}
+
(
g1(ψ, µb, σb)σ

2
b + 2µbσb − 2ψσb

)
φ (g1(ψ, µb, σb)) ,

m3 = var [(b− ψ)+] = m2 −m2
1,

m4 = cov [b, (b− ψ)+] = {1− Φ (g1(ψ, µb, σb))}σ2
b

+
{
g1(ψ, µb, σb)σ

2
b + µbσb − ψσb

}
φ (g1(ψ, µb, σb)) . (S2)

Proposition S2. Consider (Y1, Y2) following the model (3). The mean and variance of Y1

and Y2 and their covariance when b is truncated to be either b ≤ ψ or b > ψ are as follows:

(a) E(Y1|b ≤ ψ) = E(b|b ≤ ψ) and var(Y1|b ≤ ψ) = var(b|b ≤ ψ) + σ2
e ,

(b) E(Y2|b ≤ ψ) = β0 + β1E(b|b ≤ ψ) and var(Y2|b ≤ ψ) = β2
1var(b|b ≤ ψ) + σ2

e ,

(c) cov(Y1, Y2|b ≤ ψ) = β1var(b|b ≤ ψ),

(d) E(Y1|b > ψ) = E(b|b > ψ) and var(Y1|b > ψ) = var(b|b > ψ) + σ2
e ,

(e) E(Y2|b > ψ) = (β0−β2ψ)+(β1+β2)E(b|b > ψ) and var(Y2|b > ψ) = (β1+β2)
2var(b|b >

ψ) + σ2
e ,

(f) cov(Y1, Y2|b > ψ) = (β1 + β2)var(b|b > ψ),

where

E(b|b ≤ ψ) = µb − σbg3(ψ, µb, σb),

var(b|b ≤ ψ) = σ2
b

{
1− g1(ψ, µb, σb)g3(ψ, µb, σb)− g23(ψ, µb, σb)

}
.

S2



E(b|b > ψ) = µb + σbg2(ψ, µb, σb),

var(b|b > ψ) = σ2
b

{
1 + g1(ψ, µb, σb)g2(ψ, µb, σb)− g22(a1, µb, σb)

}
. (S3)

Proposition S3. The joint probability density function of (Y1, Y2) following the model (3)

is

f(y1, y2) = f1(y1, y2) + f2(y1, y2), (S4)

where

f1(y1, y2) =

∫ ψ

−∞
f(b, y1, y2)db = g7(0, g6(0, σe, σe), g4(0, σe, σe), σe, σe)

× Φ
(
g1(ψ, g6(0, σe, σe),

√
g4(0, σe, σe))

)
f2(y1, y2) =

∫ ∞
ψ

f(b, y1, y2)db = g7(β2, g6(β2, σe, σe), g4(β2, σe, σe), σe, σe)

×
[
1− Φ

(
g1

(
ψ, g6(β2, σe, σe),

√
g4(β2, σe, σe)

))]
. (S5)

Proposition S4. Consider (Y1, Y2) following the model (3). The probability density function

of D = Y2 − Y1 is

h(d) = h1(d) + h2(d), (S6)

where

h1(d) =

∫ ψ

−∞
f(d, b)db =

√
2πc1√
σ2σ2

b

φ

(
d− β0
σ

)
φ

(
µb
σb

)
exp

(
c22
2c1

)
Φ(g1(ψ, c2,

√
c1),

h2(d) =

∫ ∞
ψ

f(d, b)db =

√
2πc3√
σ2σ2

b

φ

(
d− β0 + β2ψ

σ

)
φ

(
µb
σb

)
exp

(
c24
2c3

)
× [1− Φ(g1(ψ, c4,

√
c3))] , (S7)

and

σ2 = 2σ2
e ,

c1 =

(
(β1 − 1)2

σ2
+

1

σ2
b

)−1
,

c2 =

(
(d− β0)(β1 − 1)

σ2
+
µb
σ2
b

)
c1
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c3 =

(
(β1 + β2 − 1)2

σ2
+

1

σ2
b

)−1
c4 =

(
(d− β0 + β2ψ)(β1 + β2 − 1)

σ2
+
µb
σ2
b

)
c3. (S8)

Proposition S5. Consider (Y1, Y2) following the model (3). The probability density function

of D = Y2 − Y1 when b is truncated to be either b ≤ ψ or b > ψ are as follows:

h(d|b ≤ ψ) =
h1(d)

Φ(g1(ψ, µb, σb))
, h(d|b > ψ) =

h2(d)

1− Φ(g1(ψ, µb, σb))
, (S9)

where h1(d) and h2(d) are given by (S7) in Proposition S4.

