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Abstract

This article generalizes the tolerance interval approach for assessing agreement be-

tween two methods of continuous measurement for repeated measurement data — a

common scenario in applications. The repeated measurements may be longitudinal or

they may be replicates of the same underlying measurement. Our approach is to first

model the data using a mixed model and then construct a relevant asymptotic toler-

ance interval (or band) for the distribution of appropriately defined differences. We

present the methodology in the general context of a mixed model that can incorporate

covariates, heteroscedasticity and serial correlation in the errors. Simulation for the

no-covariate case shows good small-sample performance of the proposed methodology.

For the longitudinal data, we also describe an extension for the case when the observed

time profiles are modelled nonparametrically through penalized splines. Two real data

applications are presented.
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1 Introduction

We consider the problem of assessment of agreement between two methods — a reference

method y1 and a test method y2, for measuring a continuous response variable when there

are repeated measurements from the methods. This problem arises in medical applications

where y1 is generally expensive or invasive, and y2 is a more convenient alternative than

y1. The main goal of method comparison is to determine whether the measurements from

y1 and y2 on an individual can be interchanged without leading to any inconsistency in the

interpretation of the measured response. The repeated measurements may be longitudinal

or may be replicates of the same underlying measurement. In the latter case, we can also

assess the agreement of a method to itself. This intra-method agreement is also known as the

repeatability of a method. The evaluation of intra-method agreement is important because if

the methods do not agree well with themselves, they cannot be expected to agree well with

each other (see, e.g., Bland and Altman, 1999 and Hawkins, 2002). The extent of intra-

method agreement serves as a benchmark for assessing the agreement between methods. We

now describe two real examples that motivated this work.

Cardiac output data: In this example from Bland and Altman (1999), cardiac output is

measured on 12 individuals from two methods — radionuclitide ventriculography (RV, y1)

and impedance cardiography (IC, y2) — with the goal of assessing their agreement. Both

methods have equal number of replicate measurements on an individual, but this number

varies between 3 to 6. There is a total of 120 measurements (60 from each method). Figure 1

plots these data. We get the impression that IC measurements tend to be smaller and have a

larger within-individual variation than their RV counterparts. There is also a strong evidence

for method-individual interaction. Both methods seem to have good repeatability but their
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agreement does not appear strong. We discuss the inference in Section 5.1 based on a mixed

model fitted to these data.

[Figure 1 about here.]

Body fat data: In this Young Women’s Health Study example from Chinchilli et al. (1996),

percent body fat is measured over time using two methods — skinfold calipers (y1) and dual

energy x-ray absorptiometry (DEXA, y2) — on a cohort of 91 adolescent girls. Their initial

visit occurred around age 12 and there were 8 subsequent visits roughly 6 months apart. The

measurements here are longitudinal and are paired over time. There are 657 complete pairs

available, but for the illustration, we consider only 654 pairs after excluding 3 outliers. The

excluded observations have unusually large normalized residuals for the model described in

Section 5.2, which fits quite well to the remaining data. We have between 4 to 8 repeated

measurements on each girl. The observed percent body fat varies between 12–38%. Our

goal is to estimate the extent of agreement between the two methods as a function of age.

For simplicity, we will focus the modelling effort on the differences (y1 − y2) of the paired

measurements as a function of the covariate age at the time of visit. Figure 2 shows their

observed time profiles. In general, the differences do not appear small compared to the

magnitude of the body fat measurements. These profiles have non-linear features that are

hard to model using a low degree polynomial. So we model them nonparametrically using

penalized splines via their mixed model representation. Section 5.2 provides the details of

the fitted semiparametric model and the resulting agreement evaluation.

[Figure 2 about here.]

For assessing agreement, we focus on the tolerance interval methodology of Lin (2000),

Lin et al. (2002), and Choudhary and Nagaraja (2007). In the i. i. d. case, the observed data
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consist of m pairs of measurements from (y1, y2), say, (yi1, yi2), i = 1, . . . , m. The analysis

focuses on the differences di = yi1 − yi2, i = 1, . . . ,m, which are assumed to be a random

sample from the difference population d = y1 − y2 that follows a normal distribution. The

p0-th percentile of |d|, say q, is taken as the measure of agreement between the methods.

Lin (2000) introduced this measure as the total deviation index. Smaller values of q indicate

better agreement. Here p0 (> 0.5) is a large probability cutoff specified by the practitioner.

For inference, we construct a level (1−α) upper confidence bound (UCB) U for the parameter

q. The interval [−U,U ] then becomes a p0 probability content tolerance interval for the

distribution of d, i.e., we have

Pr{F (U)− F (−U) ≥ p0} = 1− α,

with F (·) as the cumulative distribution function of d. This tolerance interval essentially

estimates the range of p0 proportion of the population of measurement differences. When it

does not contain any large clinically meaningful differences, the practitioner infers sufficient

agreement between the methods.

Choudhary and Ng (2006) generalized this basic methodology for the normal theory re-

gression setup where the mean or the variance of d depend on a known, continuous covariate

x ∈ X considered as non-random. This covariate is generally the observed average measure-

ment that serves as a proxy for the magnitude of the true unobservable measurement. Let

dx denote the population of y1− y2 differences at x. The agreement at x is measured by the

p0-th percentile of |dx|, say qx. The authors develop an asymptotic UCB Ux for qx that has

simultaneous confidence (1− α) over X. For the band [−Ux, Ux], x ∈ X, we now have

Pr{Fx(Ux)− Fx(−Ux) ≥ p0, for all x ∈ X} ≈ 1− α, (1)

where Fx(·) is the cumulative distribution function of dx. This band can be interpreted as a
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p0-content tolerance band with simultaneous confidence (1 − α). It estimates the extent of

p0 proportion of differences in measurements from the two methods, which now depends on

x. The practitioner uses this band in the same way as the tolerance interval for the identical

distribution case, but the inference now is simultaneously valid over entire X.

The goal of this article is to further generalize this methodology to incorporate repeated

measurements from the methods. Let yijk denote the k-th measurement from the j-th

method on the i-th individual (i = 1, . . . , m; j = 1, 2; k = 1, . . . , nij). Here the data may

be unbalanced, i.e., ni1 and ni2 may be unequal; and the measurements need not be paired.

