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Abstract

We consider modeling and analysis of functional data arising in method comparison

studies. The observed data consist of repeated measurements of a continuous variable

obtained using multiple methods of measurement on a sample of subjects. The data

are treated as multivariate functional data that are observed with noise at a common

set of discrete time points which may vary from subject to subject. The proposed

methodology uses functional principal components analysis within the framework of

a mixed-e↵ects model to represent the observations in terms of a small number of

method-specific principal components. Two approaches for estimating the unknowns

in the model, both adaptations of general techniques developed for multivariate func-

tional principal components analysis, are presented. Bootstrapping is employed to get

estimates of bias and covariance matrix of model parameter estimates. These in turn

are used to compute confidence intervals for parameters and functions thereof, such as

the measures of similarity and agreement between the measurement methods, that are

necessary for data analysis. The estimation approaches are evaluated using simulation.

The methodology is illustrated by analyzing two datasets.
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1 Introduction

Multivariate functional data arise when repeated measurements of J (� 2) variables are

taken over time on every subject [1–5]. The measurements of each variable on a subject are

assumed to be values of an underlying smooth random function that is observed with noise at

discrete time points. For each subject, all the J variables are recorded at every observation

time. Thus, these data consist of J curves per subject, observed at a common set of discrete

observation times. This set of times, however, may vary from subject to subject. There is

dependence in the J curves as they come from the same subject.

We are specifically interested in the special case of multivariate functional data arising

in method comparison studies [6]. They involve measuring a continuous variable on every

subject using multiple methods of measurement in a common unit. All methods measure

the variable with error. The primary goal in these studies is to evaluate whether the meth-

ods agree su�ciently well to be used interchangeably. It is evident from more than 25,000

citations of Bland and Altman [7], which proposed the popular limits of agreement approach

for agreement evaluation with scalar observations, that such studies are common in biomed-

ical sciences. The measurements from the multiple methods are the dependent functional

variables here.

For example, consider two method comparison datasets, both with J = 2, that motivated

this work—body fat data Chinchilli et al. [8] and body temperature data Li and Chow [9]. In

the first, we have measurements of percentage body fat made using skinfold calipers and dual

energy x-ray absorptiometry (DEXA) in a cohort of adolescent girls over a period of about

4 years. These longitudinal data are an example of sparse bivariate functional data. In the

second, we have core body temperature—the temperature of tissues deep within the body,

measured every minute over a period of 90 minutes at two locations in the body—esophagus

and rectum. These data are an example of dense bivariate functional data. Our interest is
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in evaluating agreement between measurements from caliper and DEXA methods in the first

case and between measurements taken at the two body locations in the second case.

There is a growing body of literature on the analysis of method comparison data. See

Barnhart et al. [10] and Choudhary and Nagaraja [6] for an introduction. Nevertheless,

almost all the literature assumes that the observations are scalar. For scalar data, evaluation

of agreement between two methods involves quantifying how far the methods are from having

perfect agreement, in which case the joint distribution of the methods is concentrated on the

line of equality. In other words, two methods in perfect agreement have equal means, equal

variances, and a correlation of one; or equivalently, their di↵erences are zero with probability

one. In the statistical literature, agreement is commonly evaluated by performing inference

on measures of agreement such as concordance correlation coe�cient (CCC) of Lin [11] and

total deviation index (TDI) of Lin [12]. However, in the biomedical literature, the limits

of agreement approach of Bland and Altman [7] is the most popular. These measures are

defined in Section 4. A reader interested in their comparison may consult Barnhart et al. [10].

In addition to evaluation of agreement, a secondary goal of a method comparison study is to

evaluate similarity of methods by comparing their marginal characteristics such as means and

precisions. This is typically done by performing inference on measures of similarity such as

mean di↵erence and precision ratio [13]. Evaluation of similarity is a necessary supplement

to evaluation of agreement as it provides information about the sources of disagreement

between the methods [6, Chapter 1].

In the method comparison literature, we are only aware of Li and Chow [9] that deals

with functional observations. It extends the ideas of Lin [11] to develop a CCC for functional

data from J = 2 methods. But this approach has drawbacks that limit its usefulness. First,

it produces a single overall index of agreement over the entire time interval. However,

given the functional nature of the data, an index that changes smoothly over time may be

preferable over the overall scalar index because the former allows insight into how the extent
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of agreement changes over time. Second, the approach is specifically designed for CCC—a

function of first and second order moments of the measurements. It is unclear how the

approach can be adapted for other measures of agreement such as TDI, which is a percentile

(see Section 4). This is an issue because CCC is often criticized for being unduly influenced

by the between-subject variation in the data as it may lead to misleading conclusions (see,

e.g., Barnhart et al. [10]). Third, the approach assumes that all curves are observed at

the same time points. This assumption is unnecessarily restrictive. For example, it does

not hold for the body fat data although it holds for the body temperature data. Fourth,

the approach in its present form cannot deal with J > 2 methods. These drawbacks may

be overcome by a model-based approach for analyzing functional method comparison data.

The model parameters can be used to obtain functional analogs of any measure of similarity

and agreement for scalar observations. The model would allow the observation times to

di↵er between the subjects. It can also accommodate more than two methods. This is the

approach we take in this article.

Functional data analysis is currently an active area of research, see Ramsay and Silver-

man [1] for an introduction. A common analytical approach involves performing a func-

tional principal components analysis (FPCA) to obtain a parsimonious representation of

the data [1, Chapter 8]. The PACE (principal components analysis through conditional

expectation) methodology of Yao et al. [14] is a popular approach for FPCA of data that

are observed with measurement error. It involves decomposing the functional observations

via a Karhunen-Loève expansion and using the framework of mixed-e↵ects model for esti-

mating coe�cients in the expansion as best linear unbiased predictors of random e↵ects,

and estimating error variance by smoothing the covariance function. This approach and its

refinement due to Goldsmith et al. [15] are implemented in the refund [16] and MFPCA [17]

packages for the statistical software system R [18].

Methodologies for FPCA of multivariate functional data have also been developed, see,
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e.g., Ramsay and Silverman [1, Chapter 8], Berrendero et al. [2], Jacques and Preda [3], Chiou

et al. [4], and Happ and Greven [5]. Among these, the approaches of Chiou et al. [4] and Happ

and Greven [5] are of specific interest in this article as they can be used for data observed with

measurement error, which is the case for our method comparison data. Although Chiou et al.

[4] and Happ and Greven [5] di↵er in their basic premise regarding univariate components of

the multivariate observation—in particular, they may have di↵erent units in Chiou et al. [4]

and they may be observed on di↵erent (dimensional) domains in Happ and Greven [5]—both

first obtain a Karhunen-Loève expansion of the multivariate observations. Thereafter, Chiou

et al. [4] estimate the unknowns by a generalization of the PACE methodology. They also

employ normalization to deal with the di↵erent units. On the other hand, Happ and Greven

[5] establish a relation between univariate and multivariate FPC decompositions and employ

it to obtain estimates of the unknowns in the multivariate model using their estimates from

the univariate models. The univariate estimates may be obtained, e.g., using the PACE

approach of Yao et al. [14]. This methodology is implemented in an R package MFPCA [17].

This brings us to our approach for analysis of functional method comparison data. In

Section 2, we begin by writing a subject’s observed curve from a measurement method as

a sum of an unobservable true smooth curve and a random measurement error. Each mea-

surement method has its own mean and covariance functions and error variance. Next, the

method-specific true curves are represented via a multivariate Karhunen-Loève expansion.

In Section 3, we consider two approaches for estimating the unknowns in the model. The first

approach—termed MPACE—directly adapts the PACE methodology to deal with multivari-

ate data along the lines of Chiou et al. [4]. The second approach—termed UPACE—adapts

the methodology of Happ and Greven [5]. Bootstrap is used to construct relevant confidence

intervals and bands. In Section 4, we discuss evaluation of similarity and agreement under

the assumed model. Section 5 presents a simulation study to evaluate properties of the two

estimation approaches. The body fat data are analyzed in Section 6. Section 7 concludes
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with a discussion. Appendix A contains some technical details. An analysis of the body

temperature data and additional simulation results are presented in the online Supplemental

Material, which can be accessed from the journal website.

2 Modeling of Data

Let the random function Xj denote the true unobservable curve measured using method j =

1, . . . , J (� 2) for a randomly selected subject from the population of interest. The curves

are defined on a common domain T = [a, b], a < b 2 R. Let the mean and covariance

functions of the random functions be denoted by

µj(t) = E(Xj(t)), Gjl(s, t) = cov(Xj(s), Xl(t)), j, l = 1, . . . , J ; s, t 2 T .

Let X = (X1, . . . , XJ)T denote the J ⇥ 1 vector of the curves and µ(t) = (µ1(t), . . . , µJ(t))T

be the J ⇥ 1 vector of its mean.

