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Abstract: A tolerance band for a functional response provides a region that is expected to contain

a given fraction of observations from the sampled population at each point in the domain. This

band is a functional analog of tolerance interval for univariate response. Although the problem of

constructing functional tolerance bands has been considered for a Gaussian response, it has not

been considered for non-Gaussian responses, which are common in biomedical applications. This

article develops a methodology for constructing tolerance bands for two non-Gaussian members

of the exponential family: binomial and Poisson. The approach is to first model the data using the

framework of generalized functional principal components analysis. Then, a parameter is identi-

fied in which the marginal distribution of the response is stochastically monotone. It is shown that

the tolerance limits can be readily obtained from confidence limits of this parameter, which in

turn can be computed using large-sample theory and bootstrapping. The proposed methodology

works for both dense and sparse functional data. Simulation studies are conducted to evaluate its

c© 2023 Statistical Society of Canada / Société statistique du Canada
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performance and get recommendations for practical applications. The methodology is illustrated

by analyzing two real biomedical datasets. Computer code is provided for its implementation.

1 INTRODUCTION

For a univariate population, a tolerance interval computed from sample data is

expected to contain a specified fraction (p) of the population with a given level

of confidence. Vardeman (1992) provides an introduction to tolerance intervals,

Krishnamoorthy & Mathew (2009) provide a book-length treatment of the topic,

and Young (2010) provides an implementation in the software system R (R Core

Team, 2021). Tolerance intervals can be one-sided or two-sided. A one-sided

tolerance interval is equivalent to a one-sided confidence interval for a population

quantile. Tolerance intervals with large p may serve as reference intervals for

detecting deviation from “normal” (Wright & Royston, 1999).

In addition to their wide usage in manufacturing and engineering (Meeker,

Hahn, & Escobar, 2017), tolerance intervals are commonly used in biomedi-

cal sciences as well. Specifically, they have been used for evaluating individual

bioequivalence of drug formulations (Brown, Iyer, & Wang, 1997), environmen-

tal monitoring (Smith, 2002), examining occupational exposure levels (Krish-

namoorthy, Mathew, & Ramachandran, 2007), assessing agreement in clinical

measurement methods (Choudhary, 2008), and identifying poorly performing
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healthcare providers (Manktelow, Seaton, & Evans, 2016). For additional ap-

plications, see Rathnayake & Choudhary and the references therein.

Tolerance intervals can be parametric, wherein a specific parametric family of

distributions is assumed for the population, or nonparametric wherein only con-

tinuity of the population distribution is assumed. For parametric intervals, Gaus-

sian assumption for the population distribution is most common, but many other

choices exist. As a matter of fact, the tolerance package of Young (2010)

currently provides a total of 17 options. Of specific interest in this article are

two non-Gaussian members of the exponential family of distributions — bino-

mial and Poisson — for which the tolerance intervals were developed by Hahn &

Chandra (1981). For the binomial interval, the sample data consist of Bernoulli

observations which are summed to get a binomial count. For the Poisson interval,

the sample data consist of Poisson observations. Alternatives and refinements of

Han & Chandra (1981) intervals are offered by Cai & Wang (2009), Wang &

Tsung (2009), and Krishnamoorthy, Xia, & Xie (2011). See Section 12.6 of the

Krishnamoorthy & Mathew book for a summary.

It is clear from the foregoing discussion that statistical methods for construct-

ing tolerance intervals for univariate data are well developed. However, the same

is not true for functional data, which are increasingly common in biomedical

disciplines. Such data consist of a sample of random curves, one per subject,

and each curve is observed on a finite grid of time points. The data are said to
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be dense when the grid points across subjects are regularly spaced and frequent,

with little gap between the points. On the other hand, the data are said to be

sparse when the grid points across subjects are irregularly spaced or infrequent,

with potentially large gap between the points (Yao, Müller, & Wang, 2005). The

usual longitudinal data are an example of sparse functional data. Development

of statistical methods for functional data analysis is currently an active research

area. Sorensen, Goldsmith, & Sangalli (2013) provide an overview of the field

with focus on biomedical applications; and Ramsay & Silverman (2005) and

Kokoszka and Reimherr (2017) provide book-length treatments.

Indeed, a functional tolerance band — the functional analog of a univariate

tolerance interval — was recently developed (Rathnayake & Choudhary, 2016)

for Gaussian data. This methodology assumes tolerance limits of the form:

estimated mean± k × estimated standard deviation,

where k is a tolerance factor. This form, although natural for Gaussian data, is

generally not appropriate for non-Gaussian data. Moreover, given the parametric

nature of the methodology, the band will be incorrect if the Gaussian assumption

is not reasonable. As our illustrative examples show, non-Gaussian functional

data are common in practice. However, to our knowledge, tolerance bands for

such data have not been developed yet, providing the motivation for this article.

Specifically, we propose a methodology for constructing pointwise and simulta-

neous tolerance bands for binomial and Poisson functional data.
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Our approach has two stages: modeling of data and construction of tolerance

bands under the assumed model. For modeling, we assume the framework of

generalized functional principal components analysis (FPCA) — an extension of

the popular FPC framework of Yao et al. (2005) to accommodate non-Gaussian

data from the exponential family. It was proposed by Hall, Müller, & Yao (2008)

and has become a standard since then. The model is fit using the methods of

Hall et al (2008) and Gertheiss, Goldsmith, & Staicu (2017). See Li, Huang

and Shen (2018) for an alternative method for generalized FPCA. Next, for con-

structing the bands, we develop a novel extension of Hahn & Chandra’s (1981)

argument. This involves representing the tolerance limits as quantile confidence

limits, which in turn can be computed from the confidence limits for an appro-

priate parameter by appealing to a stochastic monotonicity property of the re-

sponse distribution in the parameter (see Section 2.2). The problem then reduces

to that of constructing confidence limits for this parameter. This task can be ac-

complished using large-sample theory and bootstrap. The proposed approach for

obtaining tolerance limits based on a stochastic monotonicity argument is more

general than the one used by Rathnayake & Choudhary (2016) in that it can also

provide tolerance limits for the Gaussian case. However, the Gaussian case is not

pursued in this article.

The rest of this article is organized as follows. In Section 2, we define the

functional tolerance band and describe in general how to compute it from the
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confidence band of a model parameter function via a stochastic monotonicity

argument. Next, in Section 3, we consider modeling of observed data and per-

forming generalized FPCA. Thereafter, in Sections 4 and 5, we use results from

Sections 2 and 3 to respectively propose methods for constructing binomial and

Poisson tolerance bands. The results of a simulation study to evaluate the meth-

ods are presented in Section 6. The proposed methodology is illustrated in Sec-

tion 7 using Doser count data of Grunwald et al. (2011). We conclude in Sec-

tion 8 with a discussion. Proofs, results of additional simulation studies and data

analyses, and another illustration using methadone clinic data of Chan (2016) are

provided in a web supplement. All computations for this article were performed

using R (R Core Team, 2021).

2 Functional Tolerance Bands

2.1 Definitions

Let Y (t), t ∈ T be a random function denoting the functional response of a ran-

domly selected subject from the population. Here the domain T is a closed,

bounded interval on R. For each t ∈ T , let Ft be the cumulative distribution

function (cdf) of Y (t). Next, let (L(t), U(t)] be an interval with lower and upper

limits computed from the sample data and C(t) = Ft{U(t)} − Ft{L(t)} be the

conditional probability content of this interval given the sample data. Because the

interval limits are functions of data, the content C(t) is a random quantity and

has a sampling distribution. The content is also a function of model parameters
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of the distribution of Y (t). Further, let p and 1− α, with p, α ∈ (0, 1), respec-

tively denote a specified probability cutoff and the confidence level. The band

(L(t), U(t)], t ∈ T is a (p, 1− α) pointwise tolerance band if it satisfies

P (C(t) ≥ p) ≥ 1− α for all t ∈ T , (1)

and a (p, 1− α) simultaneous tolerance band if it satisfies

P (C(t) ≥ p for all t ∈ T ) ≥ 1− α. (2)

The probabilities in (1) and (2) are with respect to sampling distribution of the

data. Thus, a functional tolerance band demarcates a region such that at each

t ∈ T there is at least a fraction p of responses from the sampled population,

providing an interval estimate for Y (t). Pointwise and simultaneous bands dif-

fer in the associated probability guarantee: whether the probability of correct

content (i.e., content exceeding p) is at least 1− α separately for each t ∈ T or

simultaneously for all t ∈ T . Naturally, a simultaneous band is wider than the

corresponding pointwise band.

Let l0 and u0 respectively denote the lower and upper limits of the support

of the distribution of Y (t). A tolerance band is one-sided if either L(t) = l0

or U(t) = u0 for all t ∈ T . In these cases, it is respectively called an upper

or a lower tolerance band. A one-sided tolerance band can be interpreted as a

one-sided confidence band for an appropriate quantile. To see this, let Qp(t) de-

note the pth population quantile of Y (t), defined as Qp(t) = inf{y : Ft(y) ≥ p}.

DOI: The Canadian Journal of Statistics / La revue canadienne de statistique
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This definition gives the correspondence Ft(y) ≥ p ⇐⇒ y ≥ Qp(t). From (2),

a (p, 1− α) simultaneous upper tolerance band U(t) satisfies

1− α ≤ P
(
Ft{U(t)} ≥ p for all t ∈ T

)
= P

(
U(t) ≥ Qp(t) for all t ∈ T

)
,

where the second equality follows from the above correspondence. This implies

that U(t) is a 1− α simultaneous upper confidence band for Qp(t). Likewise,

a (p, 1− α) simultaneous lower tolerance band L(t) is a 1− α simultaneous

lower confidence band forQ1−p(t). Similar arguments hold in the pointwise case.

Thus, in the one-sided case, computing a tolerance band reduces to computing a

confidence band for an appropriate quantile.

This, however, is not true in general for the two-sided case. Nevertheless,

for p > 0.5, we can define an equal-tailed tolerance band in terms of quantile

confidence bands. Unlike the usual two-sided tolerance interval, an equal-tailed

tolerance interval captures at least p fraction of the center of the sampled pop-

ulation. Because of this property, equal-tailed intervals are a common choice

for two-sided intervals (Krishnamoorthy & Mathew, 2009). To define the equal-

tailed tolerance band, suppose the tolerance limits Le(t) and Ue(t) computed

from the sample data are such that Le(t) ≤ Q(1−p)/2(t) and Ue(t) ≥ Q(1+p)/2(t).