In other words, there is no requirement that the measurements from the two methods be

collected together or at the same time. Moreover, the distributions of measurements may

depend on one or more covariates. We also discuss a tolerance interval type measure for

the assessment of intra-method agreement in Section 3. Although, measures such as the

intra-class correlation (see, e.g., Fleiss, 1986, ch 1) are also appropriate for this purpose, the

main advantage of a tolerance interval type measure is that it serves as a benchmark against

which one can evaluate the inter-method agreement using a tolerance interval.

Our strategy is to first model the observed data using a mixed model as described in

Section 2. The mixed models provide a popular framework for modelling the repeated

measurement data (see, e.g., Diggle et al., 2002, ch 9). Once we have a model for the

data, we proceed to the assessment of agreement in Section 3. Here a key issue is to define

an appropriate difference population whose distribution contains the information regarding

agreement. When the data are not paired, a direct difference between measurements from

the two methods is not well-defined. We address this issue by using the assumed model

for the data to define the difference population. Section 4 contains a simulation study of

the proposed methodology. In Section 5, we revisit the above examples to illustrate the
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application. We conclude in Section 6 with a discussion.

We will use the bold-face notation for vectors and matrices. All vectors are column

vectors unless noted otherwise. The transpose of matrix X will be denoted as X′. We will

use N (µ,Σ) for a multivariate normal distribution with mean vector µ and non-singular

covariance matrix Σ. The dimension of the distribution will be clear from the context. All

the computations and the data analysis reported in this article have been performed using

the statistical software R. We have used the nlme package in R for fitting mixed models.

2 Modelling the observed data

2.1 General case

Let yij be the column vector of nij measurements on the i-th individual from the j-th

method. We assume a linear mixed model for yij of the following general form:

yij = Pij φ + Wij vi + Xij βj + Zij bij + εij; j = 1, 2, i = 1, . . . , m. (2)

Here Pij, Wij, Xij and Zij are full-rank design matrices; and εij is the column vector of

errors. Further, φ, βj, vi and bij are also column vectors — respectively representing the

fixed-effects common to both methods, the fixed-effects specific to the j-th method, the

random-effects of i-th individual common to both methods and the random-effects of i-th

individual specific to the j-th method. The design matrices are such that a fixed intercept

for each method and a random intercept for each individual are included. We assume that:

vi ∼ N (0,Σ),



bi1

bi2


 ∼ N






0

0


 ,



Ψ11 Ψ12

Ψ12 Ψ22





 ,




εi1

εi2


 ∼ N






0

0


 ,



Λi1 0

0 Λi2





 .
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These vectors are independent for different i and are also mutually independent. All the

covariance matrices are positive-definite. They are generally defined in terms of a small

number of parameters. It follows that the joint distribution of (yi1,yi2), after integrating

out the individual random effects, is multivariate normal with E(yij) = Pij φ + Xij βj,

var(yij) = WijΣW′
ij + ZijΨjjZ

′
ij + Λij and cov(yi1,yi2) = Wi1ΣW′

i2 + Zi1Ψ12Z
′
i2. The

distributions are independent for different i. Additionally, to make the methods comparable,

we must also assume that the marginal models for y1 and y2 are similar in that their mean

vectors and covariance matrices are parameterized identically. The two marginal models may

differ in the values of parameters, but the parameters have the same interpretation for the

two models. Thus, in particular, the columns of the design matrices correspond to identical

effects. Hence the quantities

β = β1 − β2, bi = bi1 − bi2, var(bi) = Ψ = Ψ11 + Ψ12 − 2Ψ12, (3)

are meaningful, and bi ∼ independent N (0,Ψ). It is, however, not required that the design

matrices be the same for each j. For example, they may have different number of rows.

In the model (2), we have made a distinction between two types of effects. The first are

φ and vi that are common to both methods. They may represent the effects of multiple

covariates. The second are βj and bij that vary with method. The design matrices Xij

and Zij for these effects, and in addition, the error covariance matrix Λij in (2), may also

involve a continuous covariate x. We call it agreement covariate to distinguish it from the

covariates in Pij and Wij. We will see in Section 3 that it plays a role in defining the

difference population that we focus on for agreement assessment. In contrast, the effects of

other covariates cancel out. For simplicity, we assume that there is at most one agreement

covariate. Extension to multiple agreement covariates is possible, but its details get rather
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messy and is typically not needed in practice. We additionally assume that Λij depends on

i only through the value of x. Thus Λij actually denotes Λxij. In applications, this x is

frequently a proxy for the true magnitude of measurement or the time of measurement.

2.2 Paired measurements case

When the measurements (yi1k, yi2k) are collected together in pairs for each k, the difference

dik = yi1k − yi2k is well-defined. Here in addition to (3), we also have ni1 = ni2 = ni (say),

Xi1 = Xi2 = Xi (say), Zi1 = Zi2 = Zi (say), and the other design matrices are also the same

for each j. Furthermore, the differences

di = yi1 − yi2, εi = εi1 − εi2, i = 1, . . . , m, (4)

are also meaningful, and εi ∼ independent N (
0,Λi = Λi1 + Λi2

)
. In this paired case,

we can focus on modelling the differences directly rather than modelling the individual

measurements since our ultimate goal is to use the population of differences to evaluate the

agreement between the two methods. To this end, let

di = Xiβ + Zibi + εi, i = 1, . . . ,m, (5)

where β, bi and εi are defined by (3)-(4). One can think of this model as di = yi1 − yi2

with yij given by (2). However, the estimates of parameters in (5) may not be the same

as those obtained by fitting (2). The distributional assumptions for (2) also give us, di ∼

independent N (
Xiβ, ZiΨZ′i + Λi

)
, i = 1, . . . ,m. As in (2), an agreement covariate x may

be involved in Xi, Zi or Λi. The effects φ and vi do not appear in (5) as they cancel out

upon differencing.
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2.3 Parameter estimation

Whether we use the model (2) for individual measurements or the model (5) for differences,

in either case, let θ be the vector of all the model parameters. We will use the method of

maximum likelihood to fit the desired model and denote the maximum likelihood estimator

(MLE) of θ as θ̂. See Pinheiro and Bates (2000, ch 2, 5) for an excellent account of the

computational details involved in evaluating the likelihood function of a mixed model and

its maximization. They also discuss the issue of how to parameterize the random-effect

covariance matrix and give various examples of the variance and covariance structures that

can be incorporated in the error covariance matrix. We do not consider the restricted

maximum likelihood estimation since it does not lead to a joint distribution of the estimates

of fixed-effects and variance-covariance parameters, which we need for the assessment of

agreement. Finally, let I denote the observed Fisher information matrix — the matrix of

second order partial derivatives of the negative log-likelihood function of the desired model

(2) or (5) with respect to θ and evaluated at θ = θ̂. A closed-form expression for I is

not available in general but it can be easily computed numerically. When m is large, it is

well-known that θ̂ approximately follows N (θ, I−1).