2.1 Model for Population Curves

Under certain conditions [4, 5], the multivariate Karhunen-Loève Theorem provides a stochas-

tic representation of X as

X(t) = µ(t) +
1X

k=1

⇠k�k(t), t 2 T . (1)

Here, �k(t) = (�k1(t), . . . ,�kJ(t))T are orthonormal eigenfunctions, satisfying the property

that the inner product of �k and �l, given as
PJ

j=1

R
T �kj(t)�lj(t)dt, equals zero if k 6= l and

one if k = l; and ⇠k—called “scores”—are uncorrelated random variables with mean zero

and variance �k. The variances �k are eigenvalues associated with the eigenfunctions �k and

are non-increasing, i.e., �1 � �2 � . . . � 0. We can write (1) as

Xj(t) = µj(t) +
1X

k=1

⇠k�kj(t), j = 1, . . . , J ; t 2 T . (2)
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Thus, the Karhunen-Loève representation provides a basis expansion of the curveXj in terms

of the basis functions �1j,�2j, . . . that depend on method j, whereas the random coe�cients

⇠1, ⇠2, . . . are common to all methods. It is these coe�cients that induce dependence within

and between the curves. In particular, under (2), the covariance functions can be written as

Gjl(s, t) =
1X

k=1

�k�kj(s)�kl(t), j, l = 1, . . . , J ; s, t 2 T . (3)

The true curves Xj(t) are observed with error as Yj(t) = Xj(t) + ✏j(t), where the errors

✏j(t) are independent random variables with mean zero and variance ⌧ 2j , j = 1, . . . , J , and

are independent of the true values. Using (2), we can write this model as

Yj(t) = µj(t) +
1X

k=1

⇠k�kj(t) + ✏j(t), j = 1, . . . , J ; t 2 T . (4)

Thus, the mean and autocovariance functions of the observed curves are

E(Yj(t)) = µj(t), cov(Yj(s), Yj(t)) = Gjj(s, t) + ⌧ 2j I(s = t), j = 1, . . . J, (5)

and their cross covariance function is cov(Yj(s), Yl(t)) = Gjl(s, t), j 6= l = 1, . . . , J . Here I is

the indicator function. It follows that, for each t 2 T , the vector (Y1(t), . . . , YJ(t)) has a J-

variate distribution with mean (µ1(t), . . . , µJ(t)), variance (�2
1(t), . . . , �

2
J(t)), and correlation

⇢jl(t), where

�2
j (t) = Gjj(t, t) + ⌧ 2j , ⇢jl(t) =

Gjl(t, t)

�j(t)�l(t)
, j 6= l = 1, . . . , J. (6)

Further, for j 6= l, the di↵erence Djl(t) = Yj(t) � Yl(t) has a distribution with mean �jl(t)

and variance ⌘2jl(t), where

�jl(t) = µj(t)� µl(t), ⌘
2
jl(t) = �2

j (t) + �2
l (t)� 2Gjl(t, t). (7)

These distributions are used in Section 4 to get functional analogs of measures of similarity

and agreement.
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2.2 Model for Observed Data

Suppose there are n subjects in the study, indexed as i = 1, . . . , n. The observed data

consist of J curves per subject, one from each method, observed at discrete observation

times. Specifically, let Yij(tim) denote the observation from method j on subject i taken at

time tim, m = 1, . . . , Ni, j = 1, . . . , J , i = 1, . . . , n. The J curves for a subject are linked

in that they are observed at common observation times tim, m = 1, . . . , Ni. Thus, subject i

contributes JNi observations. The number of observations and the observation times need

not be the same for each subject. The design is balanced if the observation times are common

for all subjects and the linked observations are available at each observation time from every

subject. Otherwise, the design is unbalanced. The functional data are usually said to be

dense when the design is balanced and the common Ni is large, and they are said to be

sparse when the design is unbalanced and Ni is small.

To obtain a model for the observed data, let Xij(t), ✏ij(t), Yij(t), and ⇠ik denote the

respective counterparts of the population quantities Xj(t), ✏j(t), Yj(t), and ⇠k, given by (2)

and (4), for subject i. The quantities for subject i are assumed to be independent copies of

the corresponding population quantities. Thus, the model for the data can be written as

Yij(tim) = µj(tim)+
1X

k=1

⇠ik�kj(tim)+✏ij(tim), m = 1, . . . , Ni; j = 1, . . . , J ; i = 1, . . . , n, (8)

where the errors ✏ij(tim) are independent random variables with mean zero and variance

⌧ 2j . The model postulates that a subject’s true curve from a method is an infinite linear

combination of method-specific basis functions that are common to all subjects but with

subject-specific coe�cients that are common to all methods. The eigenfunctions �kj(t) serve

as the basis functions and the scores ⇠ik serve as the coe�cients.

To analyze these data, first we perform a dimension reduction by truncating the infinite

8



sum in (8) to K terms, where K is the number of FPC to be selected. This leads to

Yij(tim) ⇡ µj(tim) +
KX

k=1

⇠ik�kj(tim) + ✏ij(tim) (9)

as the approximate model. It has the structure of a mixed-e↵ects model. The true model (4)

is used to define the parameters and their functions that are the target of inference. But they

are estimated by fitting this approximate model to the data. The number of components K

is treated as an unknown component in the model. The issue of estimation of unknowns is

taken up in Section 3.

To write (9) in the matrix notation, define theNi⇥1 vectors ti = (ti1, . . . , tiNi)
T ,Yij(ti) =

(Yij(ti1), . . . , Yij(tiNi))
T , µj(ti) = (µj(ti1), . . . , µj(tiNi))

T , and ✏ij(ti) = (✏ij(ti1), . . . , ✏ij(tiNi))
T .

These respectively represent the vectors of the observation times for subject i, the corre-

sponding observations from method j, their means, and the associated random errors. Next,

define the JNi ⇥ 1 vectors

Yi(ti) =

0

BBBB@

Yi1(ti)

...

YiJ(ti)

1

CCCCA
, µ(ti) =

0

BBBB@

µ1(ti)

...

µJ(ti)

1

CCCCA
, ✏i(ti) =

0

BBBB@

✏i1(ti)

...

✏iJ(ti)

1

CCCCA
, (10)

and take the JNi ⇥ JNi diagonal matrix Ri = diag{⌧ 21 , . . . , ⌧ 21 , . . . , ⌧ 2J , . . . , ⌧ 2J}, where ⌧ 2j

is repeated Ni times for each j, as the covariance matrix of ✏i(ti). Further, define ⇠i =

(⇠i1, . . . , ⇠iK)T as the K⇥1 vector of scores and ⇤ = diag{�1, . . . ,�K} as its K⇥K diagonal

covariance matrix; �kj(ti) = (�kj(ti1), . . . ,�kj(tiNi))
T as the Ni ⇥ 1 vector of values of kth

eigenfunction �kj associated with method j; �k(ti) = (�T
k1(ti), . . . ,�

T
kJ(ti))

T as the JNi ⇥ 1

vector by stacking the values for all the methods; and �(ti) = (�1(ti), . . . ,�K(ti)) as their

JNi ⇥K matrix.

With this notation, the model (9) can be written as

Yi(ti) ⇡ µ(ti) +�(ti)⇠i + ✏i(ti), i = 1, . . . , n. (11)
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Here the ⇠i follow independent distributions with mean 0 and covariance matrix ⇤, ✏i(ti)

follow independent distributions with mean 0 and covariance matrix Ri, and the two vectors

are mutually independent. It follows that

E(Yi(ti)) ⇡ µ(ti), var(Yi(ti)) ⇡ �(ti)⇤�
T (ti) +Ri. (12)

The elements of the first term of var(Yi(ti)) consist of values of covariance functions given

by (3) but with the infinite sums therein truncated to K terms. The unknowns in the model

are

✓ = {µ1, . . . , µJ , K,�1, . . . ,�K ,�11, . . . ,�J1, . . . ,�1K , . . . ,�JK , ⌧
2
1 , . . . , ⌧

2
J}.

The mean functions and eigenfunctions in ✓ depend on t 2 T as well but this dependency is

suppressed for convenience. Next, we discuss estimation of ✓ to get the plug-in estimator ✓̂.

3 Parameter Estimation and FPCA

3.1 Parameter Estimation

Let N0 be the number of unique observation times in the data and t0 = (t01, . . . , t0N0)
T be

the N0 ⇥ 1 vector of these times in increasing order. The elements of t0 form a grid in the

domain T . By definition, there is at least one observation from all measurement methods at

each time in t0. For estimation, we begin by pooling observations from each method on all

subjects and smoothing them ignoring the within-subject dependence. Separate smoothing

is performed for each method. This results in a smooth estimate µ̂j(t) of µj(t), j = 1, . . . , J .

Then, each observation in the data is centered by subtracting o↵ the corresponding estimated

mean as Ỹij(tim) = Yij(tim)� µ̂j(tim). These centered observations are used to form JN0⇥ 1

vectors Ỹi(t0) in the same way as Yi(ti) are formed in (10). If the subject i does not have

an observation for some t 2 t0, that observation is set to be missing in Ỹi(t0).
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In Appendix A, we describe the two approaches—MPACE and UPACE—for estimating

the remaining unknown components of ✓ and the multivariate scores ⇠ in the model (11).

Both use the centered data as inputs and involve the PACE methodology of Yao et al. [14]

for univariate functional data. MPACE directly adapts the PACE methodology to deal with

multivariate data along the lines of Chiou et al. [4], whereas UPACE adapts the approach of

Happ and Greven [5]. UPACE is computationally simpler of the two as it involves first ap-

plying the univariate PACE methodology separately to each component of the multivariate

data and then processing the results. However, this may result in loss of e�ciency in esti-

mates, especially of the error variances ⌧ 2j because they also come from univariate analyses

rather than a multivariate analysis as in MPACE. Although the smoothing needed in these

approaches and also for estimating the mean functions is performed here using gam function

in R package mgcv [19], any other smoothing technique—e.g., local linear regression as in Yao

et al. [14] and Chiou et al. [4]—can also be used without a↵ecting the general methodology.

Upon model fitting, the fitted curves are Ŷi(ti) = µ̂i(ti) + �̂(ti)⇠̂i, i = 1, . . . , n.

3.2 Confidence Intervals and Bands

Suppose  ⌘  (✓) is a function of model parameters of interest. Examples of  include

the precision ratio ⌧ 21 /⌧
2
2 . Often, the parameter function depends on t, i.e., it has the form

 (t) ⌘  (t,✓), t 2 T . Examples of  (t) include the mean di↵erence �jl(t) and the agreement

measures defined in next section. Since  can be considered a special case of  (t), we focus on

constructing one- and two-sided confidence bands for  (t). In e↵ect, we construct pointwise

and simultaneous intervals on a relatively fine grid t of L points in T , say, t1, . . . , tL. This

grid may be the same as the grid t0 formed by the observed time points, used for estimation

in Section 3. Or it may consist of a subset of these time points. In practice, L 2 [25, 50] is

often adequate.