Then, the conditional probability content given the sample data in each tail, i.e.,

to the left of Le(t) and to the right of Ue(t), is at most (1− p)/2, implying that

the probability content of (Le(t), Ue(t)] is at least p. This leads to the following

definition: the band (Le(t), Ue(t)], t ∈ T is a (p, 1− α) equal-tailed pointwise

The Canadian Journal of Statistics / La revue canadienne de statistique DOI:
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tolerance band if it satisfies

P
(
Le(t) ≤ Q(1−p)/2(t), Q(1+p)/2(t) ≤ Ue(t)

)
≥ 1− α for all t ∈ T , (3)

and a (p, 1− α) equal-tailed simultaneous tolerance band if it satisfies

P
(
Le(t) ≤ Q(1−p)/2(t), Q(1+p)/2(t) ≤ Ue(t) for all t ∈ T

)
≥ 1− α. (4)

Like before, the probabilities in (3) and (4) are with respect to sampling distri-

bution of the data. Here Le(t) and Ue(t) serve as one-sided confidence bands for

respective quantiles Q(1−p)/2(t) and Q(1+p)/2(t). By definition, the equal-tailed

tolerance band captures at least p fraction of the center of the population of Y (t)

at each t ∈ T . We will only consider equal-tailed bands for the two-sided case.

2.2 Stochastic Monotonicity and Quantile Confidence Bands

First, consider a scalar response Y and assume that its distribution depends on a

single parameter θ ∈ Θ. The distribution of Y is stochastically nondecreasing in

θ if for any two values θ1 and θ2 ∈ Θ of θ such that θ1 < θ2, we have

P (Y > y|θ2) ≥ P (Y > y|θ1) for all y ∈ R. (5)

Thus, Y tends to have larger values for larger θ. The condition in (5) is equiv-

alent to P (Y ≤ y|θ1) ≥ P (Y ≤ y|θ2) for all y ∈ R. If the distribution of Y is

stochastically nondecreasing in θ, a confidence interval for a quantile of Y can

be computed by first computing a confidence interval for θ and then evaluating

the quantile at its endpoints. This result is used by Hahn & Chandra (1981) for
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computing quantile confidence intervals and hence tolerance intervals for bino-

mial and Poisson distributions. Next, we provide a similar connection for the

functional case. It will be used in Sections 4 and 5.

For a functional response Y , suppose the univariate marginal distribution of

Y (t), t ∈ T depends on a scalar parameter function θ : T 7→ Θ ⊆ R. The distri-

bution may have other parameters as well which may also depend on t, say,

ψ(t). Although ψ is not required to be scalar-valued, it is so in the applica-

tions of interest here. For each t ∈ T , let Ft{y|θ(t), ψ(t)} be the cdf of Y (t)

and Qp{t|θ(t), ψ(t)} be its pth quantile. These quantities were previously de-

fined as Ft(y) and Qp(t), respectively. Their new notation explicitly includes the

parameters θ(t) and ψ(t) for clarity.

Now we have the following definition. The distribution of the functional re-

sponse Y is said to be stochastically nondecreasing in θ if the distribution of the

corresponding scalar response Y (t) is stochastically nondecreasing in θ(t) for

each t ∈ T , keeping ψ(t) fixed. In other words, the distribution of Y is stochasti-

cally nondecreasing in θ if the following holds for each t ∈ T : for any two values

θ1 and θ2 ∈ Θ of the parameter function θ(t) such that θ1 < θ2, we have

Ft{y|θ1, ψ(t)} ≥ Ft{y|θ2, ψ(t)} for all y ∈ R. (6)

Lemma 1. If distribution of the functional response Y is stochastically non-

decreasing in θ, then its quantile function Qp is also nondecreasing in θ, i.e.,

Qp{t|θ(t), ψ(t)} is nondecreasing in θ(t) for each t ∈ T , keeping ψ(t) fixed.

The Canadian Journal of Statistics / La revue canadienne de statistique DOI:
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Proposition 1. Suppose the distribution of the functional response Y is

stochastically nondecreasing in θ. Assume that the additional parameter ψ is

known. Then, the following hold for simultaneous as well as pointwise bands.

(a) If θ̂L(t) is a 1− α lower confidence band for θ(t), then L(t) =

Q1−p{t|θ̂L(t), ψ(t)} is a (p, 1− α) lower tolerance band for Y (t), t ∈ T .

(b) If θ̂U(t) is a 1− α upper confidence band for θ(t), then U(t) =

Qp{t|θ̂U(t), ψ(t)} is a (p, 1− α) upper tolerance band for Y (t), t ∈ T .

(c) If
[
θ̂L(t), θ̂U(t)

]
is a 1− α two-sided confidence band for θ(t), then(

Le(t), Ue(t)
]
, where Le(t) = Q(1−p)/2

{
t|θ̂L(t), ψ(t)

}
and Ue(t) =

Q(1+p)/2

{
t|θ̂U(t), ψ(t)

}
, is a (p, 1− α) equal-tailed tolerance band for

Y (t), t ∈ T .

The proofs of this and other results are given in Supplement Section S1. Now

some remarks on this result are in order. First, its practical implication is that

when the stochastic monotonicity condition holds, a tolerance band can be com-

puted from a confidence band for θ by simply computing the appropriate quan-

tiles of Y at the confidence limits. Thus, the task of constructing a tolerance

band reduces to that of constructing a confidence band for θ for which estab-

lished methods can be employed. Second, the chance that the probability content

of a tolerance band exceeds p is the same as the coverage probability of the

corresponding confidence band for θ. Therefore, the tolerance band is exact or

approximate depending on whether the confidence band is exact or approximate.

Third, if the model for Y does not contain the additional parameter ψ, it can be
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omitted from the notation of cdf and quantile function. Fourth, the result assumes

ψ is known. If, however, ψ is unknown, it can be replaced with a consistent esti-

mator ψ̂ while computing the quantiles. Although then the chance of probability

content of a tolerance band exceeding pwould generally differ from the coverage

probability of the corresponding confidence band for θ, consistency of ψ̂ would

ensure that the resulting tolerance band is a large-sample approximation. Finally,

the two-sided confidence band for θ in (c) is not required to be equal-tailed, al-

though it is generally so in practice.

3 Modeling Data and Generalized FPC Analysis

In this section, we consider modeling of the observed functional data and pa-

rameter estimation. Suppose there are n subjects in the study, indexed as i =

1, . . . , n. The response curve for subject i is Yi(t), t ∈ T and it is observed at Ni

time points tij , j = 1, . . . , Ni. Although the observation times may vary between

subjects, together they are assumed to form a dense grid in T . Thus, the observed

data consist of observations Yi(tij), j = 1, . . . , Ni, i = 1, . . . , n. We now follow

Hall et al. (2008) to describe a generalized FPC model for these data.

3.1 Model for Population

First, we model Y (t), t ∈ T , representing the population from which the curves

are sampled. The mean and covariance functions of Y (t) are µ(t) and σ(s, t),

respectively. Let X̃(t) be a latent Gaussian process on T with mean function

β(t) and covariance function φ(s, t). Conditional on X̃ , the Y (t) for t ∈ T are

The Canadian Journal of Statistics / La revue canadienne de statistique DOI:
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assumed to be independent draws from a distribution in the exponential family

with link function g{E(Y (t)|X̃)} = X̃(t). Of specific interest are two members

of the exponential family: binomial with logit link and Poisson with log link.

Under certain conditions (see Section 11.4 of Kokoszka and Reimherr, 2017),

the covariance function φ of X̃ admits a spectral decomposition, φ(s, t) =∑∞
k=1 λkφk(s)φk(t), where the φk are orthonormal eigenfunctions and the λk are

the corresponding nonnegative eigenvalues in nonincreasing order. Moreover, X̃

admits a Karhunen-Loeve expansion:

X̃(t) = β(t) +
∞∑
k=1

ξkφk(t), (7)

where the coefficients ξk (called scores) follow independent N1(0, λk) distribu-

tions. FPCA reduces dimension by truncating the infinite sum in (7) to M terms,

giving the approximation

X̃(t) ≈ X(t) = β(t) +
M∑
k=1

ξkφk(t) = β(t) + φT (t)ξ, (8)

where M is the number of FPC to be selected; and φ(t) = (φ1(t), . . . , φM(t))T

and ξ = (ξ1, . . . , ξM)T respectively denote M × 1 vectors of eigenfunctions and

the associated scores. The score vector ξ can be interpreted as a random subject

effect, distributed as NM(0,Λ) with Λ = diag{λ1, . . . , λM} denoting an M ×

M diagonal matrix. From now on, the approximation due to truncation is ignored

so that X(t) defined in (8) is taken as the latent Gaussian process with mean

function β(t) and covariance function φ(s, t) = φT (s)Λφ(t).

DOI: The Canadian Journal of Statistics / La revue canadienne de statistique
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Under (8), conditioning on the latent X can be replaced with conditioning on

the random effect ξ. Therefore, the model for Y (t) can be written as follows:

For each t ∈ T , Y (t)|ξ are conditionally independent draws from a distribution

in the exponential family with link function g{µξ(t)} = X(t) = β(t) + φT (t)ξ,

where µξ(t) = E(Y (t)|ξ) is the conditional mean function and ξ ∼ NM(0,Λ).

The marginal distribution of Y (t) obtained by integrating out ξ depends on pa-

rameters only through β(t) and φ(s, t). The marginal mean function of Y (t) is

µ(t) = E{µξ(t)}. Expressions for its marginal covariance function σ(s, t) under

binomial and Poisson models are given in Sections 4 and 5, respectively. Next,

we provide a stochastic monotonicity result that will be used in these sections

for constructing tolerance bands.

Proposition 2. Suppose for each t ∈ T , the conditional cdf of Y (t)|X(t) = x

is a nonincreasing function of x. Then, the distribution of the functional response

Y is stochastically nondecreasing in β, holding φ fixed.