3 Assessment of agreement

3.1 Agreement between methods

We now describe how to assess the agreement between y1 and y2 assuming that the data are

modelled using either (2) or (5). First we deal with the case when an agreement covariate

x ∈ X is included in the model either for modelling the mean part or the variance part of
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the data. In applications, X is generally the range of observed values of x.

Let the row vectors Xx and Zx respectively denote a general row of the design matrices

Xij and Zij corresponding to the covariate value x. Similarly, let the row vectors P and

W respectively represent a general row of the design matrices Pij and Wij corresponding

to any fixed setting of the covariates involved. Next, let (yx1, yx2) denote the bivariate

population of (y1, y2) measurements at these covariate settings. The dependence of (yx1, yx2)

on covariates other than x is suppressed for notational convenience. From our assumptions

for (2), it follows that (yx1, yx2) has a bivariate normal distribution with E(yxj) = Pφ+Xxβj,

var(yxj) = WΣW′ + ZxΨjjZ
′
x + Λxj, j = 1, 2, and cov(yx1, yx2) = WΣW′ + ZxΨ12Z

′
x.

Here Λxj is the error variance of method j evaluated at x. This joint distribution is defined

irrespective of whether the data are balanced or not and whether the measurements are

paired or not. Now, let dx = yx1 − yx2 denote the population of differences. It follows that

dx ∼ N (
µx = Xxβ, σ2

x = ZxΨZ′x + Λx

)
, x ∈ X, (6)

where β and Ψ are defined in (3), and Λx = Λx1 + Λx2. This distribution does not involve

the effects φ and vi in (2) that are common to both methods. It contains the information

regarding the agreement between (y1, y2), and for the tolerance interval approach, we focus

on it for inference. In particular, we take the p0-th percentile function of |dx|, defined as

qx = σx

{
χ2

1(p0, µ
2
x/σ

2
x)

}1/2
, x ∈ X, (7)

as the measure of agreement at x. Here the large probability p0 is assumed to be specified

in advance by the practitioner; (µx, σ
2
x) are defined in (6); and χ2

1(p0, ∆) represents the p0-th

percentile of a χ2-distribution with one degree of freedom and non-centrality parameter ∆.

Once an appropriate parsimonious model of the form (2) or (5) is fitted to the data and
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the MLE θ̂ is available, the MLE q̂x of qx is simply obtained by substitution, i.e.,

q̂x = σ̂x

{
χ2

1(p0, µ̂
2
x/σ̂

2
x)

}1/2
, x ∈ X,

with
(
µ̂x = Xxβ̂, σ̂2

x = ZxΨ̂Z′x + Λ̂x

)
as the MLE’s of (µx, σ

2
x). To derive a simultaneous

UCB of qx for x ∈ X so that (1) holds, we consider the curve

Ux = exp
{

log q̂x − cα(G′
xI
−1Gx)

1/2
}
, x ∈ X, (8)

where Gx is the vector of partial derivatives of log qx with respect to θ evaluated at θ = θ̂;

and cα (< 0) is the critical point so that the large-sample simultaneous confidence level of

this UCB is (1 − α). Recall that I here is the observed information matrix for the fitted

model. The motivation for this curve comes from the realization that q̂x, being an MLE, is

approximately normal and, for small samples, this approximation is more accurate on the

log qx scale. The quantity G′
xI
−1Gx estimates the asymptotic variance of log q̂x. To obtain

the critical point, we follow Choudhary and Ng (2006), and solve the equation

α = Pr(tν ≤ cα) +
κ0

2π

(
1 +

c2
α

ν

)−ν/2

, ν = (m− l), (9)

for cα. Here the random variable tν follows a t-distribution with ν degrees of freedom, l is

the dimension of β, and κ0 is defined as

κ0 =

∫

X

1

L′xLx

(
(L′xLx)(L̇

′
xL̇x)− (L′xL̇x)

2
)1/2

dx,

by taking Lx = I−1/2Gx and L̇x = I−1/2(∂/∂x)Gx, with the partial differentiation applied

elementwise. This critical point is easy to compute numerically. A more accurate alterna-

tive for small samples is to use a parametric bootstrap-t method (see, e.g., Davison and

Hinkley, 1997, ch 5) for computing the critical point. It involves the following steps:
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1. Simulate m independent draws from the model fitted to the original data using θ = θ̂

and the observed covariate values. Denote them as (y∗11,y
∗
12), . . . , (y

∗
m1,y

∗
m2) if the

model (2) is fitted or as d∗1, . . . ,d
∗
m if the model (5) is fitted. This sample is a parametric

resample of the original data.

2. Fit the relevant model (2) or (5) to the resample in Step 1, and compute the MLE of

θ, say θ̂
∗
, the associated observed information matrix, say I∗, the gradient vector, say

G∗
x, and an estimate of infx∈X(log q̂x − log qx)/(G

′
xI
−1Gx)

1/2, say

M = min
1≤i≤m

(log q̂∗xi
− log q̂xi

)/(G∗′
xi
I∗−1G∗

xi
)1/2,

where x1, . . . , xm are the observed value of x in the original sample.

3. Repeat Steps 1 and 2 a large number of times, say B, to simulate B realizations of M .

Take the α-th sample percentile of M as the critical point cα in (8).