Let  ̂(t) ⌘  (t, ✓̂) be the plug-in estimator of  (t). Also, let  ̂(t) and  (t) be L ⇥ 1
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vectors representing the values of the two functions evaluated at the elements of t. When n is

large, the joint distribution of  ̂(t)� (t) can be approximated by a NL(b,S) distribution,

possibly after a applying normalizing transformation, where the L⇥1 vector b = (b1, . . . , bL)T

and the L⇥L matrix S = (sjk)j,k=1,...,L respectively represent the estimated bias vector and

covariance matrix of the estimators. Once b and S are available, an approximate 100(1�↵)%

one- or two-sided pointwise confidence band for  (t), t 2 T can be computed as

lower band:  ̂(tl)� bl � z1�↵
p
sll, upper band:  ̂(tl)� bl + z1�↵

p
sll,

two-sided band:  ̂(tl)� bl ± z1�↵/2
p
sll, l = 1, . . . , L, (13)

where z↵ is the 100↵th percentile of a N1(0, 1) distribution. A simultaneous band can be

constructed by replacing z↵ in (13) by an appropriate percentile [6, Chapter 3] that can be

computed using the multcomp package of Hothorn et al. [20] in R or via simulation as we do

here. We now present a bootstrap methodology to compute b and S. It has the following

steps:

1. Sample n indices with replacement from the integers 1, . . . , n. Take the observed curves

associated with the sampled subject indices as a resample of the original data.

2. Apply the estimation and FPCA approach described in Appendix A to estimate ✓ from

the resampled data to get ✓̂
⇤
.

3. Use ✓̂
⇤
to estimate  (t) as  ̂

⇤
(t). This  ̂

⇤
(t) is a resample of  ̂(t).

4. Repeat the previous steps Q times to get the resamples  ̂
⇤
q(t), q = 1, . . . , Q. Compute

the bias vector b as
PQ

q=1  ̂
⇤
q(t)/Q�  ̂(t), and the covariance matrix S as the sample

covariance matrix of the resamples.

In practice, Q = 500 is often enough to estimate b and S. If there is evidence that a

bias correction is not needed, then the term bl in (13) can be dropped (see Section 5 for an
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example). Note that a separate FPCA is performed in each bootstrap repetition. Therefore,

the resulting confidence intervals also account for the uncertainty due to FPC decomposition

in addition to the usual uncertainty due to sampling [15]. The procedure of this subsection

can be easily adapted to construct confidence interval for a parameter function  that does

not depend on t.

4 Evaluation of Similarity and Agreement

We now focus on how to evaluate similarity and agreement of a pair of measurement methods

j and l, j 6= l = 1, . . . , J . This evaluation can be repeated for all such pairs of interest. For

similarity evaluation, inference is performed on two measures of similarity—di↵erence in

means of the methods and ratio of their precisions [13]. Under the true model (4), �jl(t)

given by (7) is the mean di↵erence and ⌧ 2j /⌧
2
l is the precision ratio.

For agreement evaluation, inference is performed on functional analogs of agreement

measures originally developed for scalar data. These are obtained by using the definitions of

the measures under the bivariate distribution of (Yj(t), Yl(t)) induced by the true model (4)

for each t 2 T .

We specifically consider two agreement measures. One is the concordance correlation

coe�cient (CCC) due to Lin [11]. It is defined in terms of first and second order moments

of the paired observations. Using (5) and (6), the functional CCC can be expressed as

CCCjl(t) =
2Gjl(t, t)

{µj(t)� µl(t)}2 + �2
j (t) + �2

l (t)
= ⇢jl(t)

2
{µj(t)�µl(t)}2

�j(t)�l(t)
+ �j(t)

�l(t)
+ �l(t)

�j(t)

. (14)

See Lin [11] for properties of a CCC. Here we just note that |CCCjl(t)|  |⇢jl(t)|  1 and

CCCjl(t) = ⇢jl(t) if µj(t) = µl(t) and �2
j (t) = �2

l (t). A large positive value for CCC implies

good agreement. The methods j and l have perfect agreement when CCCjl(t) = 1 for all t.

The other measure is the total deviation index (TDI) due to Lin [12]. For a given

large probability p0, it is defined as the p0th percentile of absolute di↵erence in the paired
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observations. For inference on TDI, we additionally assume that the scores and the errors in

the models (4) and (9) follow normal distributions. Under this assumption, for each t 2 T ,

the di↵erence Djl(t) follows a normal distribution with mean �jl(t) and variance ⌘2jl(t), given

by (7). This implies that the functional TDI can be expressed as

TDIjl(p0, t) = 100p0th percentile of |Djl(t)| = ⌘jl(t)

(
�2
1,p0

 
�2jl(t)

⌘2jl(t)

!)1/2

, (15)

where �2
1,p0(�) is the 100p0th percentile of a noncentral �2 distribution with one degree of

freedom and noncentrality parameter �. A TDI is non-negative, and its small value implies

good agreement. Agreement between methods j and l is perfect when TDIjl(t) = 0 for all t.

The measures of similarity and agreement are estimated by plug-in. Similarity of the

methods is evaluated by examining a two-sided confidence band for �jl(t) and a two-sided

confidence interval for ⌧ 2j /⌧
2
l . Agreement between the methods is evaluated by examining

appropriate one-sided confidence bands for agreement measures. Since a large value for CCC

and a small value for TDI imply good agreement, an upper confidence band for CCC and

a lower confidence band for TDI are appropriate. The construction of confidence intervals

and bands was discussed in the previous subsection. To improve accuracy, the intervals

for precision ratio and TDI are obtained by first applying a log transformation and those

for CCC are obtained by first applying the Fisher’s z-transformation. The results are then

transformed back to the original scale.

As mentioned in Section 1, the limits of agreement approach of Bland and Altman [7]

is quite popular in the biomedical literature for agreement evaluation. This involves, under

the normality assumption for the di↵erences, computing estimated mean ± 1.96 times the

estimated standard deviation of the di↵erences, and examining whether the limits contain

any unacceptably large di↵erences. Using (7), the functional limits of agreement are �̂jl(t)±

1.96 ⌘̂jl(t), t 2 T .
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5 Simulation Study

In this section, we use Monte Carlo simulation to evaluate performance of point and interval

estimators of key parameters and parameter functions, including measures of similarity and

agreement, provided by the MPACE and UPACE approaches. This investigation focuses

on J = 2 measurement methods and takes mean squared error (MSE) of a point estimator

and coverage probability of a confidence interval as the measure of accuracy. The data are

simulated from the true model (4) along the lines of our real data examples by taking the

domain as T = [0, 1]; assuming normality for scores and errors; taking the mean functions

of the two methods as µ1(t) = 24 + t and µ2(t) = 23 + 2t; and setting the eigenvalues as

�k = 100⇥ e�(k�1)/2 for k  6 and zero for k > 6. The eigenfunctions corresponding to the

non-zero eigenvalues are taken as the eigenfunctions estimated from the body temperature

data by restricting them to the selected domain T . The grid tgrid = {u : u = 0, 1/49, . . . , 1}

of 50 equally-spaced points between 0 and 1 is used for simulating data as well as point and

interval estimation.

We consider a total of four dense and sparse designs. In the dense case, a balanced design

with Ni = 50 is considered. The observation times in this case are all points on tgrid, and all

subjects have the same observation times. In the sparse case, three scenarios with increasing

sparsity are considered. Two are balanced designs with Ni = 30 and Ni = 20, and the

third is an unbalanced design with Ni distributed as a Poisson random variable with mean

20. We refer to these four designs as (a), (b), (c), and (d), respectively. The observation

times in the sparse cases are drawn from a uniform distribution on tgrid separately for each

subject. Consequently, in the sparse case, the subjects may not have the same observation

times. In all the four designs, observations from both measurement methods are simulated

at each observation time, ensuring paired data. The observations for di↵erent subjects are

independent. Three combinations of values are chosen for the error variances of the methods,

15



namely, (⌧ 21 , ⌧
2
2 ) = (2, 2), (2, 4), and (4, 4), to allow a range of practical scenarios. Three

values are chosen for the number of subjects, n 2 {50, 100, 200}. Further, as is common in

practice, p0 = 0.90 is taken for TDI and 1 � ↵ = 0.95 is taken for the confidence intervals

and bands. Thus, we consider a total of 4⇥ 3⇥ 3 = 36 settings.

For each setting, we simulate a dataset, perform parameter estimation as described in

Section 3.1 and Appendix A, and construct 95% confidence intervals and bands as described

in Sections 3.2 and 4. The proportion of variation explained that is needed for FPCA is taken

to be 0.99 for both MPACE and UPACE. For the smoothing involved in point estimation, gam

function in mgcv package of Wood [19] is used with default settings. For interval estimation,

Q = 250 bootstrap resamples are used. The entire process from data simulation to interval

estimation is repeated 300 times. The results are used to compute estimated MSEs of point

estimators of log(⌧ 21 ), log(⌧
2
2 ), log(⌧

2
2 /⌧

2
1 ), log{TDI(p0, t)} and z{CCC(t)}, with z(·) denoting

the Fisher’s z-transformation, and estimated coverage probabilities for confidence intervals

of these quantities. The coverage probabilities are also computed for µ1(t), µ2(t), and �(t)

but these quantities are excluded from the MSE calculation as both MPACE and UPACE

use the same point estimators for them. We additionally compute estimated MSE of K̂ and

estimates of

E

8
<

:
1

n

nX

i=1

min{K̂,K}X

k=1

(⇠̂ik � ⇠ik)
2

9
=

; and E

(
1

n

nX

i=1

(Ŷi(t)� Yi(t))
2

)
,

which provide an overall measure of accuracy in prediction of scores and individual curves,

respectively. For convenience, these measures are also referred to as MSE. The e�ciency

of MPACE relative to UPACE is measured by dividing the MSE in case of UPACE by its

MPACE counterpart. From a practical viewpoint, if a relative e�ciency falls between 0.9

and 1.1, we may consider the two approaches to be equally accurate for estimating that

quantity. Now, a note about interval estimation of log{TDI(p0, t)} is in order. Our initial

simulation studies showed that its confidence band tended to be more accurate without the
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bias correction. Therefore, we drop the bias term from (13) when computing the confidence

band for this measure in the remainder of this article.

Table 1 presents the MSEs for the two approaches and their relative e�ciencies for

(⌧ 21 , ⌧
2
2 ) = (2, 2). We see that, with a few exceptions, the e�ciency tends to decrease with the

sparsity of design. Further, the e�ciencies for the curves and scores in all cases are between

0.96 and 1.05, implying that the two approaches may be considered equally accurate for

estimating them. Also, the e�ciencies for K are between 0.26 and 0.83 in all cases but one.