3.2 Model for Data

Let ξi denote the score vector ξ for subject i. These are assumed to be indepen-

dently and identically distributed as ξ ∼ NM(0,Λ). The assumed population

model implies the following model for data from subject i: Yi(tij)|ξi are con-

ditionally independent draws from a distribution in the exponential family with

link function

g{µξi(tij)} = β(tij) + φT (tij)ξi, j = 1, . . . , Ni, i = 1, . . . , n. (9)
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The unknowns in this model are β(t), M , Λ, and φ(t). This generalized FPCA

model has the structure of a generalized linear mixed model with β(t) as the

fixed effect and ξi as the random effect, but with unknown φ and M . Estimation

of the unknowns is discussed next. Once the estimates are available, any function

of the unknowns can be estimated by plug-in.

3.3 Model Fitting

We consider two methods for estimating unknowns in (9). Both specify β(t) non-

parametrically, making the model a generalized additive mixed model; select the

number M of FPC to satisfy a given level of proportion of variation explained;

and are implemented in the R package gfpca of Goldsmith (2016). For data

analysis and simulation studies in this paper, M is chosen to explain at least 0.99

proportion of variation. We now briefly describe the two methods. For additional

details, the reader is referred to the original papers and software documentation.

The first method is due to Hall et al. (2008). It has been called the marginal

method by Gertheiss et al. (2017). Its implementation in gfpca uses spline

smoothing for estimating marginal mean and covariance functions of Y (t) rather

than local linear regression considered in the original paper. This method has

two variants depending upon how the covariance function of the latent process

is estimated. One directly applies the method of Yao et al. (2005) to the raw

data, ignoring the distribution of the response, and the other utilizes the estima-

tor given by Hall et al. which uses Taylor approximation to relate the moments

DOI: The Canadian Journal of Statistics / La revue canadienne de statistique
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of Y (t) with those of the latent process. We refer to these variants as A and B,

respectively.

The second is the two-step method of Gertheiss et al. (2017). Its first step per-

forms an FPCA of the raw data to compute the estimated eigenfunctions φ̂(t)

and second step replaces φ(t) in (9) with φ̂(t) and fits the resulting generalized

additive mixed model by maximum likelihood. This method also has two vari-

ants A and B, completely analogous to the marginal method, related to how the

covariance function of the latent process is estimated.

4 Tolerance Bands for Binomial Model

Suppose now that the response Y (t) is binary. The model assumed for Y (t)

in Section 3 implies that the Y (t)|ξ for t ∈ T are conditionally independent

draws from a Bernoulli distribution with success probability µξ(t) = g−1(β(t) +

φT (t)ξ) and ξ ∼ NM(0,Λ). The marginal distribution of Y (t) is also Bernoulli

but with success probability µ(t) = E{µξ(t)} and covariance function

σ(s, t) =


µ(t){1− µ(t)}, s = t,

cov{µξ(s), µξ(t)}, s 6= t.

Explicit expressions for µ and σ are not available but they can be computed

numerically by evaluating the integral in their definitions using Gauss-Hermite

quadrature (Lange, 2018, ch 18). Since the response curves Yi(t) for subjects

i = 1, . . . , n are independent draws from the same population, the sum S(t) =

The Canadian Journal of Statistics / La revue canadienne de statistique DOI:
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i=1 Yi(t) representing the number of successes follows a binomial (n, µ(t))

distribution. Its mean function is nµ(t) and covariance function is nσ(s, t). Our

interest is in constructing a tolerance band for the distribution of S(t) using

a logit link, g(x) = logit(x). We can now proceed in two ways. Both rely on

stochastic monotonicity of the distribution of S — in µ for the first whereas in β

for the second — and utilize Proposition 1.

4.1 Approach 1

For the first approach, we know that the distribution of a scalar binomial ran-

dom variable is stochastically nondecreasing in its success probability (Casella

& Berger, 2001, ex 8.25-8.26, p 406). Therefore, it follows from Section 2.2 that

the distribution of the functional response S is stochastically nondecreasing in µ.

Thus, we can first compute a confidence band for µ and then get a tolerance band

for S by applying Proposition 1, wherein (S, µ) play the roles of (Y, θ) and ψ is

omitted because there is no additional parameter for the univariate marginal dis-

tribution of S. For example, if µ̂L(t) is a 1− α lower confidence band for µ(t),

then L(t) = Q1−p{t|µ̂L(t)} is a (p, 1− α) lower tolerance band for S(t). Here

Q1−p{t|µ̂L(t)} is the (1− p)th quantile of a binomial (n, µ̂L(t)) distribution.

To construct a confidence band for µ, we first fit the generalized FPCA

model (9) assuming a Bernoulli distribution with logit link. Let µ̂(t) be the re-

sulting plug-in estimator of µ(t). Then, large-sample 1− α confidence bands for

µ(t) can be computed using any method for computing confidence intervals for
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a binomial proportion, including the following three commonly used methods

(Brown, Cai, & DasGupta, 2001):

Wald method: µ̂(t)± c
√
µ̂(t){1− µ̂(t)}/n,

Wilson method: µ̂W (t)± c
√
n

n+ c2

√
µ̂(t){1− µ̂(t)}+ c2/(4n),

Agresti-Coull method: µ̂W (t)± c
√
µ̂W (t){1− µ̂W (t)}/(n+ c2). (10)

Here c is an appropriate critical point depending upon whether the band is point-

wise or simultaneous and whether it is one-sided or two-sided (see Section 4.3);

and µ̂W (t), the center of both Wilson and Agresti-Coull intervals, is given as

µ̂W (t) =
nµ̂(t) + c2/2

n+ c2
.

See Brown, Cai, & DasGupta (2001) for a nice comparative account of the three

methods. Essentially, they show that the Wald method, which gives the standard

large-sample confidence interval for a binomial proportion, has unsatisfactory,

oscillatory coverage performance due to discreteness of the binomial distribu-

tion, and this is corrected by Wilson interval and Agresti-Coull intervals.

4.2 Approach 2

For the second approach, recall from Section 3.1 that the marginal distribution

of Y and hence that of S depends on parameters only through β and φ, the mean

and covariance functions of the latent processX . In addition, S has the following

property.
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Proposition 3. Assume that g−1(x) is nondecreasing in x. Then, the distribu-

tion of the functional response S is stochastically nondecreasing in β, holding φ

fixed.

Based on this result, the distribution of S is stochastically nondecreasing in β

under the logit link because logit−1(x) = exp(x)/{1 + exp(x)} is increasing in

x. Therefore, to get an approximate (p, 1− α) tolerance band for S(t), we can fit

the generalized FPCA model; construct an approximate 1− α confidence band

for β(t) of the form:

β̂(t)± c ŜE{β̂(t)}; (11)

and apply Proposition 1, with
(
S, β, φ̂(t, t)

)
playing the roles of

(
Y, θ, ψ(t)

)
.

Thus, e.g., if β̂L(t) is a lower 1− α confidence band for β(t), then L(t) =

Q1−p{t|β̂L(t), φ̂(t, t)} is an approximate (p, 1− α) lower tolerance band for

S(t). HereQ1−p{t|β̂L(t), φ̂(t, t)} is the (1− p)th quantile of a binomial distribu-

tion with parameters n and µ(t) computed as above by setting
(
β(t), φ(t, t)

)
=(

β̂L(t), φ̂(t, t)
)
. We refer to this method as the latent mean method. For models

fit using the gfpca package (Goldsmith, 2016), the standard error in (11), or

more generally the estimated covariance matrix of β̂(t) on a grid of values of t,

can be computed using the mgcv package (Wood, 2017, sec 6.10).

From the remarks at the end of Section 2, it follows that for a tolerance band

computed using Approach 1, the chance that its probability content exceeds p is

equal to the coverage probability of the confidence band from which it is ob-
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tained. The same, however, holds only approximately for the tolerance band

computed using Approach 2 because of the necessity to involve an additional

estimator φ̂(t, t) to get a confidence band from a tolerance band.

4.3 Computing Critical Points

All four confidence bands in (10) and (11) use a pivot Z(t), t ∈ T whose

asymptotic distribution is used to compute approximate critical points for the

bands. The pivot for the Wald method is Z(t) = {µ̂(t)− µ(t)}/ŜE{µ̂(t)} with

ŜE{µ̂(t)} =
√
µ̂(t){1− µ̂(t)}/n. The Wilson and Agresti-Coull methods use

the same pivot but with
√
µ(t){1− µ(t)}/n as the standard error. The latent

mean method uses Z(t) = {β̂(t)− β(t)}/ŜE{β̂(t)} as the pivot.

Consider a grid t1, . . . , tm of m equally-spaced points in T . In practice,

m ∈ [30, 50] is generally adequate. When n is large, the joint distribution of

Z(t1), . . . , Z(tm) on the grid can be approximated by a multivariate normal dis-

tribution with N1(0, 1) univariate marginals. Therefore, for the pointwise bands,

the critical point c = z1−α/2 in the two-sided case and c = z1−α in the one-sided

case, with zα denoting the αth quantile of a N1(0, 1) distribution. For the simul-

taneous bands, c = (1− α)th quantile of maxt∈{t1,...,tm} |Z(t)| in the two-sided

case; c = (1− α)th quantile of maxt∈{t1,...,tm} Z(t) in the left-tailed case; and

c = (−1)× αth quantile of mint∈{t1,...,tm} Z(t) in the right-tailed case. These

critical points can be computed using the multcomp package of Hothorn, Bretz,

& Westfall (2008).
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Sometimes, however, this standard large-sample approximation is not accu-

rate. In such cases, a bootstrap approximation may offer greater accuracy. The

steps in this computation are given in Supplement Section S2, with B denoting

the number of bootstrap replications. In practice, B ∈ [300, 500] often suffices.

The bootstrap method can also provide approximate critical points for point-

wise bands. Although then the critical points would depend on t, an advantage

is that the resulting pointwise bands will lie within the corresponding simultane-

ous bands. If standard normal percentiles are used as critical points, this may not

hold unless n is large enough for normal approximation to be accurate.

To summarize, the proposed methodology for computing a binomial toler-

ance band involves three steps. First, fit a generalized FPCA model (9) to the

data assuming a Bernoulli distribution with logit link, as described in Section 3.