Proposition S6. Consider (Y1, Y2) following the model (3). The first and second moments

of b and (b− ψ)+ conditional on (Y1, Y2) = (y1, y2) are as follows:

(a) E[b|y1, y2] = (A1 + A2)/f(y1, y2),

(b) E[b2|y1, y2] = (A3 + A4)/f(y1, y2),

(c) E [(b− ψ)+|y1, y2] = (A2 − ψf2(y1, y2))/f(y1, y2),

(d) E [{(b− ψ)+}2|y1, y2] = (A4 − 2ψA2 + ψ2f2(y1, y2))/f(y1, y2),

(e) E [b(b− ψ)+|y1, y2] = (A4 − ψA2)/f(y1, y2),

where

A1 =

∫ ψ

−∞
bf(b, y1, y2)db = f1(y1, y2)

{
g6(0, σe, σe)−

√
g4(0, σe, σe)

×g3
(
ψ, g6(0, σe, σe),

√
g4(0, σe, σe)

)}
A2 =

∫ ∞
ψ

bf(b, y1, y2)db = f2(y1, y2)
{
g6(β2, σe, σe) +

√
g4(β2, σe, σe)

×g2
(
ψ, g6(β2, σe, σe),

√
g4(β2, σe, σe)

)}
A3 =

∫ ψ

−∞
b2f(b, y1, y2)db = f1(y1, y2)

{
g4(0, σe, σe) + g26(0, σe, σe)

−g1(ψ, g6(0, σe, σe),
√
g4(0, σe, σe))
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×g4(0, σe, σe)g3
(
ψ, g6(0, σe, σe),

√
g4(0, σe, σe)

)
−2
√
g4(0, σe, σe)g6(0, σe, σe)g3

(
ψ, g6(0, σe, σe),

√
g4(0, σe, σe)

)}
A4 =

∫ ∞
ψ

b2f(b, y1, y2)db = f2(y1, y2)
{
g4(β2, σe, σe) + g26(β2, σe, σe)

+g1(ψ, g6(β2, σe, σe),
√
g4(β2, σe, σe))

×g4(β2, σe, σe)g2
(
ψ, g6(β2, σe, σe),

√
g4(β2, σe, σe)

)
+2
√
g4(β2, σe, σe)g6(β2, σe, σe)g2

(
ψ, g6(β2, σe, σe),

√
g4(β2, σe, σe)

)}
, (S10)

and f1, f2, and f are given by S4 and (S5) in Proposition S3.

Proposition S7. Consider the model (3). The best linear predictor of b using (Y1, Y2) is

b̂ = µb + [σ2
b , β1σ

2
b + β2m4]

(
var
([

Y1
Y2

]))−1 [ Y1−µb
Y2−E(Y2)

]
, (S11)

where m4 is given by (S2) and the moments involved are given by Proposition S1.

This result can be used to get the fitted values under the model.

S2 ECM algorithm for model fitting

To develop the ECM algorithm, we take bi in (6) as the missing data and (bi, Yi1, Yi2) as the

complete data for the ith subject. The logarithm of the joint density f(b, y1, y2|θ) can be

written as

log{f(b, y1, y2|θ)} = log f{(y1|b,θ)}+ log{f(y2|b,θ)}+ log{f(b|θ)}

= c− 1

2σ2
e

(
−2y1b+ b2

)
− 1

2σ2
e

{
−2(y2 − β0)(β1b+ β2 (b− ψ)+)

+
(
β2
1b

2 + 2β1β2b (b− ψ)+
)

+ β2
2 (b− ψ)2+

}
− 1

2σ2
b

(
b2 − 2µbb

)
,

(S12)

where c consists of terms that do not involve b and is given as

c = −3

2
log(2π)− 1

2
log(σ2

e)−
1

2
log(σ2

e)−
1

2
log(σ2

b )−
1

2σ2
e

y21−
1

2σ2
e

(y2 − β0)2−
1

2σ2
b

µ2
b . (S13)
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It follows that the complete data log-likelihood function is

n∑
i=1

log{f(bi, yi1, yi2|θ)}

=
n∑
i=1

{
ci −

1

2σ2
e

(
−2yi1bi + b2i

)
− 1

2σ2
e

{
−2(yi2 − β0)(β1bi + β2 (bi − ψ)+)

+
(
β2
1b

2
i + 2β1β2bi (bi − ψ)+

)
+ β2

2 (bi − ψ)2+
}
− 1

2σ2
b

(
b2i − 2µbbi

)}
, (S14)

where ci is the value of c given by (S13) evaluated for the ith subject.