This suggests that UPACE is more accurate than MPACE for estimation of K. Additional

investigation shows that MPACE tends to overestimateK. All the e�ciencies for z(CCC) are

greater than one, implying superiority of MPACE over UPACE. For the remaining quantities,

the e�ciencies depend on n and sparsity of design. In particular, for dense data (Design (a)),

the e�ciencies range between 0.96 and 1.20, indicating superiority of MPACE. However, as

the level of sparsity increases, MPACE begins to lose its e�ciency advantage to UPACE,

especially when n = 50. But then the advantage of UPACE also shrinks as n increases.

For example, for Design (d), the e�ciencies range between 0.84 and 0.96 when n = 50,

clearly indicating superiority of UPACE, but the range becomes 0.98 to 1.03 when n = 200,

indicating nearly the same e�ciency of the two approaches. Qualitatively similar conclusions

hold in case of (⌧ 21 , ⌧
2
2 ) = (4, 4) (see Table 2) and also (2, 4), the results for which are omitted.

On the whole, these findings indicate that MPACE may be considered slightly more e�cient

than UPACE for dense data but the converse is true for sparse data with small n. In the

other cases, the two may be considered more or less equally e�cient. These conclusions

remain una↵ected by the error variances.

Next, we examine estimated coverage probabilities of the confidence intervals. Table 3

presents the coverage probabilities for confidence intervals of error variances and their ratio,

which are free of t. With a few exceptions, the entries are 1-2% higher than the nominal

level of 95%, suggesting the intervals are slightly conservative. Both MPACE and UPACE
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appear equally accurate and there is little impact of n or the error variances.

For parameter functions that depend on t, Table 4 presents averages of estimated point-

wise coverage probabilities of the confidence bands. There is no di↵erence in the entries for

µ1, µ2, and � between MPACE and UPACE because both use the same estimates for them.

In general, these entries are about 1% higher than 95%. For CCC, the entries are close to

95% for MPACE but about 96-98% for UPACE. For TDI, the entries are close to 95% for

MPACE. This is also true for UPACE for n � 100. These conclusions hold regardless of the

values of the error variances and whether the design is dense or sparse. Table 5 presents

estimated simultaneous coverage probabilities of the confidence bands. With the exception

of TDI, in which case the entries are below 95%, the other entries may be considered close

to 95%, especially when n � 100. In case of TDI, the accuracy of MPACE improves with

n and it may be considered acceptable for n = 200. Although the accuracy of UPACE also

improves with n, but it remains quite liberal even with n = 200.

Taken together, our key findings based on the settings considered and their practical

implications may be summarized as follows. First, the sparsity of design a↵ects the relative

performance of the two approaches in point estimation but not so much in interval estimation.

However, the error variances do not seem to have much impact on the performance. Second,

for both point and interval estimation, MPACE may be considered to have an edge over

UPACE. Finally, we have also evaluated the two variants of MPACE and UPACE algorithms

mentioned in Appendix A. However, we did not find any noticeable di↵erence in the results

from those presented here. Therefore, these are omitted. The results of an additional

simulation study to evaluate the impact of non-normality is presented in online Supplemental

Material.
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6 Analysis of Body Fat Data

These data from Chinchilli et al. [8] consist of percentage body fat measurements taken

over time on a cohort of 112 adolescent girls using skinfold calipers (method 1) and DEXA

(method 2) methods. Age at visit is the time variable t here. See [8, 21–23] for more

details about the dataset. Upon pre-processing the data which includes retaining only the

observation times for which paired observations are available from both methods, we get a

total of 2 ⇤ 654 = 1308 observations from n = 91 girls. The observations range between 12.7

and 37.4. There are 56 distinct observation times on the domain T = [11.2, 16.8] years and

their numbers per subject range between 4 and 8 with an average of 7.2.

Figure 1 presents the individual longitudinal profiles from the two methods, superimposed

with their estimated mean functions (see below). The caliper mean ranges from 23.6 to 24.7,

whereas the DEXA mean ranges from 21.4 to 24.3. They also behave di↵erently over the

domain. For example, the caliper mean remains essentially flat until age 14, then it decreases

slightly until about age 15.5, and begins to increase thereafter. However, the DEXA mean

decreases in the beginning, bottoms out around age 13, and increases thereafter with some

flattening near the end. Figure 2 shows the age-specific scatterplots for ages 12 through 16.

(Note that to draw these plots, the ages have been rounded to the nearest integer. Otherwise,

there would be relatively few points in each plot, making it hard to discern any pattern.)

The methods appear moderately correlated at these ages, with associated sample correlations

0.80, 0.73, 0.66, 0.67, and 0.73, respectively. Also, the points do not tightly cluster around

the 45� line for any age, implying that the methods do not agree well.

Our next task is to perform an FPCA of these data by fitting the model (9) using

both MPACE and UPACE approaches. The smoothing is performed using gam function in

mgcv package of R as described in the simulation section. The resulting mean functions are

displayed in Figures 1 and 3. The FPCA yields the following estimates for the number of
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FPC needed to explain at least 99% of variability, eigenvalues, and error variances:
8
>><

>>:

K̂ = 3, (�̂1, �̂2, �̂3) = (97.33, 23.80, 6.11), (⌧̂ 21 , ⌧̂
2
2 ) = (2.64, 2.32), for MPACE,

K̂ = 4, (�̂1, �̂2, �̂3, �̂4) = (102.43, 12.28, 7.61, 1.27), (⌧̂ 21 , ⌧̂
2
2 ) = (2.61, 2.34), for UPACE.

MPACE requires one fewer FPC than UPACE but both yield similar estimates for the error

variances. Figure 4 presents the estimated eigenfunctions. Ignoring a sign flip as the FPC are

unique only up to a sign change, we see that the first three eigenfunctions for caliper and the

first two eigenfunctions for DEXA from the two approaches are quite similar. The resulting

estimates of standard deviation functions and correlation function for caliper and DEXA are

displayed in Figure 3. The standard deviation functions estimated by MPACE and UPACE

are somewhat similar, with the function exhibiting a decreasing trend for caliper and an

increasing trend for DEXA. However, the two correlation functions seem quite di↵erent. In

particular, the UPACE estimate shows a decreasing trend throughout, whereas the MPACE

estimate shows an initial decreasing trend with minima at age 14, followed by an increasing

trend. The latter pattern is consistent with the trend of correlation associated with the

scatterplots in Figure 2. Therefore, we use MPACE for rest of the analysis here.

We now proceed as described in Section 4 to compute interval estimates for measures

of similarity and agreement using Q = 500 bootstrap resamples. The estimate and 95%

simultaneous confidence band for mean di↵erence (caliper � DEXA) are displayed in Fig-

ure 3. The estimate increases from 1 around age 11 to about 3 around age 13, then starts to

decrease and falls slightly under zero around age 15, and then increases to about 0.5 around

age 17. The band lies above zero over the age interval from 11.5 to 14.5. The estimate and

95% confidence interval for precision ratio (caliper over DEXA) are 1.14 and (0.60, 2.57), re-

spectively. Taken together, these findings indicate that the methods have the same precision

but their means are not the same. Hence the methods cannot be regarded as similar.

For agreement evaluation, Figure 5 presents estimates and 95% one-sided simultaneous

confidence bands for CCC and TDI (with p0 = 0.90) functions. A lower band for CCC and
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an upper band for TDI are presented. The pattern of increase and decrease of TDI estimate

broadly resembles that of the mean di↵erence function in Figure 3. This indicates that the

agreement between the methods is best in the beginning. Then, it becomes progressively

worse as age increases to about age 13.5, starts to get better till about age 14.5, and gets

progressively worse thereafter. The same conclusion can be reached on the basis of CCC

also. The TDI upper bound ranges between 6.78 and 9.64 and the CCC lower bound ranges

between 0.22 and 0.60. Based on these values, the methods cannot be considered to agree

well. It is also clear from the similarity evaluation that this lack of agreement is primarily

due to a di↵erence in the means of the two methods. These conclusions are consistent with

other analyses of these data reported in [8, 21, 23].

7 Summary and Discussion

To summarize, this article discusses modeling and analysis of functional data arising in a

method comparison study. The methodology involves representing the data using a trun-

cated Karhunen-Loève expansion. The unknowns in the model are estimated using two

approaches—MPACE and UPACE, both adaptations of existing methods for FPCA of mul-

tivariate functional data observed with noise. Confidence intervals for measures of similarity

and agreement, obtained by bootstrapping, are used to evaluate similarity and agreement of

the measurement methods. A separate FPC decomposition is obtained for each bootstrap

resample. Therefore, the variability due to FPC decomposition is also accounted for in the

confidence intervals. Although both MPACE and UPACE often have comparable perfor-

mance, there is evidence in both simulation studies and real data analysis that sometimes

MPACE works better than UPACE. Here we use splines for smoothing involved in estima-

tion. However, any other smoothing method can also be used without a↵ecting the general

methodology. No parametric assumption is required unless the inference on TDI is needed
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in which case normality is assumed for scores and errors.

This article takes a multivariate FPCA approach to model the data. Given that the

mixed-e↵ects models are common for modeling univariate method comparison data [6, Chap-

ter 3], an alternative would be to take a functional mixed-e↵ects model approach. For exam-

ple, Zhou et al. [24] use this to model dependence in paired functional variables. However,

this methodology is di�cult to implement, especially since no computer program is publicly

available to fit their model. Although our methodology works for both dense and sparse

functional data, it assumes that observations from all methods are available at each obser-

vation time. But this assumption is restrictive. For example, it does not hold for the body

fat data. However, it may be possible to relax this assumption. Further research is needed

to explore these directions.

Software in the form of R code, together with illustration and documentation, is available

at http://www.utdallas.edu/~pankaj/.
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Appendix A. Two approaches for parameter estimation

This appendix describes two approaches based on FPCA for estimating components of ✓

besides the mean functions. Estimation of mean function was discussed in Section 3.1. Both

use the centered data Ỹi(t0), i = 1, . . . , n as input.