Next, compute a confidence band for either µ(t) or β(t) using the methodology

described in this section. Finally, convert this confidence band into a tolerance

band by applying Proposition 1.

5 Tolerance Bands for Poisson Model

Now consider the case when the response Y (t) is a count. The model as-

sumed for Y (t) in Section 3 postulates that, conditional on ξ ∼ NM(0,Λ), the

Y (t) for t ∈ T are independent draws from a Poisson distribution with mean

µξ(t) = g−1(β(t) + φT (t)ξ). Here we will use a log link, g(x) = log(x). Unlike

the binary data case, the marginal distribution of Y (t) is not available explicitly.
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For k = 0, 1, . . ., its probability mass function can be written as

P (Y (t) = k) = E{P (Y (t) = k|ξ)} =
1

k!

∫ ∞
−∞

exp(− exp(x) + kx)fX(t)(x)dx,

(12)

where fX(t)(x) is the density of a N1

(
β(t), φ(t, t)

)
distribution. It can be com-

puted using Gauss-Hermite quadrature. The marginal mean and covariance

functions of Y (t) (MuCulloch, Shayle, & Neuhaus, 2008 ch 7) are µ(t) =

exp{β(t) + 1
2
φ(t, t)} and

σ(s, t) =


exp{β(t) + 1

2
φ(t, t)}+ exp{2β(t) + 2φ(t, t)} − exp{2β(t) + φ(t, t)}, s = t,

exp{β(s) + β(t) + 1
2
ν(s, t)} − exp{β(s) + β(t) + 1

2
φ(s, s) + 1

2
φ(t, t)}, s 6= t,

with ν(s, t) = (φ(s) + φ(t))TΛ(φ(s) + φ(t)). The following counterpart of

Proposition 3 also holds for the Poisson response.

Proposition 4. Assume that g−1(x) is nondecreasing in x. Then, the distribu-

tion of the functional response Y is stochastically nondecreasing in β, holding φ

fixed.

Our interest is in constructing a tolerance band for the distribution of Y (t),

t ∈ T . Under log link, Y is nondecreasing in β from Proposition 4 because

g−1(x) = exp(x) is increasing in x. Thus, we can get the tolerance band by

proceeding exactly as in Approach 2 for the binomial model: First fit a gener-

alized FPCA model (9) to the data assuming a Poisson distribution with log link,

as described in Section 3; then compute a confidence band for β(t) using (11);
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and finally convert the confidence band into a tolerance band by applying Propo-

sition 1. Thus, e.g., if β̂U(t) is a 1− α upper confidence band for β(t), then

U(t) = Qp{t|β̂U(t), φ̂(t, t)} is an approximate (p, 1− α) upper tolerance band

for Y (t). The quantile herein is computed numerically using a Gauss-Hermite

quadrature approximation of the cdf of the distribution given by (12). In the

Poisson case, there is no analog of Approach 1 for binomial because the marginal

distribution of Y is not available explicitly.

6 Simulation Studies

We conduct simulation studies to evaluate performance of the proposed method-

ology for constructing (p, 1− α) binomial and Poisson tolerance bands. Since

the bands are asymptotic approximations, their performance is measured by es-

timating the chance that their probability content is correct (i.e., it exceeds p)

in finite samples and comparing it with the nominal confidence level 1− α. In

principle, the bands can be computed using any combination of the model fit-

ting methods — variants A and B of marginal and two-step methods; and the

critical point approximations — standard large-sample and bootstrap. However,

upon on a preliminary investigation based on simulated and real data, we narrow

down to the following combinations because the rest either do not work well

enough to justify an in-depth investigation or are not computationally viable (see

also Supplement Tables S1 and S2):

• Binomial band: variant A of marginal method with bootstrap approximation
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• Poisson band: variant B of marginal method with bootstrap approximation and

also variant B of two-step method with standard large-sample approximation

In particular, for binomial data, the variant B of marginal method does not work

well because the eigenvalues are overestimated (see Supplement Figure S1),

leading to underestimation of θ(t). The mean function β(t) is not estimated well

with either variant of the two-step method. Further, the standard large-sample

approximation for critical point does not lead to accurate coverage performance

(see Supplement Tables S3 and S4). On the other hand, for Poisson data, the

variant A of either the marginal method or the two-step method does not work

well because the eigenvalues are underestimated (see Supplement Figure S2),

again leading to underestimation of θ(t). Moreover, the bootstrap approximation

for critical point is computationally problematic with the two-step method. Next,

for computing confidence bands, we have a total of four methods in the binomial

case, namely, Wald, Wilson, Agresti-Coull, and latent mean methods; and only

the last one in the Poisson case.

Data are simulated from the true model (9) along the lines of the

real data examples by taking T = [0, 1] and M = 2. In the binomial case,

a logit link is assumed with parameters β(t) = 8(t− 0.4)2 − 3, (λ1, λ2) =

(1, 0.5), φ1(t) =
√

2 cos(2πt) and φ2(t) =
√

2 sin(2πt). In the Poisson case,

a log link is assumed with parameters β(t) = (t− 0.5)2 + 2.5 and (λ1, λ2) ∈

{(1.00, 0.25), (1.00, 0.50), (3.25, 0.25), (3.25, 0.50)}; and φ1(t) and φ2(t) are
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taken as the first two eigenfunctions estimated from the Doser count data by re-

stricting the data to the domain T . In both cases, the observation times are taken

on a grid tgrid = {u : u = 0, 1/29, 2/29, . . . , 1} of 30 equally-spaced points in

T ; and a total of four designs — one dense and three sparse — are consid-

ered. For the dense case, we take Ni = 30 with observation times as the points

on tgrid. For the sparse case, we consider three designs with increasing sparsity:

Ni = 20, Ni = 10 and Ni ∼ Poisson(10); and for each design, draw observation

times from a uniform distribution over tgrid, separately for each subject. These

designs are respectively called (a), (b), (c) and (d). All subjects have the same

observation times in the dense case but this is unlikely in the sparse cases. We

also assume (p, 1− α) = (0.90, 0.95) and consider n ∈ {25, 50, 100, 200}. Al-

together for each band we investigate a total of 64 settings covering a range of

practical scenarios.

For each setting, we simulate a dataset, estimate parameters as described in

Section 3 by selecting FPCs to explain at least 99% of variation, compute the

necessary confidence bands on tgrid and convert them into tolerance bands on

tgrid as described in Sections 4 and 5. We employ gfpca (Goldsmith, 2016) and

mgcv (Wood, 2017, sec 6.10) packages for model fitting and estimating covari-

ance matrix of β̂(t) on tgrid; and multcomp (Hothorn, Bretz, & Westfall, 2008)

package for determining the standard large-sample critical points for simultane-

ous bands. For bootstrap approximation of critical points, B = 500 resamples

DOI: The Canadian Journal of Statistics / La revue canadienne de statistique



26 GALAPPATHTHIGE S. R. DE SILVA AND PANKAJ K. CHOUDHARYVol. xx, No. yy

are used. Gauss-Hermite quadrature is used with 10 quadrature points. Once the

tolerance bands are available, their true probability content under the marginal

distribution of Y (t) is calculated for each t ∈ tgrid.

The entire process from data simulation to probability content calculation is

repeated 500 times. For a pointwise band, the proportion of times its true content

exceeds p = 0.90 is calculated for each t ∈ tgrid. Likewise, for a simultaneous

band, the proportion of times its smallest probability content over tgrid exceeds

p = 0.90 is calculated. These proportions estimate the probability of correct con-

tent for the bands and can be compared with the nominal level 1− α = 0.95 to

assess their accuracy. For a pointwise band, the proportions over tgrid are aver-

aged to get an overall measure. The results are presented in Tables 1 and 2 for

binomial bands; and in Tables 3 and 4 and Supplement Tables S5 and S6 for

Poisson bands.

From the proportions in Table 1 for simultaneous binomial bands, we see that

Wilson and Agresti-Coull methods have similar performance throughout. Bar-

ring a few sparse settings for one-sided bands with n ≤ 50, they work well even

with n = 25. Nevertheless, they appear slightly conservative in that the propor-

tions tend to be greater than the nominal 0.95 level. This is especially true for

two-sided bands in which case most of the proportions are around 0.96. A con-

servative band is wider than necessary. There seems little impact of n or sparsity

on the performance for two-sided bands. The same is true for one-sided bands for
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n ≥ 100. When n ≤ 50, a few proportions for sparse scenarios are between 0.92

and 0.93. The latent mean method has generally similar performance as Wilson

and Agresti-Coull methods. The proportions for Wald method never fall below

0.95. They are around 0.98 for n = 25 and come closer to 0.95 for higher n. In

most cases, they are larger than those for the other bands, making it the most

conservative. Sparsity does not seem to affect Wald method’s performance.

The average proportions for pointwise binomial bands in Table 2 show that

for two-sided and one-sided upper bands, Wilson, Agresti-Coull and latent mean

methods work well in all settings and Wald method is slightly conservative. In

contrast, for one-sided lower bands, all four appear slightly liberal in that their

proportions tend to be less than 0.95. This is especially an issue for sparse sce-

narios (c) and (d) wherein the proportions are mostly around 0.92-0.93. A liberal

band is narrower than necessary. The latent mean method appears most liberal

of the four. Further investigation shows the cause to be underestimation of the

latent mean function β(t) by the marginal method in these scenarios. Taken to-

gether, these findings indicate that unless one is specifically interested in one-

sided pointwise lower bands for sparse data, Wilson, Agresti-Coull and latent

mean methods perform well even with n = 25.

Next, we examine Tables 3 and 4 containing results respectively for simul-

taneous and pointwise Poisson bands computed using the two-step method. In

Table 3, all the proportions for two-sided bands are close to the nominal 0.95
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level, indicating that the method works remarkably well for n ≥ 25. However,

for one-sided bands (both upper and lower), the method appears slightly liberal

in that the proportions tend to be smaller than 0.95. This is especially an issue for

n ≤ 50 wherein the proportions often fall below 0.93. Nevertheless, for n ≥ 100,

the performance may be considered acceptable. In Table 4, all entries for n ≥ 25

are close to 0.95, implying that the method works well for pointwise bands re-

gardless of whether they are one-sided or two-sided. Further, there is little to no

impact of sparsity or eigenvalues on pointwise as well as simultaneous bands.