Thus far we have assumed that the model includes covariates, at least an agreement

covariate x. An important special case results when there are no covariates (see, e.g., the

model (11) in Section 4). In this case, both the vectors Xx and Zx reduce to the scalar

1, and the variance Λx is free of x. Consequently, the distribution of dx, the population

of differences between (y1, y2) measurements, does not depend on x. Further from (6),

dx ∼ N (µx = β, σ2
x = Ψ + Λx). The agreement in this situation can be assessed by simply

noting that now (µx, σ
2
x, qx) and hence (µ̂x, σ̂

2
x, q̂x) are constants with respect to x. Moreover,

the question of a simultaneous UCB does not arise, and hence Ux in (8), also a constant with

respect to x, can be computed by using tm−l(α), the α-th percentile of a tm−l distribution,

as the critical point cα. In this case, we have a tolerance interval instead of a tolerance band.

When m is not large, the bootstrap-t critical point is more accurate (see Section 4).
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3.2 Agreement of a method to itself

We now consider a measure for assessing intra-method agreement whose interpretation is

similar to the measure qx of inter-method agreement. Let (2) be the model for the mea-

surements yijk. Assume additionally that the values of covariates on an individual does

not change with k and that there is no serial correlation in the within-individual errors.

These assumptions ensure that the repeated measurements on an individual are identically

distributed and they provide replications of the same underlying measurement for that in-

dividual — making the assessment of repeatability possible. Let the random variable dxj

denote the population of difference between any two replicates of yxj on the same individ-

ual. Under our assumptions, dxj is just the population difference between two uncorrelated

within-individual errors associated with the two replicates. Hence, we have

dxj ∼ N (µxj = 0, σ2
xj = 2Λxj), j = 1, 2,

where Λxj is the within-individual error variance of the j-th method at x.

In analogy with qx of (7), the p0-th percentile of |dxj|, say, qxj = σxj

{
χ2

1(p0, 0)
}1/2

, is

taken as the measure of repeatability of method j. This measure depends on the parameter

θ of the model (2) only through σ2
xj. It can be estimated as q̂xj = σ̂xj{χ2

1(p0, 0)}1/2 and its

simultaneous level (1− α) UCB can be approximated as

Uxj = exp
{

log q̂xj − cαj(G
′
xjI

−1Gxj)
1/2

}
, x ∈ X, with Gxj =

(
∂ log qxj/∂x

)
θ=θ̂

, (10)

with cαj computed as in the previous section. The case when there are no covariates can

also be handled on the lines of the previous section.
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4 Monte Carlo simulation studies

In this section, we use simulation to get some insight into the small-sample coverage proba-

bilities of the asymptotic UCB’s proposed in Section 3. For simplicity, our investigation will

focus only on the model,

yijk = βj + bij + εijk; k = 1, . . . , nij, j = 1, 2, i = 1, . . . ,m. (11)

This model is for the situation when the repeated measurements from a method are identi-

cally distributed and there are no covariates. We will use it in Section 5.1 for the cardiac

output data. Here, we assume that (bi1, bi2) follows an independent bivariate normal dis-

tribution with mean zero, variance (Ψ11, Ψ22) and covariance Ψ12; the error εijk follows an

independent N (0, λj) distribution; and the random-effects and the errors are mutually inde-

pendent. This model can also be written as,



yi1

yi2


 ∼ independent N







β11i1

β21i2


 ,




Ψ111i11
′
i1 + λ1Ji1 Ψ121i11

′
i2

Ψ121i11
′
i2 Ψ221i21

′
i2 + λ2Ji2





 , (12)

where 1ij is the nij-dimensional vector of ones and Jij is the nij × nij identity matrix.

Essentially it assumes that the measurements from the method j on an individual are equi-

correlated N (βj, Ψjj + λj) random variables with intra-class correlation Ψjj/(Ψjj + λj);

any two measurements on the same individual but different methods have the correlation

Ψ12/((Ψ11 + λ1)(Ψ22 + λ2))
1/2; and measurements on different individuals are independent.

This model has seven parameters — (β1, β2), (λ1, λ2) and (Ψ11, Ψ12, Ψ22). For the sim-

ulation, we take α = 0.05, p0 = 0.80, nij ≡ n ∈ {2, 3, 5}, m ∈ {15, 30}, and the parameter

values (β1, λ1, Ψ11) = (0, 1, 16), Ψ12 = 15.95, β2 ∈ {0, 2}, λ2 ∈ {1, 1.5} and Ψ22 ∈ {16, 20}.

There is no loss of generality in taking (β1, λ1) = (0, 1). Here Ψ11 = 16 = Ψ22 corresponds
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to a high correlation (> 0.90) between methods and (Ψ11, Ψ22) = (16, 20) corresponds to a

moderate correlation (between 0.80 to 0.90).

To estimate the coverage probability of an UCB at a given setting, we simulate realizations

from the distribution (12), fit the model using maximum likelihood, and compute the UCB

as described in Section 3 for the no-covariate case. This process is repeated 2500 times

when tm−l(α) is used as the critical point and 1000 times with B = 500 when the bootstrap-

t critical point is used. The proportion of times an UCB is correct gives its estimated coverage

probability. They are reported in Table 1 for the UCB Ux of the percentile qx, given by (8);

and in Table 2 for the UCB Ux2 of the percentile qx2, given by (10). The results for qx1

are not presented separately as qx1 = qx2 when (β1, λ1, Ψ11) = (β2, λ2, Ψ22). The coverage

probability of Ux2 is free of p0 since the term involving it in qx2 is a known constant.

[Table 1 about here.]

From Table 1, we conclude that Ux with tm−l(α) as the critical point is slightly conser-

vative when Ψ11 = Ψ22 — its coverage probability estimates are about 1% higher than the

target nominal level of 95%. On the other hand, it is liberal when Ψ11 6= Ψ22 — the esti-

mates are lower than the target. They are about 3% lower in case of m = 15 and increase by

about 0.5-1% for m = 30. The estimates remain more or less similar across different values

of β2 and λ2. Surprisingly n also does not seem to have an impact. Additional investigation

reveals that the normality assumption for log q̂x is reasonable and there is no evidence of

any substantial bias in the estimation. However, when Ψ11 = Ψ22, var(log q̂x) tends to get

overestimated, while the converse is true when Ψ11 6= Ψ22. This seems to be the cause of

the conservative behavior of Ux in the former case and its liberal behavior in the latter case.