A.1 Approach 1 (MPACE)

This approach is an adaptation of the PACE methodology for univariate functional data

[14, 15] to deal with multivariate functional data. A similar approach has been used by

Chiou et al. [4] for normalized functional data. It involves the following steps.

1. Compute the sum of products
Pn

i=1 Ỹi(t0)ỸT
i (t0) using only the non-missing observa-

tions in Ỹi(t0). Divide each element of this JN0 ⇥ JN0 matrix by the corresponding

number of non-missing terms contributing to the sum. This divisor is n for a balanced

design. If at least two observations are available at each t 2 t0, we may subtract 1

from the number of non-missing terms contributing to the sum and use that as the
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divisor. Denote the resulting matrix as V. It has a block structure,

V =

0

BBBB@

V11 . . . V1J

...
. . .

...

VJ1 . . . VJJ

1

CCCCA
, (A.1)

where each of the submatrices is a N0 ⇥ N0 matrix and Vjl = V
T
lj, j 6= l. By con-

struction, there is no missing entry in this matrix. The elements of Vjj provide a raw

estimate of the autocovariance function Gjj(s, t) + ⌧ 2j I(s = t) of Yj(t) for s, t 2 t0,

see (5). Likewise, the elements of Vjl provide a raw estimate of the cross covariance

function Gjl(s, t), given by (3), for s, t 2 t0.

2. Perform bivariate smoothing of the o↵-diagonal elements of Vjj, separately for each

j, to obtain preliminary smooth estimates of the functions Gjj(s, t). Evaluate the

estimated functions at s, t 2 t0 to get N0 ⇥N0 matrices Ṽjj, j = 1, . . . , J .

3. Perform bivariate smoothing of the elements of Vjl, separately for each (j, l) pair with

l > j, to obtain preliminary smooth estimates of the functions Gjl(s, t). Evaluate the

estimated functions at s, t 2 t0 to get N0 ⇥N0 matrices Ṽjl, l > j = 1, . . . , J .

4. Compute the JN0 ⇥ JN0 matrix Ṽ, an analog of V, by replacing Vjj on the diagonal,

Vjl above the diagonal, and Vlj below the diagonal of V with Ṽjj, Ṽjl, and Ṽ
T
jl,

respectively.

5. Use a quadrature rule (e.g., the trapezoidal rule) that approximates an integral
R
T f(t)dt

as
PN0

q=1 wqf(t0q), where the quadrature points t01, . . . , t0N0 are the elements of t0, to

get the associated weights w1, . . . , wN0 . Form a JN0⇥JN0 diagonal matrixW with the

entire set of weights (w1, . . . , wN0) repeated J times as the diagonal elements. Compute

the JN0 ⇥ JN0 matrix U = W
1/2

ṼW
1/2.
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6. Perform a spectral decomposition of U to get the eigenvalues �̂k and the corresponding

JN0⇥1 orthogonal eigenvectors uk, k = 1, . . . , JN0. Replace any negative eigenvalues,

which may possibly be nearly zero, with zero. Choose K̂ as the smallest number of

eigenvalues for which
�PK̂

k=1 �̂k/
PJN0

k=1 �̂k
�
� ⇡, where ⇡ is a specified lower bound

on the proportion of total variability in the observed curves to be explained by the

principal components. Compute the vectors �̂k(t0) = W
�1/2

uk for k = 1, . . . , K̂. The

eigenvalues �̂k provide the estimated score variances and the corresponding vectors

�̂k(t0) = (�̂
T

k1(t0), . . . , �̂
T

kJ(t0))
T provide values of the estimated eigenfunctions �̂kj(t),

j = 1, . . . , J for t 2 t0.

7. Compute a revised estimate of the covariance functions in (3) as

Ĝjl(s, t) =
K̂X

k=1

�̂k�̂kj(s)�̂kl(t), j, l = 1, . . . , J ; s, t 2 t0. (A.2)

8. For j = 1, . . . , J , compute ⌧̂ 2j by subtracting Ĝjj(t, t) given above from the diagonal

elements of Vjj—given by (A.1) and which estimate Gjj(t, t) + ⌧ 2j —for t 2 t0 and

combining the di↵erences to form a single number. One way to accomplish this is to

proceed along the lines of the implementations of the PACE methodology in R packages

MFPCA and refund [16, 17]. For this, define an interval T ⇤ ⇢ T as

T ⇤ = [min{t 2 t0 : t � t01 + (t0N0 � t01)/4}, max{t 2 t0 : t  t0N0 � (t0N0 � t01)/4}],

and let |T ⇤| be its length. Also let t⇤01, . . . , t
⇤
0Q be those elements of t0 that also lie in

T ⇤. Corresponding to each t⇤0q, there is a diagonal element of matrix Vjj in (A.1), say,

vjj(t⇤0q). Then, as in Step 5, let w⇤
1, . . . , w

⇤
Q be the weights associated with a quadrature

rule that takes t⇤01, . . . , t
⇤
0Q as the quadrature points. Finally, take

⌧̂ 2j =
1

|T ⇤|

QX

q=1

w⇤
q

⇣
vjj(t

⇤
0q)� Ĝjj(t

⇤
0q, t

⇤
0q)
⌘
,

provided it is positive, otherwise take it to be zero. This is the estimate we use here.

An alternative is to proceed as in Goldsmith et al. [15] and use the average di↵erence
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between vjj(t) and Ĝjj(t, t) computed over the middle 60% of the grid t0. In either

case, some observation times from the two ends of t0 are discarded to improve stability

of the estimate.

9. Estimate the score vector ⇠i by its estimated best linear unbiased predictor under

model (11),

⇠̂i = ⇤̂�̂
T
(ti)

�
�̂(ti)⇤̂�̂

T
(ti) + R̂i

 �1{Yi(ti)� µ̂(ti)}.

The estimated matrices here are plug-in estimates of their population counterparts.

The matrix Ṽ in Step 4 is not guaranteed to be positive definite. Therefore, we may

replace it by its nearest positive definite approximation, computed using the nearPD function

in R package Matrix [25] which implements the algorithm of Higham [26], before continuing

with the rest of the steps. This variant of the algorithm is evaluated using simulation in

Section 5.

A.2 Approach 2 (UPACE)

This approach is a special case of a general approach for multivariate FPCA proposed

by Happ and Greven [5]. In our adaptation here, it begins with the centered data Ỹi(t0),

i = 1, . . . , n and involves the following steps.

1. Use the PACE methodology [14] to perform univariate FPCA of data from each mea-

surement method separately. This e↵ectively amounts to considering data from one

measurement method at a time, assuming a model for it similar to (9) that is based on a

univariate Karhunen-Loève expansion, and fitting the model by applying the algorithm

of the previous section by suitably modifying it. Suppose for data from measurement

method j = 1, . . . , J , this results in K̂(j) as the smallest number of principal compo-

nents explaining at least a specified proportion ⇡(j) of variability; �̂
(j)

k (t0) as the N0⇥1
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vector of values of the kth estimated eigenfunction for t 2 t0, k = 1, . . . , K̂(j); ⌧̂ 2(j)

as the estimated error variance; and ⇠̂
(j)

i as the K̂j ⇥ 1 vector of estimated scores for

the ith subject. Note that the corresponding true scores have expectation zero and we

have a total of K̂+ = K̂(1) + . . . + K̂(J) estimated univariate scores for each subject.

The ⌧̂ 2(j) resulting from this univariate FPCA also estimate the error variances in ✓,

i.e., ⌧̂ 2j = ⌧̂ 2(j), j = 1, . . . , J .

2. Arrange the univariate scores as a n⇥ K̂+ matrix ⌅̂ where

⌅̂ =

0

BBBB@

⇠̂
(1)T

1 . . . ⇠̂
(J)T

1

... . . .
...

⇠̂
(1)T

n . . . ⇠̂
(J)T

n

1

CCCCA

and form their K̂+ ⇥ K̂+ covariance matrix Z = ⌅̂
T
⌅̂/(n� 1).

3. Perform a spectral decomposition of Z to get the eigenvalues �̂k and the corresponding

K̂+ ⇥ 1 orthogonal eigenvectors zk, k = 1, . . . , K̂+. Replace any negative eigenvalues,

which may possibly be nearly zero, with zero. Choose K̂ as the smallest number of

eigenvalues for which (
PK̂

k=1 �̂k/
PK̂+

k=1 �̂k) � ⇡, where ⇡ is a specified lower bound on

the proportion of variability explained. By construction, K̂  K̂+. These K̂ and �̂k

estimate the corresponding components K and �k of ✓.

4. For k = 1, . . . , K̂, represent the K̂+⇥1 eigenvector zk as zk = (z(1)Tk , . . . , z(J)Tk )T , where

z
(j)
k is a K̂(j)⇥1 vector with elements z(j)k1 , . . . , z

(j)

kK̂(j) , j = 1, . . . , J . Estimate the values

of the eigenfunction �̂kj(t) in ✓ for t 2 t0 as the N0 ⇥ 1 vector

�̂kj(t0) =
�
�̂

(j)

1 (t0), . . . , �̂
(j)

K̂(j)(t0)
�
z
(j)
k .