Supplement Tables S5 and S6 contain results for Poisson bands computed

using the marginal method. When the eigenvalues are small, the results tend to

be similar to those for the two-step method. However, when an eigenvalue is

large, the marginal method becomes liberal with proportions often falling below

0.91. As in the binomial case, this behavior is due to underestimation of β(t) in

these scenarios. Although the situation improves with increasing n, the two-step

method clearly works better than the marginal method. Taken together, we can

conclude that the two-step method works well for two-sided simultaneous bands

with n ≥ 25; and for one-sided simultaneous bands with n ≥ 100. It also works

well for pointwise bands (one-sided or two-sided) for n ≥ 25.

To investigate whether the unsatisfactory oscillatory performance of the Wald

method in the scalar case as discovered by Brown et al. (2001) is an issue in

our functional setup as well, we perform additional simulations by varying the

The Canadian Journal of Statistics / La revue canadienne de statistique DOI:



2023 29

mean function β(t) and eigenvalues (λ1, λ2) so that the probability function µ(t)

attains values in the entire (0, 1) interval and considering a number of values for

n (≥ 25), including those investigated by Brown et al. (2001). However, among

the settings investigated, we do not observe any oscillatory behavior in the prob-

ability of correct content of binomial bands and the conclusions regarding them

remain the same as above.

On the whole, the following recommendations can be made on the basis

of these findings. For a binomial band, fit model using variant A of marginal

method, compute critical point by bootstrap approximation, and use Wilson,

Agresti-Coull or latent mean methods (with n ≥ 25). For a Poisson band, fit

model using variant B of two-step method, compute critical point by standard

large-sample approximation, and use latent mean method (with n ≥ 25 for two-

sided bands and n ≥ 100 for one-sided bands).

7 Illustration

We now apply the methodology recommended for Poisson data to the Doser

count data of Grunwald et al. (2011). The methodology for binomial data is illus-

trated in Supplement Section S4 using the methadone clinic data of Chan (2016).

The Doser count data of Grunwald et al. (2011) contain daily counts of (al-

buterol) inhaler use by students at the Kunsberg School, a day school in Denver,

Colorado for students diagnosed with asthma. There are 48 students in the data,

ranging from 6 to 13 years of age. The children could use the inhaler as needed
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but some children were ‘pre-treated’ with the inhaler, such as before formal exer-

cise classes or recess at school. The children did not have a formal exercise class

on Fridays and hence were not prescribed pre-treatment. The inhaler usage was

recorded electronically by a medication counter (Doser; Meditrak, Hudson, MA)

during the school period only on the days attended, and not on the weekends, hol-

idays and days absent. The data come from 2002-2003 school year, which ran

from 15 October, 2002 to 22 May, 2003. There were 125 days of school this year.

The children in the dataset have between 36 and 122 days of measurement; and

only four have fewer than 90 days. The observation times are not the same for

each child. Although the Doser counts are unrestricted, they range from 0 to 6 in

the data. A total of 5,209 observations are available.

Supplement Figure S3 presents trajectories for 3 children. They have sub-

stantially different patterns. The sample mean trajectory for the 48 children in

the data is shown in Figure 1. Although all mean counts are below 2, they show

a weekly cyclical pattern of decrease from a larger value at the beginning of the

school week to a smaller value at its end. But this is mostly an artifact of the

lack of exercise class on Fridays when the children who were prescribed pre-

treatment before exercise were not pre-treated. We model the data by a Poisson

FPC model and compute a two-sided (0.90, 0.95) tolerance band for daily Doser

counts for an individual child over the 125 school days.
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Let Yij(tij) denote the Doser count for child i on day tij; i = 1, . . . , n (= 48);

j = 1, . . . Ni ∈ [36, 122]; and tij ∈ T = [1, 125]. We begin by fitting the Poisson

FPC model (9) with log link using variant B of the two-step method. The FPCA

yields 18 PCs for explaining 99% variability. Just the first six PCs, with respec-

tive eigenvalues 15.41, 1.31, 0.71, 0.29, 0.26 and 0.23, explain 95% variability.

Supplement Figure S4 displays the associated first four eigenfunctions. All have

cyclical patterns. Supplement Figure S5 presents the estimated mean and covari-

ance functions of the latent process. The mean function decreases initially till

day 25, then increases till about day 80, thereafter decreases again till the end.

These time points roughly fall in fall/winter, winter/spring, and spring/summer

seasons. The covariance function has a castle-like shape reflective of a cycli-

cal pattern. Specifically, the variance function initially decreases from its highest

value of 0.33 at day 1 to its lowest value of 0.03 at day 21; then increases to about

0.25 near the middle of school year, completing one cycle. It exhibits two more

such cycles till the end. These cycles also roughly correspond to fall, winter,

spring, and early summer seasons.

The desired tolerance band obtained by transforming the confidence band

for the mean function is also presented in Figure 1. The lower tolerance limit

is a constant at zero. The upper tolerance limit is also a constant at four with

the exception of a few days near the beginning and in the middle of the school

year where the limit is five. As before, this tolerance band demarcates a region
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that is expected to contain at least 90% of daily Doser counts from the sampled

population with 95% confidence. By treating the region as a reference band, it

can be used to identify days with unusually large counts and the corresponding

children. Specifically, there is a total of 8 counts outside the tolerance band. The

corresponding (day number, subject ID, Doser count) triplets are as follows: (19,

28, 5), (41, 33, 6), (93, 42, 6), (94, 25, 5), (96, 45, 6), (98, 35, 5), (104, 40,

5), (106, 43, 5). Not only these counts are highest for the identified days (see

Figure 1) but also the identified children have their highest count on these days.

Interestingly, these are also the 8 counts in the data that are 5 or more. Thus, the

tolerance band is able to pick up all the unusually large counts. Moreover, the

last 6 counts are from 3 weeks in the April, which falls in spring season that is

associated with worse asthma symptoms.

8 Discussion

In this article, we presented a methodology for constructing tolerance bands for

binomial and Poisson functional data. The methodology involves modeling the

data using a generalized FPCA model, computing confidence band for a param-

eter in which the marginal distribution of response is stochastically monotone,

and transforming the confidence band into a tolerance band. Although a variety

of approaches can be used to fit the model, in our context, the marginal method

of Hall et al. (2008) with latent process covariance estimated using the approach

of Yao et al. (2005) works well for binomial data; whereas the two-step method
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of Gertheiss et al. (2017) with covariance estimated using the approach of Hall

et al. (2008) works well for Poisson data. The proposed methodology is appli-

cable for both dense and sparse functional data and the recommended methods

generally show acceptable performance for n ≥ 25.

In applications, oftentimes covariates are available to model the mean func-

tion in a regression model. If the mean function depends on covariates, so would

the tolerance limits. Extensions of univariate binomial and Poisson tolerance in-

tervals for the regression case wherein the distribution depends on covariates are

considered by Zimmer, Park, & Mathew (2014) and Zimmer (2017). It may be of

interest to extend the methodology of this article to incorporate covariates in the

construction of functional tolerance bands. Moreover, we focussed here on bino-

mial and Poisson data. However, our approach based on stochastic monotonicity

can also be used for Gaussian data, providing an alternative to Rathnayake &

Choudhary (2016), and other non-Gaussian members of the exponential fam-

ily. Finally, the tolerance band considered here guarantees at least p probability

content throughout the domain. Another type of tolerance band that guarantees

to cover at least p fraction of entire curves from the population may also be of

interest. More research is needed to explore these directions.

Data Sharing

The two datasets used for illustration in this article and an R program for imple-

menting the proposed methodology can be downloaded from http://www.
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utdallas.edu/˜pankaj/. The original sources for the Doser count data

and the methadone clinic data are Grunwald et al. (2011) and Chan (2016), re-

spectively.

Supplementary Material

The web supplement referenced in this article is available from the journal web-

site. It contains proofs, steps in bootstrap approximation of critical points men-

tioned in Section 4.3, additional tables and figures mentioned in Sections 6 and

7, and another illustration.
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FIGURE 1: Sample mean of Doser counts over the 125 days of school together with a (0.90, 0.95) two-

sided simultaneous tolerance band for counts for a child, superimposed over the raw trajectories. The band

includes the lower and upper limits.

The Canadian Journal of Statistics / La revue canadienne de statistique DOI:



2023 39

TABLE 1: Estimated probability of correct content (in %) for (0.90, 0.95) simultaneous binomial tolerance

bands, computed using variant A of marginal method with bootstrap critical point, in case of four designs:

(a) Ni = 30 (dense), (b) Ni = 20 (sparse), (b) Ni = 10 (sparse) and (d) E(Ni) = 10 (sparse).

Two-sided Band Upper Band Lower Band

n Method (a) (b) (c) (d) (a) (b) (c) (d) (a) (b) (c) (d)

25 Wald 97.2 97.2 97.4 97.8 96.8 96.6 97.0 98.2 98.0 98.2 98.0 98.4

Wilson 96.8 95.8 95.6 96.8 94.0 93.8 92.6 93.6 96.6 92.6 92.0 94.0

Agresti-Coull 96.8 96.8 96.2 97.4 94.6 93.6 92.8 94.0 96.8 93.6 92.6 94.4

Latent Mean 97.6 97.4 96.6 96.4 97.0 97.2 96.2 96.6 98.4 97.8 97.0 97.4

50 Wald 95.8 95.2 97.0 96.4 95.6 95.4 97.4 97.4 97.4 97.6 97.6 98.0

Wilson 96.6 96.2 96.6 96.0 94.0 94.0 92.2 93.4 96.4 94.0 92.2 92.8

Agresti-Coull 97.0 96.6 97.0 96.4 94.8 94.4 93.8 93.4 96.4 94.2 92.6 93.8

Latent Mean 96.0 95.8 96.4 96.4 94.6 94.2 94.0 93.6 97.2 97.0 96.6 96.6

100 Wald 96.6 97.2 96.8 97.4 96.6 96.2 96.8 97.2 96.8 96.8 97.2 97.4

Wilson 96.6 96.2 96.6 96.8 95.4 96.0 95.6 94.4 96.0 96.4 95.4 94.8

Agresti-Coull 96.8 96.2 96.6 96.8 95.4 96.0 96.0 95.2 96.2 96.4 95.4 95.0

Latent Mean 96.2 95.8 95.4 95.6 94.8 95.2 94.4 94.2 96.8 96.2 95.6 96.0

200 Wald 96.6 97.0 96.8 96.2 96.8 97.0 97.0 96.2 96.6 96.8 97.4 97.4

Wilson 96.0 95.8 96.4 96.4 95.8 96.2 95.6 95.8 96.0 96.0 95.0 95.4

Agresti-Coull 96.0 95.8 96.8 96.8 95.8 96.2 96.0 95.8 96.0 96.0 95.0 95.4

Latent Mean 95.6 95.2 94.6 94.8 94.6 95.0 94.4 94.2 94.6 94.6 93.8 94.0
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TABLE 2: Average estimated probability of correct content (in %) for (0.90, 0.95) pointwise binomial

tolerance bands, computed using variant A of marginal method with bootstrap critical point, in case of four

designs: (a) Ni = 30 (dense), (b) Ni = 20 (sparse), (b) Ni = 10 (sparse) and (d) E(Ni) = 10 (sparse).