In the rth ECM iteration, let θ(r) be the value of θ and Q(θ|θ(r)) be the expectation of the

complete data log-likelihood (S14) with respect to the conditional distribution of bi|yi1, yi2

evaluated at θ(r), i.e., E
[∑n

i=1 log{f(bi, yi1, yi2|θ)}|yi1, yi2,θ(r)
]
. Letting E(r) denote the

expectation over the conditional distribution of bi|yi1, yi2 evaluated at θ(r), which can be

computed using the expressions given by Proposition S6 in Section S1, we can write

Q(θ|θ(r)) =
n∑
i=1

{
ci −

1

2σ2
e

(
−2yi1E

(r)[bi] + E(r)[b2i ]
)
− 1

2σ2
e

{−2(yi2 − β0)

(
β1E

(r)[bi] + β2E
(r) [(bi − ψ)+

])
+ β2

1E
(r)[b2i ]

+2β1β2E
(r)
[
bi (bi − ψ)+

]
+ β2

2E
(r) [(bi − ψ)2+

]}
− 1

2σ2
b

(
E(r)[b2i ]− 2µbE

(r)[bi]
)}

. (S15)

Next, we find derivative of Q(θ|θ(r)) with respect to θ so that we can perform the CM

steps. For this, let E
(r)
i1 and E

(r)
i2 respectively denote the values of E(r)[bi] and E(r)[b2i ] and

A
(r)
i1 , . . . , A

(r)
i4 respectively denote the values of A1, . . . , A4 given by (S10) in Proposition S6,

evaluated at (θ, y1, y2) = (θ(r), yi1, yi2). Further, let f (r)(yi1, yi2) denote the value of f(y1, y2)

given by (S4) in Proposition S3, also evaluated at (θ, y1, y2) = (θ(r), yi1, yi2). The derivatives

of Q(θ|θ(r)) with respect to the elements of θ are as follows:

∂Q(θ|θ(r))
∂µb

= − 1

2σ2
b

n∑
i=1

2
{
−E(r)

i1 + µb

}
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∂Q(θ|θ(r))
∂β0

= − 1

2σ2
e

n∑
i=1

2

β1E(r)
i1 +

β2

(
A

(r)
i2 − ψf

(r)
2 (yi1, yi2)

)
f (r)(yi1, yi2)

− (yi2 − β0)


∂Q(θ|θ(r))

∂β1
= − 1

2σ2
e

n∑
i=1

2

{
−(yi2 − β0)E(r)

i1 + β1E
(r)
i2 +

β2(A
(r)
i4 − ψA

(r)
i2 )

f (r)(yi1, yi2)

}

∂Q(θ|θ(r))
∂β2

= − 1

2σ2
e

n∑
i=1

2

−(yi2 − β0)
(
A

(r)
i2 − ψf

(r)
2 (yi1, yi2)

)
+ β1(A

(r)
i4 − ψA

(r)
i2 )

f (r)(yi1, yi2)

+
β2(A

(r)
i4 − 2ψA

(r)
i2 + ψ2f

(r)
2 (yi1, yi2)

f (r)(yi1, yi2)

}
∂Q(θ|θ(r))

∂σ2
b

= − n

2σ2
b

+
1

2σ4
b

n∑
i=1

{
E

(r)
i2 − 2µbE

(r)
i1 + µ2

b

}
∂Q(b, Y1, Y2)

∂σ2
e

= − n

σ2
e

+
1

2σ4
e

n∑
i=1

{
−2(Yi2 − β0)

[
β1E

(r)
i1 +

β2(A
(r)
i2 − ψf

(r)
2 (Yi1, Yi2))

f (r)(Yi1, Yi2)

]

+β2
1E

(r)
i2 +

2β1β2(A
(r)
i4 − ψA

(r)
i2 ) + β2

2(A
(r)
i4 − 2ψA

(r)
i2 + ψ2f

(r)
2 (Yi1, Yi2))

f (r)(Yi1, Yi2)

+(Yi2 − β0)2 − 2Yi1E
(r)
i1 + E

(r)
i2 + Y 2

i1

}

∂Q(θ|θ(r))
∂ψ

= − 1

2σ2
e

n∑
i=1

2


(yi2 − β0)β2f (r)