5. Take ⇠̂i, the estimated score vector in the model (11), as the ith row of the n ⇥ K̂

matrix ⌅̂(z1, . . . , zK̂).
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To conclude, both MPACE and UPACE approaches provide estimates of all the compo-

nents of ✓ except the mean functions whose estimation was discussed in Section 3.1. They

also provide estimates of the multivariate scores in the model (11). In applications, MPACE

involves choosing only one proportion of variation explained—⇡ for multivariate data. On

the other hand, UPACE involves choosing J +1 such proportions—⇡(1), . . . , ⇡(J) for univari-

ate data and ⇡ for multivariate data. In practice, such proportions are taken to be large,

e.g., between 0.95 and 0.99. The specific choice will depend on the application and can be

guided by a scree plot [1, Chapter 8]. We have chosen 0.99 in this work. A variant of the

UPACE algorithm with ⇡(j) = 1 for j = 1, . . . , J is evaluated using simulation in Section 5.
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Figure 1: The individual profiles of percentage body fat measurements (in grey) for the two
methods superimposed with estimated mean functions (in black).
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Figure 2: Scatterplots of percentage body fat measurements at ages t = 12, 13, . . . , 16 years.
To draw these plots, the ages have been rounded to the nearest integer.
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tions for the two methods for percentage body fat data. The bottom right panel also shows
a 95% simultaneous confidence band for the mean di↵erence function.
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Figure 4: Estimated eigenfunctions for caliper (left panel) and DEXA (right panel) mea-
surements using MPACE (top panel) and UPACE (bottom panel) approaches.
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Table 1: MSEs of estimators of quantities that are free of t and average MSEs of estimators of
quantities that depend on t, computed using MPACE (marked as M) and UPACE (marked
as U) approaches, and the ratio of the MSEs (marked as U/M) in case of four designs:
(a) Ni = 50 (dense data), (b) Ni = 30 (sparse data), (c) Ni = 20 (sparse data), and (d)
unbalanced design with mean Ni = 20 (sparse data), each with (⌧ 21 , ⌧

2
2 ) = (2, 2).

(a) (b) (c) (d)
n Quantity M* U* U/M M* U* U/M M* U* U/M M* U* U/M
50 Curves 1.83 1.87 1.02 1.74 1.80 1.04 1.64 1.73 1.05 1.65 1.73 1.05

Scores 9.08 9.01 0.99 8.80 8.80 1.00 8.71 8.78 1.01 8.73 8.76 1.00
K 1.63 0.70 0.43 4.36 1.63 0.37 5.36 2.11 0.39 4.94 1.92 0.39

log(⌧ 21 ) 1.94 1.90 0.98 6.58 6.05 0.92 15.68 13.59 0.87 15.87 14.72 0.93
log(⌧ 22 ) 1.96 2.00 1.02 6.22 4.97 0.80 12.77 10.26 0.80 10.78 9.10 0.84

log(⌧ 21 /⌧
2
2 ) 3.88 3.94 1.02 9.91 9.96 1.01 21.76 21.30 0.98 24.58 23.52 0.96

log(TDI) 2.53 2.43 0.96 4.07 3.59 0.88 5.09 4.36 0.86 5.11 4.13 0.81
z(CCC) 4.01 4.48 1.12 6.04 6.44 1.07 7.09 8.43 1.19 7.82 9.51 1.22

100 Curves 1.85 1.88 1.01 1.76 1.82 1.03 1.67 1.75 1.05 1.67 1.74 1.05
Scores 9.00 8.86 0.98 8.82 8.79 1.00 8.65 8.70 1.01 8.76 8.82 1.01
K 1.04 0.86 0.83 4.64 1.43 0.31 6.69 2.14 0.32 6.45 2.09 0.32

log(⌧ 21 ) 0.91 0.91 1.00 3.03 2.87 0.94 7.56 7.69 1.02 9.73 9.91 1.02
log(⌧ 22 ) 1.05 1.07 1.02 2.67 2.40 0.90 6.06 5.52 0.91 6.49 5.64 0.87

log(⌧ 21 /⌧
2
2 ) 1.88 1.94 1.03 5.02 5.00 1.00 11.74 11.45 0.97 14.31 14.05 0.98

log(TDI) 1.41 1.48 1.05 1.81 1.74 0.96 2.64 2.48 0.94 2.88 2.52 0.87
z(CCC) 2.15 2.85 1.33 3.02 4.11 1.36 3.56 5.95 1.67 4.10 6.55 1.60

200 Curves 1.88 1.89 1.01 1.78 1.83 1.03 1.69 1.75 1.04 1.68 1.75 1.04
Scores 9.20 8.87 0.96 8.85 8.83 1.00 8.73 8.77 1.00 8.69 8.73 1.00
K 0.43 0.78 1.82 3.97 1.20 0.30 6.69 1.87 0.28 6.32 1.63 0.26

log(⌧ 21 ) 0.51 0.52 1.02 1.57 1.61 1.02 3.38 3.50 1.03 3.62 3.75 1.03
log(⌧ 22 ) 0.47 0.51 1.10 1.19 1.16 0.97 2.62 2.49 0.95 2.99 2.93 0.98

log(⌧ 21 /⌧
2
2 ) 1.03 1.05 1.02 2.62 2.65 1.01 5.81 5.96 1.02 5.97 5.88 0.98

log(TDI) 0.70 0.83 1.20 1.01 1.09 1.08 1.46 1.49 1.02 1.47 1.49 1.01
z(CCC) 1.13 1.97 1.74 1.70 3.12 1.84 2.15 4.80 2.24 1.96 4.63 2.37

*For all quantities except the curves, scores, and K, the entries represent 103 ⇥MSE.
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Table 2: MSEs of estimators of quantities that are free of t and average MSEs of estimators of
quantities that depend on t, computed using MPACE (marked as M) and UPACE (marked
as U) approaches, and the ratio of the MSEs (marked as U/M) in case of four designs:
(a) Ni = 50 (dense data), (b) Ni = 30 (sparse data), (c) Ni = 20 (sparse data), and (d)
unbalanced design with mean Ni = 20 (sparse data), each with (⌧ 21 , ⌧

2
2 ) = (4, 4).

(a) (b) (c) (d)
n Quantity M* U* U/M M* U* U/M M* U* U/M M* U* U/M
50 Curves 3.66 3.74 1.02 3.48 3.60 1.03 3.33 3.49 1.05 3.34 3.50 1.05

Scores 8.75 8.76 1.00 8.70 8.77 1.01 8.78 8.85 1.01 8.71 8.82 1.01
K 3.90 1.43 0.37 5.76 2.17 0.38 5.82 1.88 0.32 5.39 1.79 0.33

log(⌧ 21 ) 2.35 2.27 0.97 4.72 4.39 0.93 9.90 9.22 0.93 8.83 8.75 0.99
log(⌧ 22 ) 1.72 1.74 1.01 5.16 4.33 0.84 8.51 7.15 0.84 10.52 8.70 0.83

log(⌧ 21 /⌧
2
2 ) 4.24 4.27 1.01 8.64 8.52 0.99 16.28 16.38 1.01 17.34 17.06 0.98

log(TDI) 1.85 1.70 0.92 2.78 2.38 0.86 3.68 2.88 0.78 3.54 3.09 0.87
z(CCC) 2.68 3.33 1.24 4.07 4.90 1.21 5.43 6.73 1.24 5.20 6.58 1.27

100 Curves 3.70 3.77 1.02 3.54 3.65 1.03 3.41 3.54 1.04 3.40 3.53 1.04
Scores 8.82 8.81 1.00 8.81 8.83 1.00 8.66 8.71 1.01 8.67 8.73 1.01
K 3.64 1.29 0.35 6.57 1.98 0.30 7.20 2.05 0.29 7.06 2.06 0.29

log(⌧ 21 ) 1.10 1.10 1.01 1.97 2.02 1.03 4.06 4.02 0.99 4.35 4.50 1.04
log(⌧ 22 ) 1.13 1.07 0.95 1.91 1.71 0.89 3.79 3.63 0.96 4.06 3.69 0.91

log(⌧ 21 /⌧
2
2 ) 2.20 2.23 1.01 3.17 3.20 1.01 6.89 6.89 1.00 7.38 7.27 0.98

log(TDI) 0.91 0.90 0.99 1.30 1.18 0.91 1.97 1.66 0.84 2.01 1.74 0.87
z(CCC) 1.37 2.20 1.61 2.04 3.82 1.87 2.91 5.93 2.04 3.07 5.80 1.89

200 Curves 3.74 3.78 1.01 3.58 3.66 1.02 3.43 3.55 1.03 3.44 3.55 1.03
Scores 8.87 8.79 0.99 8.84 8.85 1.00 8.64 8.71 1.01 8.68 8.73 1.01
K 3.13 1.03 0.33 6.70 1.66 0.25 8.48 2.03 0.24 7.62 1.82 0.24

log(⌧ 21 ) 0.52 0.52 1.00 0.93 0.98 1.05 2.01 2.08 1.03 2.47 2.37 0.96
log(⌧ 22 ) 0.53 0.53 1.01 1.30 1.16 0.90 2.01 2.09 1.04 1.70 1.65 0.97

log(⌧ 21 /⌧
2
2 ) 0.96 0.98 1.03 2.02 2.01 1.00 3.97 4.11 1.04 4.15 4.16 1.00

log(TDI) 0.53 0.55 1.04 0.71 0.73 1.03 1.07 1.05 0.99 1.05 1.05 1.00
z(CCC) 0.69 1.52 2.19 1.10 3.01 2.74 1.44 4.63 3.22 1.55 4.94 3.19

*For all quantities except the curves, scores, and K, the entries represent 103 ⇥MSE.
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Table 3: Estimated coverage probabilities (in %) of 95% confidence intervals for error vari-
ances and their ratio in case of four designs: (a) Ni = 50 (dense data), (b) Ni = 30 (sparse
data), (c) Ni = 20 (sparse data), and (d) unbalanced design with mean Ni = 20 (sparse
data).