Fortunately, this problem can be resolved by using the bootstrap critical point in (8) for
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Ux. The resulting UCB is quite accurate even with m = 15 irrespective of whether or not

Ψ11 = Ψ22 as all the probability estimates in the right half of Table 1 are near 0.95.

Table 2 suggests that Ux2 with tm−l(α) is liberal throughout. In contrast with Ux above,

this liberal behavior is more severe when Ψ11 = Ψ22 than when Ψ11 6= Ψ22; and Ux2 becomes

more accurate as n increases. The increase in accuracy with an increased m is expected.

These estimates also remain somewhat constant as β2 and λ2 vary. In this case also, using

bootstrap leads to fairly accurate bounds at all settings.

Additional simulations with m = 60 indicate that the coverage probabilities of the bounds

with tm−l(α) increase by 1-1.5% over m = 30 to 93-94% in regions where they are liberal,

and remain close to the target 95% in regions where they are conservative. Overall, due to

its remarkable accuracy, the bootstrap-t approach is recommended for constructing UCB’s,

particularly when m ≤ 60. A downside of this approach is that it is computationally de-

manding. It took about 16 minutes to compute a bootstrap-t critical point for m = 15 and

about 28 minutes for m = 30, on a Dell laptop with a 1.8 GHz Pentium 4 processor, 512 MB

of RAM and Windows XP operating system. However, once we have a function for fitting

mixed models, bootstrapping becomes a routine computation. And almost all the popular

statistical packages in current usage, including R, have this capability.

Remark: Sometimes it may be of interest to impose some structure on the distribution of

(bi1, bi2). Two choices seem popular in the literature. The first one assumes bij = bi + bi∗j,

where bi is the true unobservable measurement for the i-th individual; bi∗j is the method-

individual interaction; and (bi, bi∗1, bi∗2) are mutually independent normal random variables

with different variances (see e.g., Bland and Altman, 1999). This structure can be easily

incorporated in (11) by taking Ψjj = var(bi) + var(bi∗j) and Ψ12 = var(bi). In practice,
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however, there is generally no difference between letting bij’s in (11) be arbitrary or imposing

this structure since Ψ12 = cov(bi1, bi2) in (12) tends to be positive. The second choice is to

assume a linear relationship, say, β2 + bi2 = α1 + α2(β1 + bi1), between bi1 and bi2 (see e.g.,

Dunn and Roberts, 1999). The resulting model is a structural equation model and it cannot

be written as a mixed model.

5 Application

5.1 Cardiac output data

The exploratory analysis by Bland and Altman (1999) suggests the no-covariate model (11)

for these data. This model seems to fit well as indicated by the residual plot in Figure 1

and other diagnostic plots recommended by Pinheiro and Bates (2000, ch 4). Identical fit

results if we replace bij in (11) with bi + bi∗j, where bi represents the random individual

effect and bi∗j is the random method-individual interaction. We have the following MLE’s

of the parameters in (12), with their standard errors in parentheses: β̂1 = 5.39 (0.37), β̂2 =

4.68 (0.35), Ψ̂11 = 1.63 (0.68), Ψ̂12 = 1.15 (0.56), Ψ̂22 = 1.45 (0.60), λ̂1 = 0.11 (0.02) and

λ̂2 = 0.14 (0.03). Thus, the estimated mean and standard deviation of the population of RV

measurements are 5.39 and 1.32 respectively; and they are 4.68 and 1.26 for the population

of IC measurements. Also, their estimated correlation is 0.69.

The estimates of intra-class correlation for RV and IC methods are 0.94 and 0.91,

respectively. Further, the estimated standard deviation of the population difference be-

tween any two RV measurements is 0.47 and is 0.53 for the IC measurements. Taking

(p0, α) = (0.80, 0.05) and using (10) for the no-covariate case, we get the tolerance intervals

for the intra-method agreement as [−0.71, 0.71] (RV) and [−0.81, 0.81] (IC). The bootstrap-t
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approach produces similar intervals: [−0.70, 0.70] and [−0.81, 0.81]. Thus, 80% of IC differ-

ences are estimated to lie within ±0.81, and a similar interpretation holds for RV differences.

These findings confirm that both methods have good repeatability and RV is slightly more

repeatable than IC.

Next, we consider the agreement between the methods. From (6), the population of

RV − IC differences has estimated mean and standard deviation of 0.70 and 1.01, respec-

tively. Upon taking (p0, α) = (0.80, 0.05) and t10(0.05) as the critical point in (8), we get

[−2.18, 2.18] as the tolerance interval. This interval widens to [−2.33, 2.33] when we use the

bootstrap-t critical point. The latter interval is probably more accurate since m = 12 is not

large and the correlation 0.69 is weak. Thus, 80% of RV − IC differences are estimated to

lie in [−2.33, 2.33]. To infer whether this extent of agreement is sufficient, one can compare

it with a threshold interval provided by the practitioner such that the differences in the in-

terval are deemed clinically unimportant. When such a threshold is not explicitly available,

a practical strategy is to compare the bound Ux with the magnitude of measurements — if

it is large relative to the magnitude, one infers insufficient agreement; otherwise sufficient

agreement is inferred. This strategy is effective when the bound is either quite large or quite

small relative to the magnitude making the conclusion straightforward. In real applications,

one may take the average measurement as a proxy for the unknown true magnitude of mea-

surement. Another strategy may be to compare the bound with the range of measurement.