Two-sided Band Upper Band Lower Band

n Method (a) (b) (c) (d) (a) (b) (c) (d) (a) (b) (c) (d)

25 Wald 97.2 96.4 97.0 97.4 96.8 96.3 96.3 96.9 95.1 93.3 92.6 92.7

Wilson 96.3 94.6 95.1 95.5 95.4 94.2 93.6 94.6 94.7 92.8 92.1 92.0

Agresti-Coull 96.6 94.9 95.4 95.8 95.6 94.4 93.8 94.8 94.8 92.9 92.3 92.2

Latent Mean 95.7 94.6 94.3 94.2 95.5 94.5 94.1 94.0 92.9 92.7 92.1 92.2

50 Wald 96.4 96.5 96.8 96.6 95.9 96.0 96.2 96.2 94.7 94.5 92.9 92.1

Wilson 95.8 95.8 95.3 94.9 95.2 95.1 94.1 92.9 94.3 94.1 92.4 91.5

Agresti-Coull 96.0 96.0 95.7 95.3 95.3 95.2 94.3 94.1 94.5 94.2 92.6 91.7

Latent Mean 95.0 94.4 94.1 93.9 95.6 94.9 94.3 94.1 92.7 92.4 92.3 92.2

100 Wald 96.4 96.3 97.0 96.6 95.9 95.6 95.9 96.1 93.8 93.6 93.4 93.1

Wilson 95.8 95.9 96.2 95.8 95.6 95.2 95.2 95.1 93.5 93.3 93.0 92.8

Agresti-Coull 95.9 96.0 96.5 95.9 95.6 95.4 95.2 95.2 93.8 93.4 93.2 92.9

Latent Mean 94.6 94.2 93.9 93.3 95.7 95.1 94.8 94.7 92.3 91.9 91.7 91.5

200 Wald 95.8 96.3 96.6 96.5 95.6 95.6 96.0 95.8 92.4 93.1 92.8 92.9

Wilson 95.2 95.8 96.0 96.0 95.5 95.4 95.5 95.3 92.2 93.0 92.6 92.7

Agresti-Coull 95.3 95.9 96.2 96.2 95.5 95.4 95.6 95.4 92.3 93.0 92.7 92.8

Latent Mean 93.1 94.5 94.3 93.9 95.4 95.5 94.6 95.0 90.9 90.0 90.1 90.3
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TABLE 3: Estimated probability of correct content (in %) for (0.90, 0.95) simultaneous Poisson tolerance

bands, computed using variant B of two-step method with standard large-sample critical point, in case of

four designs, (a) Ni = 30 (dense), (b) Ni = 20 (sparse), (c) Ni = 10 (sparse) and (d) E(Ni) = 10

(sparse).

Two-sided Band Upper Band Lower Band

n (λ1, λ2) (a) (b) (c) (d) (a) (b) (c) (d) (a) (b) (c) (d)

25 (1.00,0.25) 95.8 95.0 94.4 94.2 93.8 93.2 92.0 91.4 93.6 93.4 92.0 91.6

(1.00,0.50) 96.6 96.0 94.8 94.2 92.8 92.4 92.2 91.4 92.6 92.2 91.8 91.2

(3.25,0.25) 95.4 94.8 94.0 93.6 93.2 92.6 92.0 91.6 93.2 92.6 92.2 92.0

(3.25,0.50) 95.4 95.0 94.4 94.0 93.0 93.2 92.8 92.0 92.8 93.0 92.6 92.4

50 (1.00, 0.25) 95.2 95.4 94.8 94.2 93.2 93.0 92.6 92.0 93.2 93.2 92.6 92.4

(1.00, 0.50) 95.2 95.2 95.0 94.0 93.4 93.2 92.8 92.4 93.0 93.0 92.8 92.6

(3.25, 0.25) 94.8 95.4 94.8 93.8 93.2 92.8 93.2 92.6 93.2 93.2 93.4 92.8

(3.25, 0.50) 95.4 94.8 95.0 94.0 93.4 92.8 92.8 92.2 93.8 92.8 93.0 92.4

100 (1.00, 0.25) 96.0 95.2 95.4 94.4 94.2 94.0 93.8 93.4 93.8 93.6 94.2 93.0

(1.00, 0.50) 95.0 94.8 94.8 94.8 94.0 93.6 93.8 93.6 93.6 94.0 93.8 93.8

(3.25, 0.25) 95.6 95.4 95.2 94.8 93.6 93.4 93.2 93.0 93.4 93.6 93.0 93.2

(3.25, 0.50) 95.4 95.0 94.6 94.6 93.6 93.2 93.2 92.8 94.0 93.2 93.4 93.0

200 (1.00, 0.25) 95.6 95.0 94.4 94.4 95.6 93.8 93.8 93.2 96.0 94.0 93.6 93.0

(1.00, 0.50) 96.0 95.0 94.6 94.6 95.4 93.8 93.6 93.0 95.4 93.8 93.6 93.4

(3.25, 0.25) 95.4 94.6 94.8 94.2 95.0 94.8 93.8 93.4 95.4 94.6 94.0 93.6

(3.25, 0.50) 95.8 94.8 94.4 94.6 95.0 94.2 93.6 93.6 95.2 94.2 93.8 93.6
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TABLE 4: Average estimated probability of correct content (in %) for (0.90, 0.95) pointwise Poisson

tolerance bands, computed using variant B of two-step method with standard large-sample critical point, in

case of four designs, (a) Ni = 30 (dense), (b) Ni = 20 (sparse), (c) Ni = 10 (sparse) and (d)

E(Ni) = 10 (sparse).

Two-sided Band Upper Band Lower Band

n (λ1, λ2) (a) (b) (c) (d) (a) (b) (c) (d) (a) (b) (c) (d)

25 (1.00,0.25) 96.6 95.9 95.6 94.7 95.5 95.0 94.5 94.1 95.5 95.7 94.9 94.2

(1.00,0.50) 96.4 95.8 95.3 94.5 95.1 94.3 94.2 93.8 95.9 94.8 94.3 93.9

(3.25,0.25) 94.7 93.7 94.1 94.4 94.3 94.7 94.4 93.9 94.0 95.2 94.1 93.7

(3.25,0.50) 94.7 95.2 94.3 94.3 95.4 95.0 94.5 94.2 95.2 95.1 94.2 93.7

50 (1.00, 0.25) 96.7 96.7 95.9 94.8 95.8 94.8 94.9 93.7 95.1 95.4 95.2 94.0

(1.00, 0.50) 96.3 96.4 95.8 94.9 95.4 94.9 95.1 94.5 94.8 94.9 95.0 94.3

(3.25, 0.25) 95.8 96.6 95.3 94.7 95.5 94.9 94.7 94.4 95.2 94.6 94.7 94.5

(3.25, 0.50) 96.0 95.1 95.4 95.1 94.8 94.7 94.5 94.1 95.2 94.3 94.6 94.2

100 (1.00, 0.25) 95.8 95.4 95.7 94.7 95.4 95.0 94.7 94.7 95.5 95.5 95.3 94.6

(1.00, 0.50) 95.6 95.7 94.9 95.1 95.1 95.5 95.1 94.9 95.4 95.5 95.0 95.0

(3.25, 0.25) 95.7 95.1 95.3 95.2 95.2 95.2 95.1 94.7 95.4 95.1 95.1 94.8

(3.25, 0.50) 95.3 95.6 95.2 95.1 95.5 95.2 95.0 94.5 95.8 95.4 95.2 94.7

200 (1.00, 0.25) 95.9 95.1 95.2 94.9 95.1 94.8 95.0 94.5 95.1 95.4 94.9 94.7

(1.00, 0.50) 95.8 95.6 95.3 95.1 94.8 95.0 94.7 94.2 95.2 95.6 94.8 94.5

(3.25, 0.25) 96.0 95.1 95.2 94.9 95.5 95.8 94.8 94.4 95.5 95.3 95.1 94.6

(3.25, 0.50) 96.2 95.8 95.5 95.0 94.9 94.7 94.9 94.7 95.0 94.9 95.1 94.7
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S1 Proofs

This section provides proofs of the results mentioned in the article.

Proof. Proof of Lemma 1Fix t ∈ T and let θ1 and θ2 ∈ Θ be two values of θ(t) such that

θ1 < θ2. Since the distribution of Y (t) is stochastically nondecreasing in θ(t), (6) holds and

hence
{
y : Ft{y|θ1, ψ(t)} ≥ p

}
⊇
{
y : Ft{y|θ2, ψ(t)} ≥ p

}
. Upon taking infimum on both

sides, we get Qp{t|θ1, ψ(t)} ≤ Qp{t|θ2, ψ(t)}, implying the result.