(⌧ 21 , ⌧
2
2 )

(2, 2) (2, 4) (4, 4)
Method n  (a) (b) (c) (d) (a) (b) (c) (d) (a) (b) (c) (d)
MPACE 50 ⌧ 21 97.3 94.3 95.7 97.3 95.7 96.0 96.0 93.3 95.7 97.7 95.7 97.7

⌧ 22 97.0 96.7 96.3 97.7 96.0 97.0 97.0 97.3 97.7 97.7 97.7 95.3
⌧ 21 /⌧

2
2 98.0 97.0 97.7 97.3 95.0 97.0 96.7 96.0 96.7 97.0 95.7 95.7

100 ⌧ 21 98.0 93.0 96.7 96.7 97.7 96.7 96.3 95.0 96.3 97.3 97.7 96.7
⌧ 22 97.3 96.0 96.7 95.7 97.0 96.3 97.0 97.7 95.7 96.3 98.0 97.0

⌧ 21 /⌧
2
2 97.3 96.0 96.3 97.0 96.0 97.0 96.3 96.3 95.3 95.7 97.0 97.7

200 ⌧ 21 96.3 95.3 97.3 97.3 96.3 96.0 97.0 96.0 97.0 97.3 96.0 96.3
⌧ 22 95.3 97.3 97.0 95.3 97.3 97.0 96.7 97.0 94.3 96.7 95.3 96.7

⌧ 21 /⌧
2
2 95.0 96.7 97.0 95.7 97.0 94.7 96.7 95.3 97.7 95.7 96.0 97.0

UPACE 50 ⌧ 21 96.3 94.3 94.0 94.7 95.3 93.7 95.0 92.3 96.0 96.0 95.3 96.0
⌧ 22 96.7 96.3 96.0 96.0 96.3 95.7 97.7 96.0 96.7 95.3 95.7 94.3

⌧ 21 /⌧
2
2 98.0 96.7 97.0 98.0 96.0 96.0 96.0 94.7 96.7 96.3 95.7 96.3

100 ⌧ 21 97.3 94.3 96.0 94.3 97.3 94.7 96.3 93.0 96.0 97.0 97.3 94.7
⌧ 22 97.7 94.7 94.0 95.3 97.0 95.7 97.0 97.7 95.3 95.3 98.0 94.7

⌧ 21 /⌧
2
2 97.3 97.0 96.7 97.0 97.0 97.3 96.3 95.3 96.0 96.7 97.0 98.0

200 ⌧ 21 97.3 95.7 97.0 94.7 95.7 94.7 95.7 95.3 97.3 96.7 96.0 97.0
⌧ 22 94.3 96.3 95.3 94.0 96.0 96.0 95.0 96.3 95.3 96.3 97.0 98.0

⌧ 21 /⌧
2
2 93.3 97.0 96.3 96.0 97.0 94.7 95.7 95.7 98.3 95.3 97.0 96.3
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Table 4: Average estimated pointwise coverage probabilities (in %) of 95% pointwise confi-
dence bands for function that depend on t in case of four designs, (a) Ni = 50 (dense data),
(b) Ni = 30 (sparse data), (c) Ni = 20 (sparse data) and (d) unbalanced design with mean
Ni = 20 (sparse data).

(⌧ 21 , ⌧
2
2 )

(2, 2) (2, 4) (4, 4)
n  (t) (a) (b) (c) (d) (a) (b) (c) (d) (a) (b) (c) (d)

MPACE 50 µ1 97.1 96.8 96.5 96.3 97.3 96.6 97.3 95.3 96.6 96.0 96.1 96.6
µ2 96.3 95.1 96.0 96.7 96.2 96.6 97.5 96.6 96.3 96.1 96.6 97.1
� 96.6 94.7 96.2 96.1 96.0 95.9 96.5 95.7 96.5 95.2 95.5 96.1

TDI 94.1 93.4 93.1 92.9 95.1 95.4 94.6 94.7 95.8 95.3 94.8 94.6
CCC 95.4 95.6 94.9 95.3 95.5 95.2 94.2 95.2 96.1 95.0 95.1 95.4

100 µ1 96.0 97.2 96.4 96.7 97.3 97.3 97.5 97.2 97.2 96.9 96.9 96.4
µ2 96.1 96.6 96.1 96.3 97.1 97.0 97.0 97.6 96.1 96.9 97.0 96.2
� 96.3 95.8 96.7 96.6 96.2 97.0 96.3 96.9 97.1 96.3 96.6 95.8

TDI 94.9 95.4 94.6 94.2 96.5 95.3 94.6 94.1 96.2 95.4 94.4 94.6
CCC 95.9 95.6 95.5 96.4 95.5 95.8 95.7 95.3 96.0 96.5 95.9 95.8

200 µ1 96.3 96.9 97.2 96.8 97.4 97.2 96.8 96.8 96.3 97.2 97.7 97.3
µ2 95.5 96.9 96.2 97.3 96.2 97.5 96.4 97.2 96.8 97.4 97.6 97.0
� 95.6 96.2 95.8 96.9 95.8 96.4 96.0 96.5 95.9 96.4 96.7 96.7

TDI 96.7 95.9 96.1 95.8 96.8 96.7 95.7 96.0 97.0 96.5 96.5 96.1
CCC 95.6 94.9 96.1 95.9 96.0 95.8 95.8 95.2 95.8 95.5 95.1 95.9

UPACE 50 µ1 97.1 96.8 96.5 96.3 97.3 96.6 97.3 95.2 96.6 96.0 96.1 96.6
µ2 96.3 95.1 96.0 96.7 96.2 96.6 97.5 96.6 96.3 96.1 95.6 97.1
� 96.6 94.7 96.2 96.1 96.0 95.9 96.5 95.7 96.5 95.2 95.5 96.1

TDI 91.7 91.3 91.0 91.4 93.3 92.9 93.3 93.2 94.3 93.9 93.6 93.8
CCC 97.1 98.7 97.8 98.5 97.7 99.0 98.0 99.0 98.5 99.1 98.8 99.3

100 µ1 96.0 97.2 96.4 96.7 97.3 97.3 97.5 97.2 97.2 96.9 96.9 96.4
µ2 96.1 96.6 96.1 96.3 97.1 97.0 97.0 97.6 96.1 96.9 97.0 96.2
� 96.3 95.8 96.7 96.6 96.2 97.0 96.3 96.9 97.1 96.3 96.6 95.8

TDI 93.7 93.2 93.6 93.0 94.2 94.0 93.7 93.4 95.1 94.7 94.4 94.2
CCC 96.5 98.4 97.8 98.8 97.3 99.0 98.3 98.7 98.2 99.5 98.8 99.5

200 µ1 96.3 96.9 97.2 96.8 97.4 97.2 96.8 96.8 96.3 97.2 97.7 97.3
µ2 95.5 96.9 96.2 97.3 96.2 97.5 96.4 97.2 96.8 97.4 97.6 97.0
� 95.6 96.2 95.8 96.9 95.8 96.4 96.0 96.5 95.9 96.4 96.7 96.7

TDI 95.0 94.7 94.5 94.3 95.1 94.5 94.8 94.0 95.3 95.1 94.4 94.6
CCC 96.4 97.6 97.4 97.9 97.3 98.8 97.8 98.2 98.3 99.2 98.0 99.2
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Table 5: Estimated simultaneous coverage probabilities (in %) of 95% simultaneous confi-
dence bands in case of four designs, (a) Ni = 50 (dense data), (b) Ni = 30 (sparse data), (c)
Ni = 20 (sparse data) and (d) unbalanced design with mean Ni = 20 (sparse data).

(⌧ 21 , ⌧
2
2 )

(2, 2) (2, 4) (4, 4)
n  (t) (a) (b) (c) (d) (a) (b) (c) (d) (a) (b) (c) (d)

MPACE 50 µ1 95.7 95.0 94.3 94.3 95.3 94.7 94.7 93.7 95.0 94.7 94.0 94.0
µ2 95.0 94.7 94.0 93.3 95.0 93.7 96.7 94.3 95.0 94.7 93.7 95.0
� 94.7 94.3 94.3 93.3 94.7 94.0 94.3 93.7 94.7 94.0 94.0 93.3

TDI 90.0 89.3 88.3 88.3 91.0 91.7 90.0 90.7 93.3 93.0 92.7 92.7
CCC 93.0 94.7 92.0 91.7 94.0 91.0 91.0 92.7 94.7 93.0 93.7 92.7

100 µ1 95.7 96.0 95.3 94.3 96.0 96.7 95.3 95.7 95.7 95.0 95.3 95.3
µ2 96.3 94.7 94.0 94.7 94.0 94.7 96.0 95.7 94.7 95.7 94.3 93.3
� 95.3 94.7 94.0 93.0 94.3 94.7 93.7 93.3 94.7 93.7 93.3 93.3

TDI 92.7 93.0 91.7 91.3 93.3 92.7 92.7 91.7 93.7 92.3 91.3 92.0
CCC 95.0 93.3 92.0 94.7 94.3 94.0 95.3 95.3 95.3 94.3 93.7 94.3

200 µ1 95.3 96.7 95.7 95.3 95.7 95.3 95.0 94.0 95.3 95.0 95.0 95.3
µ2 95.0 96.0 94.7 94.0 95.3 95.3 94.7 95.7 95.3 94.7 94.7 94.7
� 94.3 95.7 94.7 93.7 95.0 95.0 94.3 94.7 95.3 94.3 94.0 94.7

TDI 94.0 93.7 94.0 93.3 94.7 94.3 93.7 94.0 95.0 94.3 94.3 94.0
CCC 94.3 92.7 93.0 94.3 96.0 94.0 95.7 94.7 95.3 93.3 95.3 95.3

UPACE 50 µ1 95.7 95.0 94.0 94.3 95.3 94.3 94.7 94.0 95.0 94.7 94.0 94.0
µ2 95.0 94.7 94.0 93.3 95.3 94.0 96.3 94.7 94.7 94.7 93.7 95.3
� 94.7 94.3 94.3 93.3 94.7 94.0 94.3 93.7 95.0 94.0 94.0 93.3

TDI 88.3 87.7 87.3 87.3 89.3 88.0 88.7 89.3 90.7 90.0 89.0 89.3
CCC 94.3 97.0 96.0 96.7 97.0 99.0 97.3 98.7 98.7 98.7 97.7 98.3

100 µ1 95.7 96.0 95.3 94.3 96.3 97.0 95.3 95.7 95.3 95.3 95.3 95.7
µ2 95.3 95.0 94.0 94.7 94.0 94.7 96.0 95.3 94.7 95.7 94.3 93.3
� 95.0 94.7 94.0 92.7 94.3 94.7 93.7 93.7 95.0 93.7 93.7 93.3

TDI 89.7 89.3 89.7 89.0 90.3 90.3 89.3 89.0 91.0 90.7 90.3 90.3
CCC 94.0 97.3 94.3 96.3 94.7 99.3 95.3 97.7 94.7 99.3 97.7 99.7