For the cardiac output data, the measurements range between 2 to 8, and Ux = 2.33 is

approximately 45% of the average measurement of about 5.0 — indicating poor agreement

in RV and IC methods.
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5.2 Body fat data

In this example, we directly model the time profiles of the differences (caliper y1 − DEXA

y2) of the paired body fat measurements. A preliminary analysis suggests modelling the

mean time profiles nonparametrically as a quadratic spline in x = (age in years− 12) ∈ X =

[−0.80, 5.30],

f(x, β,u) = β0 + β1x + β2x
2 +

r∑
j=1

uj(x− κj)
2
+, (13)

where β = (β0, β1, β2); u = (u1, . . . , ur); κ1 < . . . < κr are the knot locations in X; u1, . . . , ur

are the coefficients of the truncated quadratic basis functions (x− κ1)
2
+, . . . , (x− κr)

2
+; and

(x − κ)+ = max{0, x − κ}. See Ruppert, Wand and Carrol (2003, ch 3–6) for an excellent

introduction to penalized splines regression. The use of quadratic basis functions in agree-

ment applications is suggested by Choudhary and Ng (2006). The number of knots r = 34

and their locations κj =
(
(j +1)/(r +2)

)
-th sample percentile of the unique observed values

of x ∈ X, j = 1, . . . , r; are chosen using the recommendation of Ruppert et al. (2003, ch 5).

The model that we fit to the body fat differences is,

dik = f(xik,β,u) + bi + εik; k = 1, . . . , ni, i = 1, . . . , m,

where xik is the value of x at the k-th visit of the i-th individual; dik is the difference

associated with xik; f is given in (13); bi is the random-effect of the i-th individual; and εik is

the within-individual random error. We assume that bi ∼ N (0, Ψ), independently of errors

that follow mean zero normal distributions with cov(εik, εil) = λ1λ
|xik−xil|
2 (k, l = 1, . . . , ni).

Here, λ1 is the within-individual error variance and λ2 is the non-negative correlation between

two within-individual errors one unit of time apart. This covariance structure is equivalent

to assuming that the within-individual errors follow a continuous autoregressive process

of order one (see, e.g., Pinheiro and Bates, 2000, ch 5). To fit the spline (13), we use
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the penalized criterion, which is equivalent to assuming that u1, . . . , ur follow independent

N (0, Ψu) distributions, mutually independent of the random intercepts and errors (see, e.g.,

Ruppert et al., 2003, ch 4). Thus in this case, the vector di of ni differences on the i-th

individual, i = 1, . . . ,m, is modelled as,

di = Xiβ + Zibi + Wiu + εi; bi ∼ N (0, Ψ), u ∼ N (0, ΨuJr), εi ∼ N (0,Λi); (14)

with Xi as the ni× 3 matrix with k-th row (1, xik, x
2
ik); Zi as the ni-vector of 1’s; Wi as the

ni × r matrix with k-th row
(
(xik − κ1)

2
+, . . . , (xik − κr)

2
+

)
; Jr as the r × r identity matrix;

and Λi as the ni × ni matrix with (k, l)-th element λ1λ
|xik−xil|
2 . This mixed model has two

levels of independent random-effects — the random intercept bi that varies with individuals

and the knot coefficient vector u that is common to all individuals. They are also mutually

independent of error εi. All these quantities are independent for different i. When Ψu = 0,

the u term in (14) vanishes and the model reduces to (5). We will fit this model using

maximum likelihood.

As in Section 3, the evaluation of agreement here will focus on the distribution of popu-

lation difference dx at x. Averaging over the random individual effects in (14) leads to

dx ∼ N (
µx = f(x, β,u), σ2 = Ψ + λ1

)
, x ∈ X.

Substitution in (7) gives qx — the measure of agreement at x. It is now a random parameter

since it involves the random u. To estimate it, we replace (β, σ) in qx with its MLE and u with

its estimated best linear unbiased predictor (EBLUP) û computed as described in Pinheiro

and Bates (2000, ch 2). However, due to the random nature of qx, we cannot directly use

(8) to obtain its simultaneous UCB. We now generalize the methodology of Choudhary and

Ng (2006) to get an approximation that is expected to work well when Ψu/σ
2 is small. (Its

MLE for the body fat data is 0.05.) Let ξ denote the (r + 4)× 1 column vector (β,u, log σ),
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ξ̂ = (β̂, û, log σ̂) be its estimate, V be the asymptotic covariance matrix of (ξ̂ − ξ) and

Gx =
(
∂ log qx/∂ξ

)
ξ=ξ̂

. When m is large and Ψu/σ
2 is small, we expect log q̂x − log qx ≈

N (0,G′
xVGx). So this UCB of qx is also of the form, Ux = exp

{
log q̂x − cα(G′

xVGx)
1/2

}
,

where the critical point cα is computed by solving (9), but V is now estimated using bootstrap

in the following manner:

1. Take a fine grid x1, . . . xg of equally spaced points in X. Say g = 100.

2. Generate independent u∗1, . . . , u
∗
r from N (0, Ψ̂u) and set ξ∗ = (β̂,u∗, log σ̂). Here Ψ̂u is

the MLE of Ψu and u∗ = (u∗1, . . . , u
∗
r).

3. Generate d∗xi
independently from N (0, f(xi, β̂, û), σ̂2), i = 1, . . . , g. These (xi, d

∗
xi

)

pairs represent a parametric bootstrap resample.

4. Fit the model d∗xi
∼ independent N (0, f(xi,β,u∗), σ2) to the above resample using

maximum likelihood and obtain the MLE of (β, σ), say (β̂
∗
, σ̂∗); the EBLUP of u∗,

say û∗; set ξ̂
∗

= (β̂
∗
, û∗, log σ̂∗); and compute (ξ̂

∗ − ξ∗).

5. Repeat steps 2–4 a large number of times, say B = 500, to obtain B realizations

(ξ̂
∗ − ξ∗), and use their sample covariance matrix as an estimate of V .

We get the following MLE’s upon fitting the model (14) to the body fat data: β̂0 =

2.03 (0.54), β̂1 = 1.59 (1.18), β̂2 = −0.36 (1.15), Ψ̂ = 4.38 (0.83), Ψ̂u = 0.40 (0.30), λ̂1 =

3.59 (0.35) and λ̂2 = 0.21 (0.05). The parentheses contain the standard errors. The fitted

time profiles are presented in Figure 2 and the plot of normalized residuals is given in

Figure 3(a). These indicate a reasonable model fit, although there are a few high residuals.