2 (yi1, yi2)− β1β2A(r)
i2

+ β2
2(−A(r)

i2 + ψf
(r)
2 (yi1, yi2))

f (r)(yi1, yi2)

 (S16)

By setting each of the derivatives in (S16) equal to zero and solving for the corresponding

parameter, we get:

µb =

∑n
i=1E

(r)
i1

n

β0 =

∑n
i=1

{
yi2 − β1E(r)

i1 −
β2
(
A

(r)
i2 −ψf

(r)
2 (yi1,yi2)

)
f (r)(yi1,yi2)

}
n

β1 =

∑n
i=1

{
(yi2 − β0)E(r)

i1 −
β2
(
A

(r)
i4 −ψA

(r)
i2

)
f (r)(yi1,yi2)

}
∑n

i=1E
(r)
i2

β2 =

∑n
i=1

{
(yi2−β0)

(
A

(r)
i2 −ψf

(r)
2 (yi1,yi2)

)
−β1

(
A

(r)
i4 −ψA

(r)
i2

)}
f (r)(yi1,yi2)∑n

i=1
A

(r)
i4 −2ψA

(r)
i2 +ψ2f

(r)
2 (yi1,yi2)

f (r)(yi1,yi2)
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σ2
b =

∑n
i=1

{
E

(r)
i2 − 2µbE

(r)
i1 + µ2

b

}
n

σ2
e =

1

2n

n∑
i=1

{
y2i1 + (yi2 − β0)2 − 2yi1E

(r)
i1 + E

(r)
i2 − 2(yi2 − β0)

[
β1E

(r)
i1

+
β2(A

(r)
i2 − ψf

(r)
2 (yi1, yi2))

f (r)(yi1, yi2)

]
+ β2

1E
(r)
i2

+
2β1β2(A

(r)
i4 − ψA

(r)
i2 ) + β2

2(A
(r)
i4 − 2ψA

(r)
i2 + ψ2f

(r)
2 (yi1, yi2))

f (r)(yi1, yi2)

}

ψ =

∑n
i=1

{
(β1+β2)A

(r)
i2 −(yi2−β0)f

(r)
2 (yi1,yi2)

f (r)(yi1,yi2)

}
β2
∑n

i=1
f
(r)
2 (yi1,yi2)

f (r)(yi1,yi2))

. (S17)

Taken together, the E and CM steps in the rth iteration of our ECM algorithm are as follows:

E-step: Compute A
(r)
i1 , . . . , A

(r)
i4 and hence the conditional expectations in Q(θ|θ(r)).

CM-step 1: Update µb by maximizing Q(θ|θ(r)) with respect to µb while holding all other

parameters at their current values. This yields µ
(r+1)
b as the value of µb given in (S17).

CM-step 2: Update β0 by maximizing Q(θ|θ(r)) with respect to β0 while holding µb at the

updated value and all other parameters at their current values. This yields β
(r+1)
0 as the

value of β0 given in (S17).

CM-step 3: Update β1 by maximizing Q(θ|θ(r)) with respect to β1 while holding µb and β0

at their updated values and all other parameters at their current values. This yields β
(r+1)
1

as the value of β1 given in (S17).

CM-step 4: Update β2 by maximizing Q(θ|θ(r)) with respect to β2 while holding µb, β0,

and β1 at their updated values and all other parameters at their current values. This yields

β
(r+1)
2 as the value of β2 given in (S17).

CM-step 5: Update σ2
b by maximizing Q(θ|θ(r)) with respect to σ2

b while holding µb, β0,

β1, and β2 at their updated values and all other parameters at their current values. This

yields σ
2,(r+1)
b as the value of σ2

b given in (S17).
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CM-step 6: Update σ2
e by maximizing Q(θ|θ(r)) with respect to σ2

e while holding µb, β0,

β1, β2, and σ2
b at their updated values and all other parameters at their current values. This

yields σ
2,(r+1)
e as the value of σ2

e given in (S17).

CM-step 7: Update ψ by maximizing Q(θ|θ(r)) with respect to ψ while holding all other

parameters at their updated values. This yields ψ(r+1) as the value of ψ given in (S17).

The algorithm begins with a starting point and the above steps are iterated until conver-

gence. As is true with any EM-type algorithm, one needs to try a number of starting points

to have some assurance that the algorithm converges to a global maxima θ̂.