Proof. Proof of Proposition 1We only consider (c) for a simultaneous band as similar argu-

ments hold for all other cases. Since
[
θ̂L(t), θ̂U(t)

]
is a 1− α simultaneous confidence band

for θ(t) over T , we have

P
(
θ̂L(t) ≤ θ(t) ≤ θ̂U(t) for all t ∈ T

)
≥ 1− α. (S1)

Due to the stochastic monotonicity of the distribution of Y , the events
{
θ̂L(t) ≤ θ(t) ≤

θ̂U(t) for all t ∈ T
}

and
{
Le(t) ≤ Q(1−p)/2{t|θ(t), ψ(t)}, Q(1+p)/2{t|θ(t), ψ(t)} ≤ Ue(t) for all

t ∈ T
}

are the same. Hence their probabilities are equal. Now the result follows from (4)

upon using (S1).

Proof. Proof of Proposition 2Fix t ∈ T and y ∈ R. Let H(x) = P (Y (t) ≤ y|X(t) = x)

be the conditional cdf of Y (t)|X(t) = x. Because a normal distribution has monotone

S1



likelihood ratio property with respect to its mean (Casella and Berger, 2001, ex 8.25, p 406),

X(t) ∼ N1

(
β(t), φ(t, t)

)
has monotone likelihood ratio property with respect to β(t), holding

φ(t, t) fixed. Now, since 1−H(x) is a nondecreasing function of x under the assumption, it

follows from Lemma 2 on page 85 of Lehmann (1986) that E[1−H{X(t)}] is nondecreasing

in β(t). We can write

E[1−H{X(t)}] = 1− E[H{X(t)}] = 1− Ft{y|β(t), φ(t, t)},

which implies that the marginal cdf Ft{y|β(t), φ(t, t)} of Y (t) is nonincreasing in β(t), holding

φ(t, t) fixed. Thus, for any two values β1 < β2 ∈ R of β(t), we have Ft{y|β1, φ(t, t)} ≥

Ft{y|β2, φ(t, t)} for all y ∈ R. This gives the result from the definition (6) of stochastic

monotonicity.

Proof. Proof of Proposition 3It suffices to show that for each t ∈ T the conditional cdf of

S(t)|X(t) = x is a nonincreasing function of x as then the result follows from Proposition

2 with S playing the role of Y . Fix t ∈ T . We know that S(t)|X(t) = x follows a bi-

nomial
(
n, g−1(x)

)
distribution and a binomial distribution is stochastically nondecreasing

in its success probability (Casella and Berger, 2001, ex 8.25-8.26, p 406). Therefore, the

distribution of S(t)|X(t) = x is stochastically nondecreasing in g−1(x) and hence in x be-

cause g−1(x) is nondecreasing in x under the assumption. From (6), this implies the desired

monotonicity of the conditional cdf.

Proof. Proof of Proposition 4This proof is completely analogous to that of Proposition 3. It

uses the fact that the distribution of a Poisson random variable is stochastically nondecreas-

ing in its mean (Casella & Berger, 2001, ex 8.25-8.26, p 406).
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S2 Bootstrap Approximation of Critical Point

The steps in bootstrap approximation of critical points mentioned in Section 4.3 of the article

are as follows.

• Get a nonparametric resample of the original sample by sampling n subject indices

with replacement from the integers 1, . . . , n and taking the observed curves associated

with the sampled indices.

• Fit model as described in Section 3 to the resampled data and get the relevant estimates

and standard errors. These quantities are marked by an asterisk (∗) to distinguish them

from those computed using the original sample.

• For each point tl on the grid, compute Z∗(t) — the bootstrap analog of Z(t) — by

replacing an unknown in Z(t) with an estimate computed using the original sample

and an estimate in Z(t) with its bootstrap counterpart. For example, the bootstrap

analog of Z(t) = {µ̂(t)− µ(t)}/ŜE{µ̂(t)} is Z∗(t) = {µ̂∗(t)− µ̂(t)}/ŜE
∗
{µ̂∗(t)}.

• Repeat the previous steps B times to get B realizations of Z∗(tl), l = 1, . . . ,m. Approx-

imate the quantiles of maxt∈T |Z(t)|, maxt∈T Z(t) and mint∈T Z(t) with the respective

sample quantiles of maxl=1,...,m |Z∗(tl)|, maxl=1,...,m Z
∗(tl) and minl=1,...,m Z

∗(tl).

S3 Additional Tables and Figures

This section provides the additional tables and figures mentioned in Sections 6 and 7 of the

article.
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Table S1: Summary of approaches for binomial distribution. “Large-sample” and “boot-

strap” in the table header refer to methods for critical point approximation.

Method Variant Large-sample Bootstrap

marginal
A θ(t) is underestimated Works well

B θ(t) is underestimated θ(t) is underestimated

two-step

A β(t) is not estimated well
Computationally difficult because

model fitting for each bootstrap sample is slow

B β(t) is not estimated well
Computationally difficult because

model fitting for each bootstrap sample is slow

Table S2: Summary of approaches for Poisson distribution. “Large-sample” and “bootstrap”

in the table header refer to methods for critical point approximation.

Method Variant Large-sample Bootstrap

marginal
A θ(t) is underestimated θ(t) is underestimated

B Works well θ(t) is underestimated

two-step

A θ(t) is underestimated
Computationally difficult because

model fitting for each bootstrap sample is slow

B Works well
Computationally difficult because

model fitting for each bootstrap sample is slow
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Table S3: Estimated probability of correct content (in %) for (0.90, 0.95) simultaneous

binomial tolerance bands, computed using variant A of marginal method with standard

large-sample critical point, in case of four designs: (a) Ni = 30 (dense), (b) Ni = 20 (sparse),

(b) Ni = 10 (sparse) and (d) E(Ni) = 10 (sparse).

Two-sided Band Upper Band Lower Band

n Method (a) (b) (c) (d) (a) (b) (c) (d) (a) (b) (c) (d)

50 Wald 87.4 87.2 87.4 86.8 86.8 86.2 86.4 87.2 88.0 87.2 86.0 86.6

Wilson 86.4 85.8 85.6 86.2 85.0 84.8 84.6 83.6 86.6 84.6 84.0 84.0

Agresti-Coull 86.4 85.8 85.2 86.4 85.2 84.8 84.8 83.8 86.8 84.6 84.0 84.2

Latent Mean 87.6 87.4 86.6 86.4 87.0 86.2 86.2 86.6 88.4 87.8 86.0 87.2

100 Wald 86.6 87.0 86.8 86.4 86.8 87.0 87.2 86.2 86.6 86.8 87.4 87.4

Wilson 86.2 85.8 86.6 86.4 85.8 86.2 85.6 85.8 86.0 86.2 85.6 86.4

Agresti-Coull 86.2 85.8 86.8 86.8 85.8 86.2 86.0 85.6 86.0 86.0 85.6 86.4

Latent Mean 85.6 85.6 84.6 84.8 84.6 85.0 84.6 84.2 84.6 84.6 83.8 84.2
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Table S4: Average estimated probability of correct content (in %) for (0.90, 0.95) pointwise

binomial tolerance bands, computed using variant A of marginal method with standard large-

sample critical point, in case of four designs: (a) Ni = 30 (dense), (b) Ni = 20 (sparse), (b)

Ni = 10 (sparse) and (d) E(Ni) = 10 (sparse).

Two-sided Band Upper Band Lower Band

n Method (a) (b) (c) (d) (a) (b) (c) (d) (a) (b) (c) (d)

50 Wald 87.3 86.4 87.0 87.4 86.8 86.3 86.3 86.9 85.1 84.3 83.6 83.7

Wilson 86.1 84.6 85.1 85.5 85.4 84.3 83.9 84.7 84.7 82.8 82.1 82.0

Agresti-Coull 86.3 84.7 85.2 85.7 85.6 84.4 83.8 84.8 84.8 82.9 82.3 82.2

Latent Mean 85.7 84.6 84.3 84.2 85.5 84.5 84.1 84.0 82.9 82.7 82.1 82.2

100 Wald 85.8 86.3 86.6 86.5 85.6 85.6 86.0 85.8 82.4 83.1 82.8 82.9

Wilson 85.2 85.8 86.0 86.0 85.6 85.5 85.5 85.3 83.2 83.3 82.5 82.8

Agresti-Coull 85.3 85.9 86.2 86.2 85.5 85.4 85.6 85.4 83.3 83.4 82.7 82.7

Latent Mean 83.1 84.5 84.3 83.9 85.4 85.5 84.6 85.0 82.8 82.0 82.3 82.3
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Table S5: Estimated probability of correct content (in %) for (0.90, 0.95) simultaneous

Poisson tolerance bands, computed using variant B of marginal method with standard large-

sample critical point, in case of four designs, (a) Ni = 30 (dense), (b) Ni = 20 (sparse), (c)

Ni = 10 (sparse) and (d) E(Ni) = 10 (sparse).

Two-sided Band Upper Band Lower Band

n (λ1, λ2) (a) (b) (c) (d) (a) (b) (c) (d) (a) (b) (c) (d)

25 (1.00,0.25) 94.2 93.4 92.8 93.0 93.6 93.2 92.6 92.8 93.2 91.8 92.4 91.6

(1.00,0.50) 93.8 94.0 93.2 92.8 93.4 93.8 93.0 92.8 92.4 92.2 91.2 90.8

(3.25,0.25) 90.8 91.0 89.4 89.4 90.4 90.0 88.6 88.2 89.8 88.6 87.4 87.2

(3.25,0.50) 90.2 89.6 89.0 88.8 89.8 90.2 89.2 89.0 90.2 89.6 88.2 87.0

50 (1.00, 0.25) 95.8 96.4 96.0 94.8 94.0 94.8 94.4 93.8 93.0 93.8 93.6 93.0

(1.00, 0.50) 96.0 95.4 95.8 95.4 94.8 93.0 94.4 94.0 93.4 92.0 93.4 93.6

(3.25, 0.25) 91.6 90.6 90.2 90.2 91.4 90.2 89.6 89.8 90.8 89.6 89.2 88.8

(3.25, 0.50) 91.8 91.4 90.6 90.0 91.8 91.0 90.0 89.6 91.4 90.6 89.8 89.4

100 (1.00, 0.25) 95.6 95.8 94.8 95.2 94.8 95.0 94.6 94.4 94.4 94.0 94.2 92.8

(1.00, 0.50) 96.2 95.2 95.4 95.2 96.2 94.2 94.2 93.8 95.4 93.2 93.4 93.2

(3.25, 0.25) 95.2 93.6 93.0 93.2 94.6 94.0 92.8 92.4 91.4 90.6 90.2 89.4

(3.25, 0.50) 95.0 93.8 93.0 93.4 95.2 94.4 93.4 93.0 91.8 91.2 90.6 90.6

200 (1.00, 0.25) 95.6 95.6 95.4 95.6 95.8 95.0 95.0 94.8 95.4 94.8 94.8 93.8

(1.00, 0.50) 96.0 95.4 94.8 94.8 95.8 94.4 94.2 94.0 95.6 93.6 93.4 93.2

(3.25, 0.25) 96.4 95.0 94.4 93.8 96.8 95.2 94.2 94.4 92.4 91.4 91.2 92.0

(3.25, 0.50) 95.2 94.2 93.2 93.6 96.4 95.4 94.0 93.4 93.0 92.6 92.2 91.6
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Table S6: Average estimated probability of correct content (in %) for (0.90, 0.95) pointwise

Poisson tolerance bands, computed using variant B of marginal method with standard large-

sample critical point, in case of four designs, (a) Ni = 30 (dense), (b) Ni = 20 (sparse), (c)

Ni = 10 (sparse) and (d) E(Ni) = 10 (sparse).