The normality assumption for the random-effects and the errors also seems fine. Further, a

likelihood ratio test of significance for Ψu has a p-value < 10−4, which justifies the u term
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in (14). Thus overall, the fitted model appears appropriate. The resulting estimated mean

and standard deviation of dx over X are given in panel (b) of Figure 3. The graph of the

fitted mean function is consistent with the shape of the observed time profiles. The panel (c)

of this figure presents the estimated log qx function for p0 = 0.80 and the standard error of

(log q̂x − log qx). The last panel plots the 80% tolerance band [−Ux, Ux] for the distribution

of dx with simultaneous 95% confidence, i.e., (1) holds with (p0, α) = (0.80, 0.05). This band

demonstrates the estimated range of differences in 80% of body fat measurements from the

two methods as a function of age of the girls. The agreement between the methods appears

best around age 15–17 where 80% of the measurements can differ as much as by about 4.5%.

In this region, the magnitude of measurements, as suggested by the average measurement, is

about 25%. On the whole, the agreement between the skinfold calipers and DEXA methods

does not seem good enough to justify their interchangeable use since a change of 3-6% in

percentage body fat measurements is considered important as it may lead from one category

of body fat, such as essential fat, athletes, fitness, acceptable and obesity, to another.

6 Discussion

In this article, we extended the tolerance interval approach for assessing agreement between

two methods of measurement to deal with the repeated measurement data, assuming that

the observed data can be modelled using a linear mixed model. Besides the tolerance inter-

vals, there are several other measures of agreement — including the limits of agreement of

Bland and Altman (1986) and the concordance correlation of Lin (1989). See the reviews of

Lin et al. (2002) and Choudhary and Nagaraja (2004) for a comparison of measures. Here

we just note that the basic limits of agreement has been generalized by Bland and Alt-
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man (1999) for the model (11). Furthermore, using a random-coefficient growth curve model

(a special case of a mixed model), Chinchilli et al. (1996) have proposed a weighted aver-

age of individual-specific concordance correlations as a single overall measure of agreement

for repeated measurement data. However, their individual-specific concordance correlations

quantify the agreement between a linear transformation (e.g., sample means) of the observed

responses from the two methods, whereas we have been concerned with measuring agreement

between the individual responses. Recently, Barnhart, Song and Haber (2005) provide an-

other extension of the concordance correlation for repeated measurement data. In addition

to the measure of agreement being used, our approach differs from these extensions in two

respects: first, we use a general mixed model framework; and second, we allow the extent

of agreement to depend on a continuous covariate. It also appears possible to adapt the

approach of this article to extend these other agreement measures.

An attractive alternative to mixed models for modelling dependent data is the framework

of marginal models (see, e.g., Diggle et al., 2002, ch 7). In a marginal model, one specifies

separate models for the marginal mean of response, the marginal variance of response and the

within-individual correlation in response. There is no need to specify the entire likelihood as

one uses the generalized estimating equations approach for inference. In contrast, in a mixed

model, the within-individual correlation is induced by common random effects in the model

for response, and it generally requires full specification of the likelihood function. Marginal

models are appropriate when inference about the mean response, or more generally, a func-

tion of the moments is of primary interest. Indeed, Barnhart and Williamson (2001) and

Barnhart et al. (2005) have used them successfully for agreement assessment with concor-

dance correlation, which is a function of the first two moments. But in the tolerance interval

approach, a percentile is the main focus of inference, and without additional assumptions
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regarding the distribution of response, the moments do not determine a percentile. However,

as this article demonstrated, this inference is straightforward in a mixed model setup.

Finally, we note that we have not addressed the important issue of how to design a

method comparison study. This involves determining the number of individuals and the

number of replicate measurements in some optimal fashion. Further research is needed in

this direction.

Acknowledgment

The author thanks Prof. V.M. Chinchilli, Prof. T.S. King and Prof. J.M. Bland for providing

the datasets, and Prof. Tony Ng for helpful discussions. He is also thankful to the reviewers

whose comments led to substantial improvements in this article and to the Executive Editor

Prof. John Stufken for his consideration.

References

Barnhart, H. X., Song, J. and Haber, M. J. (2005). Assessing intra, inter and total agreement

with replicated readings. Statistics in Medicine 24, 1371–1384.

Barnhart, H. X. and Williamson, J. M. (2001). Modeling concordance correlation via GEE

to evaluate reproducibiltiy. Biometrics 57, 931–940.

Bland, J. M. and Altman, D. G. (1986). Statistical methods for assessing agreement between

two methods of clinical measurement. Lancet i, 307–310.

Bland, J. M. and Altman, D. G. (1999). Measuring agreement in method comparison

studies. Statistical Methods in Medical Research 8, 135–160.

24



Chinchilli, V. M., Martel, J. K., Kumanyika, S. and Lloyd, T. (1996). A weighted concor-

dance correlation coefficient for repeated measurement designs. Biometrics 52, 341–353.

Choudhary, P. K. and Nagaraja, H. N. (2004). Measuring agreement in method comparison

studies - A review. In Balakrishnan, N., Kannan, N. and Nagaraja, H. N. (eds), Advances

in Ranking and Selection, Multiple Comparisons, and Reliability, Boston: Birkhauser,

pp. 215–244.

Choudhary, P. K. and Nagaraja, H. N. (2007). Tests for assessment of agreement using

probability criteria. Journal of Statistical Planning and Inference 137, 279–290.

Choudhary, P. K. and Ng, H. K. T. (2006). Assessment of agreement under non-standard

conditions using regression models for mean and variance. Biometrics 62, 288–296.

Davison, A. C. and Hinkley, D. V. (1997). Bootstrap methods and their application. New

York: Cambridge University Press.

Diggle, P. J., Heagertry, P., Liang, K.-L. and Zeger, S. L. (2002). Analysis of Longitudinal

Data, 2nd edn. New York: Oxford University Press.

Dunn, G. and Roberts, C. (1999). Modelling Method Comparison Data. Statistical Methods

in Medical Research 8, 161–179.

Fleiss, J. L. (1986). The Design and Analysis of Clinical Experiments. New York: John

Wiley.

Hawkins, D. M. (2002). Diagnostics for conformity of paired quantitative measurements.

Statistics in Medicine 21, 1913–1935.

25



Lin, L. I. (1989). A concordance correlation coefficient to evaluate reproducibility. Biometrics

45, 255–268. Corrections: 2000, 56:324-325.