S3 Impact of Model Violations

To assess the impact of equal error variance assumption in (6), we conduct a simulation study

as in Section 5 by simulating data under setting 5a but with the change that σ2
e2 = 2σ2

e1 and

σ2
e2 = 4σ2

e1 (instead of σ2
e1 = σ2

e2 = σ2
e). The results for the model parameters are presented

in Table S4 in the next section. The common variance σ2
e is omitted from the table as it

does not have a counterpart under the true model.

To assess the impact of non-normality of b in (6), we again simulate data using setting 5a

but with two types of deviations from normality. In one, b follows a tν distribution with center

µb and scale σb with degrees of freedom ν = 3 and 5. In the other, b follows a contaminated

normal distribution, specifically a 90:10 mixture of two normals where the first component

follows N(µb, σ
2
b ) and the second component follows N(µb1, σ

2
b1) with (µb1, σb1) = (4µb, σb)

and (µb, 4σb). The results for the model parameters are presented in Tables S5 and S6 in the

next section. The parameter σ2
b is omitted from the tables as its interpretation under the

true model is not the same as in the assumed model.

S9



S4 Figures and Tables
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Figure S1: Bland-Altman plot for log-scale digoxin data superimposed with a horizontal line

at zero.
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Table S1: Bias, MSE, and ratio of MSEs of estimates obtained by ECM and direct maximiza-

tion (DIR) and coverage probabilities for 95% standard and bootstrap confidence intervals

in case of setting 1a with n = 50.

Bias MSE
Coverage Probability

MSE Standard Bootstrap

Parameter† ECM DIR ECM DIR Ratio ECM DIR ECM DIR

µb 0.008 0.008 0.024 0.024 1.000 0.934 0.934 0.914 0.914

β0 -0.036 -0.035 0.022 0.023 0.936 0.896 0.890 0.940 0.940

β1 -0.024 -0.023 0.012 0.013 0.928 0.916 0.908 0.952 0.956

β2 0.025 0.024 0.012 0.013 0.930 0.926 0.920 0.964 0.960

log(σ2
e) -0.066 -0.066 0.040 0.040 1.001 0.952 0.952 0.964 0.964

log(σ2
b ) -0.084 -0.084 0.045 0.045 1.000 0.922 0.922 0.930 0.930

ψ -0.012 -0.009 0.027 0.028 0.965 0.858 0.850 0.906 0.910

β − β2ψ -0.002 -0.003 0.001 0.001 0.997 0.934 0.934 0.930 0.932

β1 + β2 0.002 0.002 0.001 0.001 0.997 0.944 0.944 0.968 0.962

z(CCC) (L) -0.022 -0.019 0.027 0.029 0.940 0.944 0.942 0.970 0.972

z(CCC) (R) -0.023 -0.023 0.015 0.015 0.995 0.978 0.978 0.982 0.982

log(TDI) (L) -0.030 -0.033 0.029 0.030 0.951 0.908 0.904 0.952 0.956

log(TDI) (R) -0.007 -0.008 0.009 0.009 0.998 0.960 0.960 0.978 0.978

† L and R respectively denote left and right segments.
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Table S2: Bias, MSE, and ratio of MSEs of estimates obtained by ECM and direct maximiza-

tion (DIR) and coverage probabilities for 95% standard and bootstrap confidence intervals

in case of setting 1a with n = 100.

Bias MSE
Coverage Probability

MSE Standard Bootstrap

Parameter † ECM DIR ECM DIR Ratio ECM DIR ECM DIR

µb -0.004 -0.004 0.012 0.012 1.000 0.936 0.936 0.938 0.938

β0 -0.008 -0.008 0.008 0.009 0.981 0.912 0.910 0.952 0.952

β1 -0.005 -0.005 0.004 0.004 0.980 0.904 0.902 0.952 0.952

β2 0.006 0.007 0.004 0.004 0.982 0.926 0.926 0.958 0.956

log(σ2
e) 0.011 0.011 0.017 0.017 1.000 0.972 0.972 0.956 0.956

log(σ2
b ) -0.069 -0.069 0.025 0.025 1.000 0.926 0.926 0.946 0.946

ψ 0.004 0.004 0.013 0.013 0.991 0.910 0.908 0.938 0.940

β − β2ψ -0.001 -0.001 0.000 0.000 0.999 0.942 0.940 0.962 0.960

β1 + β2 0.001 0.001 0.000 0.000 1.000 0.942 0.940 0.954 0.954

z(CCC) (L) -0.009 -0.009 0.012 0.012 0.985 0.962 0.962 0.970 0.970

z(CCC) (R) -0.040 -0.040 0.009 0.009 1.000 0.992 0.992 0.986 0.986

log(TDI) (L) -0.029 -0.028 0.015 0.015 0.995 0.912 0.908 0.946 0.948

log(TDI) (R) 0.012 0.012 0.006 0.006 0.999 0.970 0.970 0.980 0.980

† L and R respectively denote left and right segments.
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Table S3: Estimates of bias and MSE for measures of similarity and agreement when the

classical model is naively fit while the true model is segmented with parameters given by

setting 1a.