Two-sided Band Upper Band Lower Band

n (λ1, λ2) (a) (b) (c) (d) (a) (b) (c) (d) (a) (b) (c) (d)

25 (1.00,0.25) 94.3 94.1 93.7 93.6 93.6 93.8 92.7 92.2 93.3 93.1 92.6 92.7

(1.00,0.50) 94.7 93.8 94.2 94.0 93.3 93.2 92.5 92.6 93.0 93.5 92.9 92.7

(3.25,0.25) 94.4 94.5 93.1 93.1 94.1 93.9 93.2 93.0 89.8 90.1 89.3 88.9

(3.25,0.50) 93.9 93.7 93.2 93.3 93.8 93.5 92.9 93.1 89.6 89.9 89.1 88.8

50 (1.00, 0.25) 96.4 96.3 96.7 95.6 94.5 96.1 95.5 94.4 94.0 95.9 94.1 94.2

(1.00, 0.50) 95.6 96.4 95.5 95.4 94.1 95.3 94.9 94.7 93.2 95.2 94.2 94.4

(3.25, 0.25) 96.7 93.7 93.3 93.4 96.8 94.7 93.5 93.4 90.6 90.1 90.9 90.3

(3.25, 0.50) 95.3 94.1 93.6 92.9 95.9 94.7 94.6 93.9 91.3 91.8 91.2 90.7

100 (1.00, 0.25) 96.3 96.3 95.9 95.7 95.9 95.6 95.4 95.3 95.7 94.6 94.1 93.7

(1.00, 0.50) 96.7 95.8 96.2 95.4 97.5 96.3 95.8 94.7 96.9 94.5 93.5 93.4

(3.25, 0.25) 96.1 95.1 94.7 94.9 95.2 96.2 94.6 94.4 91.4 91.2 90.8 90.2

(3.25, 0.50) 96.0 94.7 94.6 94.7 95.9 95.4 95.1 94.3 92.1 92.2 91.8 91.7

200 (1.00, 0.25) 96.4 96.1 96.3 95.3 96.6 95.5 96.0 94.9 96.6 95.3 93.6 94.1

(1.00, 0.50) 95.9 95.9 96.0 95.8 95.6 97.2 97.0 96.3 95.6 94.0 94.6 95.1

(3.25, 0.25) 96.7 95.8 95.5 95.2 97.1 95.6 95.3 95.3 93.8 91.5 91.5 92.6

(3.25, 0.50) 96.0 95.7 94.6 95.1 96.8 95.9 95.0 94.7 93.7 93.2 92.9 93.0
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Figure S1: Estimated eigenvalues for binomial distribution using variant A (left) and vari-

ant B (right) in case of Ni = 30 (dense).
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Figure S2: Estimated eigenvalues for Poisson distribution using variant A (left) and variant B

(right) in case of Ni = 30 (dense).
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Figure S3: Trajectories of Doser counts over the 125 days of school for three selected children

from Doser count data. Two trajectories have been vertically shifted by a small amount for

clarity.
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Figure S4: The first four estimated eigenfunctions for Doser count data.
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Figure S5: Estimated mean function β̂(t) of the latent process X(t) superimposed with a

95% simultaneous confidence band (top); and estimated covariance function φ̂(s, t) of X(t)

(bottom) for Doser count data.
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S4 Illustration of Binomial Tolerance Band using Methadone

Clinic Data

Methadone is a medicine for treating drug addiction. These data from Chan (2016) were

collected at a clinic in Sydney, Australia where a number of heroin users were enrolled in a

methadone maintenance treatment program. The data consist of weekly urine test results

that are positive or negative for morphine, a marker for heroin use, for 85 patients who

remained in the study for entire 26 weeks. All patients have the same observation times.

Figure S6 plots the trajectory of sample proportion of patients with positive tests. On

the whole, the proportion tends to decrease over time. We model the binary data using a

binomial FPC model and compute a two-sided simultaneous tolerance band for the number

of patients with positive tests over time.

Let Yij(tij) denote the binary outcome of the urine test given in week j to patient i. The

outcome is an indicator of presence of morphine in urine (1 = positive, 0 = negative). Thus,

the data consist of longitudinal trajectories Yij(tij), j = 1, . . . , Ni (= 26), i = 1, . . . , n (= 85),

where the observation times tij ∈ T = [1, 26] are common to all patients. There is a total

of 85 ∗ 26 = 2, 210 binary observations in the data, 13.5% of which are positive. Figure S7

presents trajectories for 3 selected patients. Although the patients go back and forth between

positive and negative tests, the sample proportion of patients with positive tests in Figure S6

has a decreasing trend. The proportion decreases sharply in the beginning from 0.30 at

week 1 to 0.16 at week 5 and slowly thereafter to 0.07 at week 26. Our goal is to compute

a (0.90, 0.95) tolerance band for the number of patients with positive tests over time. This
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Figure S6: Sample proportion of patients with positive urine tests over the 26 weeks of study,

superimposed with a smooth estimate of the marginal probability µ(t) of positive test and

its 95% simultaneous confidence bands from Wilson method using bootstrap and standard

large-sample critical point.
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Figure S7: Trajectories of urine test outcomes over the 26 weeks of study for three selected

patients from methadone clinic data. Two trajectories have been vertically shifted by a small

amount for clarity.

as well as other simultaneous bands are computed over a grid consisting of the 26 week

numbers.

First, we model the binary data as (9) assuming Bernoulli response with logit link.

The model is fit using variant A of the marginal method. This generalized FPCA yields

at least six PCs to explain 99% of variation in the observed curves. The corresponding

eigenvalues are: (3.36, 0.77, 0.46, 0.33, 0.15, 0.13)× 10−2. The percent of variation explained

drops sharply from 64.6% by the first PC to 14.8% by the second PC. The sixth PC explains
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only about 2.4% of variation. Figure S8 presents the first four eigenfunctions. We see that

φ̂1 has a slight upward trend, ranging between −1.31 and −0.30; and φ̂2 has a bimodal

shape with first mode at week 15 and second mode at week 23. The modal values are 1.55

and 1.18, respectively. The eigenfunctions φ̂3 and φ̂4 exhibit more or less cyclical patterns.

The estimated mean function β̂(t) and covariance function φ̂(s, t) of the latent process are

shown in Figure S9. The mean function has a decreasing trend, similar to that of the sample

proportion in Figure S6, and its range is [−2.35,−0.90]. The covariance function has larger

values along the diagonal with largest values in the early weeks. The variance function has

a downward trend from 0.13 at week 1 to 0.03 at week 26, with local peaks at weeks 6, 15

and 23. The covariances range from 0 to 0.10 and the correlations from −0.10 to 0.93.

Next, we compute the estimate of marginal probability µ(t) of positive test and its 95%

simultaneous confidence band using Wilson method with critical point from Bootstrap and

large-samples methods. The Agresti-Coull and latent mean methods are omitted as it pro-

duces similar results. The two bands are also shown in Figure S6. The shape of µ̂(t) is

consistent with that of the sample proportion of patients with positive tests. As expected,

the two bands are similar but they are rather wide due to the relatively small n.

Finally, we convert the confidence bands into the desired tolerance bands for the number

of subjects with positive tests. The results are presented in Figure S10 together with the

trajectory of the observed count of patients with positive tests. Unsurprisingly, the two

tolerance bands differ little and they inherit the rather wide nature of the confidence bands.

The general downward trend of their upper and lower tolerance limits is consistent with that

of the observed counts. For the Wilson band from bootstrap critical point, the upper limit

decreases from 42 to 21 and the lower limit decreases from 11 to 1. Its width follows the

S16



0 5 10 15 20 25

−
2

0
2

4

Week Number

 

PC 1
PC 2
PC 3
PC 4

Figure S8: The first four estimated eigenfunctions for methadone clinic data.
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Figure S9: Estimated mean function β̂(t) of the latent process X(t) superimposed with a

95% simultaneous confidence band (top); and estimated covariance function φ̂(s, t) of X(t)

(bottom) for methadone clinic data.
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general pattern of the latent process variance: highest near the beginning of the study and

lowest near its end. The band demarcates a region that is expected to contain at least 90% of

patients out of n = 85 with positive tests each week with 95% confidence. The information

given by this interval estimate may be contrasted with the trajectory of nµ̂(t), which gives

a point estimate of the expected count of patients with positive tests and is also presented

in Figure S10. We see, for example, that at week 13, the midpoint of the study, between

2 and 26 patients are expected to test positive, whereas the point estimate is 10.7 and the

observed count is 8. The tolerance band can also be used as a reference band to identify

weeks with unusual test results but, perhaps due to the rather wide band, none are seen in

this study.
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Figure S10: Observed count of patients with positive urine tests over the 26 weeks of study

together with its (0.90, 0.95) two-sided simultaneous tolerance bands from Wilson method

using bootstrap and standard large-sample critical point. Also superimposed is the estimate

of expected count of patients with positive tests. The bands include the lower and upper

limits.
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