Lin, L. I. (2000). Total deviation index for measuring individual agreement with applications

in laboratory performance and bioequivalence. Statistics in Medicine 19, 255–270.

Lin, L. I., Hedayat, A. S., Sinha, B. and Yang, M. (2002). Statistical methods in assessing

agreement: Models, issues, and tools. Journal of the American Statistical Association

97, 257–270.

Pinheiro, J. C. and Bates, D. M. (2000). Mixed-Effects Models in S and S-PLUS. New York:

Springer-Verlag.

R Development Core Team (2004). R: A language and environment for statistical computing.

R Foundation for Statistical Computing. Vienna, Austria. http://www.R-project.org.

Ruppert, D., Wand, M. P. and Carroll, R. J. (2003). Semiparametric Regression. New York:

Cambridge University Press.

26



List of Figures and Tables

Figure 1. Top: Plot of cardiac output measurements on each individual from RV and

IC methods. Bottom: Residual plot of the fitted model (see Section 5.1).

Figure 2. Observed (solid curve) versus fitted (broken curve) time profiles of the

differences (y1 − y2) of the percent body fat measurements from skinfold calipers (y1)

and DEXA (y2). Section 5.2 describes the fitted semiparametric model. The numbers

101-430 represent the individual ID’s.

Figure 3. (a) Residual plot of the model fitted to the body fat data. (b) Estimated

mean function and standard deviation of the population difference dx. (c) Estimated

log qx function with p0 = 0.80 and the standard error of (log q̂x − log qx). (d) 80%

tolerance band for the distribution of dx with simultaneous 95% confidence.

Table 1. Estimated coverage probabilities (%) of the 95% confidence level UCB Ux com-

puted using (8) for the no-covariate case. Throughout we have (p0, β1, λ1, Ψ11, Ψ12) =

(0.80, 0, 1, 16, 15.95). The estimates in the left half are based on 2500 replications and

have a standard error of 0.4%. The estimates in the right half are based on 1000

replications and have a standard error of 0.7%.

Table 2. Estimated coverage probabilities (%) of the 95% confidence level UCB Ux2

computed using (10) for the no-covariate case. These probabilities do not depend on

p0. Throughout we have (β1, λ1, Ψ11, Ψ12) = (0, 1, 16, 15.95). The estimates in the left

half are based on 2500 replications and have a standard error of 0.4%. The estimates

in the right half are based on 1000 replications and have a standard error of 0.7%.
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methods. Bottom: Residual plot of the fitted model (see Section 5.1).
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c0.05 = tm−2(0.05) bootstrap c0.05

m = 15 m = 30 m = 15 m = 30

n n

(β2, λ2, Ψ22) 2 3 5 2 3 5 2 3 5 2 3 5

(0, 1.0, 16) 96.1 97.2 96.8 96.3 96.2 95.2 94.4 93.4 93.8 95.3 93.9 93.7

(2, 1.0, 16) 95.6 95.7 96.1 94.9 95.3 94.8 95.5 96.2 94.8 96.2 95.3 94.2

(0, 1.5, 16) 96.2 96.2 96.8 95.9 96.0 95.5 95.9 93.8 95.2 94.6 96.0 94.1

(2, 1.5, 16) 96.1 96.0 96.6 95.8 96.0 94.8 95.9 95.4 94.1 95.2 94.0 95.6

(0, 1.0, 20) 91.8 91.6 91.9 92.8 91.6 92.1 93.8 93.9 94.4 94.0 94.8 94.7

(2, 1.0, 20) 92.0 92.4 92.4 93.2 93.4 92.9 93.9 94.7 95.5 94.5 95.6 94.6

(0, 1.5, 20) 93.0 91.9 91.1 92.7 92.4 91.7 93.8 94.1 93.8 94.9 94.7 92.3

(2, 1.5, 20) 92.5 93.0 92.2 93.6 92.9 93.1 94.0 93.4 94.6 94.1 95.3 96.3

Table 1: Estimated coverage probabilities (%) of the 95% confidence level UCB Ux com-

puted using (8) for the no-covariate case. Throughout we have (p0, β1, λ1, Ψ11, Ψ12) =

(0.80, 0, 1, 16, 15.95). The estimates in the left half are based on 2500 replications and have

a standard error of 0.4%. The estimates in the right half are based on 1000 replications and

have a standard error of 0.7%.



c0.05 = tm−2(0.05) bootstrap c0.05

m = 15 m = 30 m = 15 m = 30

n n

(β2, λ2, Ψ22) 2 3 5 2 3 5 2 3 5 2 3 5

(0, 1.0, 16) 90.8 93.1 93.9 92.1 92.9 94.0 93.5 94.3 93.1 94.5 93.8 95.2

(2, 1.0, 16) 90.5 92.0 93.0 91.6 92.0 93.1 93.9 93.7 93.9 94.3 94.5 93.6

(0, 1.5, 16) 89.8 91.1 93.7 90.3 92.7 93.7 95.4 93.8 94.8 93.4 95.5 94.5

(2, 1.5, 16) 90.0 91.9 93.1 90.8 92.0 93.5 93.9 95.9 95.5 93.6 93.8 95.0

(0, 1.0, 20) 92.2 94.5 93.7 93.2 92.5 93.8 95.6 94.8 93.5 94.3 94.1 94.3

(2, 1.0, 20) 92.3 94.6 94.6 92.8 93.1 93.6 94.6 95.3 94.8 94.4 95.2 94.0

(0, 1.5, 20) 92.4 93.5 94.4 93.5 93.2 94.2 95.1 93.9 95.4 95.3 95.2 95.2

(2, 1.5, 20) 92.0 93.4 95.0 93.0 94.2 94.2 95.3 94.6 95.2 93.6 94.2 94.7

Table 2: Estimated coverage probabilities (%) of the 95% confidence level UCB Ux2 computed

using (10) for the no-covariate case. These probabilities do not depend on p0. Throughout

we have (β1, λ1, Ψ11, Ψ12) = (0, 1, 16, 15.95). The estimates in the left half are based on 2500

replications and have a standard error of 0.4%. The estimates in the right half are based on

1000 replications and have a standard error of 0.7%.