n = 30 n = 100

Naive Proposed Naive Proposed

Measure True Bias MSE Bias MSE Bias MSE Bias MSE

Left Segment

Intercept −0.292 0.413 0.172 −0.058 0.049 0.415 0.173 −0.015 0.006

Slope 0.461 0.389 0.153 −0.043 0.028 0.387 0.150 −0.009 0.003

z(CCC) 0.517 1.544 2.429 −0.035 0.049 1.520 2.325 −0.011 0.009

log(TDI) −0.181 −0.706 0.562 0.008 0.057 −0.667 0.464 −0.001 0.011

Right Segment

Intercept 0.047 0.074 0.007 −0.003 0.001 0.076 0.006 −0.001 0.000

Slope 0.941 −0.091 0.010 0.002 0.001 −0.093 0.009 0.000 0.000

z(CCC) 2.487 −0.427 0.228 0.010 0.032 −0.451 0.218 0.000 0.008

log(TDI) −1.514 0.627 0.458 −0.033 0.022 0.666 0.463 −0.010 0.006
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Table S4: Bias and MSE of estimates obtained by ECM and coverage probability (CP) of

95% bootstrap confidence intervals in case of n = 50 under setting 5a with equal and unequal

error variances.

σ2
e2 = σ2

e1 σ2
e2 = 2σ2

e1 σ2
e2 = 4σ2

e1

Parameter Bias MSE CP Bias MSE CP Bias MSE CP

µb −0.007 0.032 0.934 −0.007 0.029 0.942 0.016 0.030 0.948

β0 −0.016 0.015 0.960 −0.023 0.030 0.926 −0.112 0.133 0.918

β1 −0.008 0.006 0.964 −0.010 0.012 0.944 −0.052 0.043 0.920

β2 0.009 0.006 0.968 0.016 0.012 0.956 0.064 0.041 0.932

log(σ2
b ) −0.083 0.051 0.940 −0.055 0.046 0.948 −0.042 0.039 0.964

ψ −0.001 0.032 0.930 0.016 0.058 0.886 −0.031 0.121 0.866

Table S5: Bias and MSE of estimates obtained by ECM and coverage probability (CP) of

95% bootstrap confidence intervals in case of n = 50 under setting 5a with normal and t

distributions for b.

normal t3 t5

Parameter Bias MSE CP Bias MSE CP Bias MSE CP

µb −0.007 0.032 0.934 0.052 0.078 0.932 0.008 0.039 0.936

β0 −0.016 0.015 0.960 −0.010 0.010 0.952 −0.009 0.011 0.952

β1 −0.008 0.006 0.964 −0.006 0.003 0.962 −0.004 0.004 0.968

β2 0.009 0.006 0.968 0.008 0.004 0.958 0.007 0.004 0.972

log(σ2
e) −0.067 0.041 0.960 −0.034 0.047 0.936 −0.029 0.040 0.954

ψ −0.001 0.032 0.930 0.002 0.023 0.950 0.006 0.032 0.918
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Table S6: Bias and MSE of estimates obtained by ECM and coverage probability (CP) of

95% bootstrap confidence intervals in case of n = 50 under setting 5a with normal and

contaminated normal distributions for b. The latter has two settings, (µb1, σb1) = (4µb, σb)

and (µb, 4σb).

normal (µb1, σb1) = (4µb, σb) (µb1, σb1) = (µb, 4σb)

Parameter Bias MSE CP Bias MSE CP Bias MSE CP

µb −0.007 0.032 0.934 −0.005 0.029 0.942 0.028 0.053 0.956

β0 −0.016 0.015 0.960 −0.026 0.021 0.940 0.003 0.010 0.948

β1 −0.008 0.006 0.964 −0.016 0.009 0.960 0.002 0.004 0.954

β2 0.009 0.006 0.968 0.018 0.009 0.974 −0.001 0.004 0.962

log(σ2
e) −0.067 0.041 0.960 −0.063 0.041 0.970 −0.050 0.047 0.934

ψ −0.001 0.032 0.930 0.003 0.037 0.924 0.018 0.024 0.950
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