200 µ1 95.3 96.3 95.7 95.3 96.0 95.3 95.3 93.7 95.7 95.0 95.0 95.3
µ2 94.7 95.0 94.7 94.0 95.0 95.3 94.3 95.3 95.3 94.7 94.7 94.3
� 94.3 94.7 94.3 93.7 95.0 95.0 94.3 94.7 95.3 94.0 94.3 94.3

TDI 91.3 91.0 91.3 90.7 91.3 90.7 91.0 90.3 92.0 91.7 90.3 90.7
CCC 94.3 93.3 93.0 93.7 94.7 95.7 94.3 94.3 94.7 94.7 95.7 95.0
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Supplemental Material for “Modeling and Analysis of
Functional Method Comparison Data” by

Galappaththige S. R. de Silva, Lasitha N. Rathnayake
and Pankaj K. Choudhary

1 An Additional Simulation Study

In this section, we report results of a limited simulation study to evaluate the impact of
non-normality. The setup here is exactly the same as in Section 5 (Simulation Study) of
the main article with the exception that the scores ⇠ik are now simulated as scaled log-
normal variates, specifically, ⇠ik/

p
�k ⇠ LN (0, 1), instead of ⇠ik/

p
�k ⇠ N (0, 1), introducing

skewness in the true data generating model. The model assumed for the data is same as
before. This change necessitated dropping TDI from consideration as its definition is tied
to normality; computing true values for mean, variance, and covariance functions of X1(t)
and X2(t) assuming log-normality of the scores; and using these true values instead of µj(t)
and Gjl(s, t), j, l = 1, 2 computed assuming normality while computing true values of the
parameter functions that involve these moments, such as the CCC. Supplemental Tables 1-3
present the results for (⌧ 21 , ⌧

2
2 ) = (4, 4). The corresponding results under normality appear

in Tables 2-5 of the main article.
From Supplemental Table 1, we see that the impact of non-normality on the MSE of a

point estimator depends on n, the design, and the parameter. For example, the MSE of
estimator of K decreases while those of z(CCC) and scores show substantial increase for
all designs. A substantial increase is seen for other quantities as well but only for designs
(b)-(d), not (a). Much of the increase in the MSEs may be driven by an increase in the
biases of the estimators. The impact on the coverage performance of interval estimators
also depends on n and the design but not so much on the parameter. The new coverage
probability estimates in Supplemental Tables 2 and 3 are generally less than before and
the new entries tend to decrease with increase in design sparsity. Nevertheless, the interval
estimators for all quantities may be considered to have acceptable accuracy for n � 50 in
case of design (a) and for n � 100 in case of the other designs. Thus, on the whole, we may
conclude that the skewness in the data generally increases the MSE of point estimators but
the interval estimators continue to have acceptable accuracy with n � 100.

2 Analysis of Body Temperature Data

In this section, we proceed along the lines of Section 6 in the main paper to analyze the body
temperature data. These data from Li and Chow [1] were collected in a study at the Noll
Physiological Research Center of the Pennsylvania State University. The variable of interest
here is the core body temperature, which is relatively una↵ected by the environmental tem-
perature under normal circumstances. The study was conducted in a chamber set at 36 �C.
Each of n = 12 study subjects repeated 3 cycles of 10-minute rest followed by 20-minute
exercise. For each subject, core body temperature (�C) was measured every minute over a
period of 90 minutes at esophagus and rectum. These locations are the two “measurements

1



Supplemental Table 1: MSEs of estimators of quantities that are free of t and average MSEs
of estimators of quantities that depend on t, computed using MPACE (marked as M) and
UPACE (marked as U) approaches, and the ratio of the MSEs (marked as U/M) in case of
four designs: (a) Ni = 50 (dense data), (b) Ni = 30 (sparse data), (c) Ni = 20 (sparse data),
and (d) unbalanced design with mean Ni = 20 (sparse data), each with (⌧ 21 , ⌧

2
2 ) = (4, 4).

(a) (b) (c) (d)
n Quantity M* U* U/M M* U* U/M M* U* U/M M* U* U/M
50 Curves 3.70 3.78 1.02 3.70 3.81 1.03 3.54 3.67 1.04 3.62 3.74 1.03

Scores 71.15 76.34 1.07 62.85 64.42 1.02 61.71 62.74 1.02 60.84 61.33 1.01
K 0.47 0.19 0.40 1.96 0.82 0.42 2.93 1.33 0.45 2.27 1.43 0.63

log(⌧ 21 ) 2.04 2.55 1.06 36.89 37.94 1.03 52.72 60.67 1.15 99.42 107.83 1.08
log(⌧ 22 ) 2.25 2.39 1.07 21.47 22.72 1.06 35.69 29.82 0.84 47.03 50.05 1.06

log(⌧ 21 /⌧
2
2 ) 4.34 4.36 1.00 29.72 28.24 0.95 101.53 94.51 0.93 61.52 54.15 0.88

z(CCC) 50.00 53.19 1.06 49.13 49.33 1.00 50.55 58.73 1.17 51.89 53.40 1.03

100 Curves 3.74 3.81 1.02 3.69 3.77 1.02 3.54 3.67 1.04 3.60 3.74 1.04
Scores 68.45 68.45 1.00 60.86 61.04 1.00 61.71 62.74 1.02 55.19 57.31 1.04
K 0.09 0.08 0.96 1.66 0.76 0.46 2.93 1.33 0.45 2.97 1.60 0.54

log(⌧ 21 ) 1.19 1.09 0.92 22.31 23.51 1.05 35.57 42.89 1.21 49.26 55.24 1.12
log(⌧ 22 ) 1.10 1.25 1.14 16.43 17.40 1.06 19.91 20.86 1.05 17.85 21.57 1.21

log(⌧ 21 /⌧
2
2 ) 2.09 2.15 1.03 17.07 16.73 0.98 42.13 39.01 0.93 23.25 21.59 0.93

z(CCC) 38.06 40.56 1.07 30.82 31.95 1.04 34.83 37.25 1.07 39.08 41.80 1.07

200 Curves 3.76 3.83 1.02 3.67 3.76 1.02 3.52 3.65 1.04 3.55 3.64 1.03
Scores 65.95 65.00 0.99 64.42 64.01 0.99 67.94 68.77 1.01 67.96 67.62 1.00
K 0.01 0.02 1.67 1.43 0.59 0.41 3.1 1.35 0.44 2.87 1.63 0.57

log(⌧ 21 ) 0.65 0.70 1.07 17.72 19.02 1.07 34.15 37.36 1.09 25.45 30.73 1.21
log(⌧ 22 ) 0.59 0.67 1.13 10.84 11.55 1.07 19.39 20.13 1.04 16.73 21.58 1.29

log(⌧ 21 /⌧
2
2 ) 1.07 1.15 1.08 11.96 11.82 0.99 25.75 24.03 0.93 14.34 14.70 1.02

z(CCC) 23.61 26.02 1.10 22.36 21.37 0.96 20.67 24.02 1.16 26.11 32.70 1.25

*For all quantities except the curves, scores, and K, the entries represent 103 ⇥MSE.
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Supplemental Table 2: Estimated coverage probabilities (in %) of 95% confidence intervals
for error variances and their ratio in case of four designs, (a) Ni = 50 (dense data), (b)
Ni = 30 (sparse data), (c) Ni = 20 (sparse data) and (d) unbalanced design with mean
Ni = 20 (sparse data), each with (⌧ 21 , ⌧

2
2 ) = (4, 4).

n  (a) (b) (c) (d)
MPACE 50 ⌧ 21 93.0 93.0 92.7 91.7

⌧ 22 93.3 92.0 93.3 92.0
⌧ 21 /⌧

2
2 94.3 94.7 93.7 93.7

100 ⌧ 21 94.3 94.3 93.0 92.3
⌧ 22 94.3 93.3 93.0 92.7

⌧ 21 /⌧
2
2 95.0 95.3 94.0 94.3

200 ⌧ 21 95.7 94.7 94.3 94.3
⌧ 22 95.0 94.7 95.0 94.0

⌧ 21 /⌧
2
2 95.0 96.0 95.7 95.7

UPACE 50 ⌧ 21 93.3 92.0 91.0 91.7
⌧ 22 93.7 92.3 92.0 91.0

⌧ 21 /⌧
2
2 94.7 93.3 93.7 93.7

100 ⌧ 21 94.0 94.0 92.7 92.0
⌧ 22 95.0 93.3 93.0 92.3

⌧ 21 /⌧
2
2 95.3 95.0 94.0 93.7

200 ⌧ 21 95.0 94.0 93.7 93.3
⌧ 22 94.0 94.3 94.7 93.3

⌧ 21 /⌧
2
2 94.0 94.3 94.7 94.7
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Supplemental Table 3: Average estimated pointwise coverage probabilities (in %) of 95%
pointwise confidence bands and estimated simultaneous coverage probabilities (in %) of 95%
simultaneous confidence bands for function that depend on t in case of four designs, (a)
Ni = 50 (dense data), (b) Ni = 30 (sparse data), (c) Ni = 20 (sparse data) and (d)
unbalanced design with mean Ni = 20 (sparse data), each with (⌧ 21 , ⌧

2
2 ) = (4, 4).

Pointwise Simultaneous
n  (t) (a) (b) (c) (d) (a) (b) (c) (d)

MPACE 50 E[Y1(t)] 94.9 94.4 93.2 93.5 92.7 92.3 91.0 91.3
E[Y2(t)] 94.1 94.4 93.0 93.9 91.3 92.3 91.0 91.0

E[Y1(t)]� E[Y2(t)] 95.3 95.4 94.3 94.3 94.0 93.3 92.7 92.0
CCC(t) 94.4 94.8 94.2 93.2 92.3 92.3 92.7 91.7

100 E[Y1(t)] 96.2 95.7 95.2 94.1 95.3 94.0 93.0 92.3
E[Y2(t)] 96.6 95.4 95.0 94.3 95.0 94.3 93.0 92.0

E[Y1(t)]� E[Y2(t)] 96.6 95.5 95.1 95.3 95.3 94.0 93.7 93.7
CCC(t) 95.1 95.5 94.3 94.5 94.3 93.7 93.0 93.3

200 E[Y1(t)] 96.8 96.9 96.4 96.7 95.0 95.3 94.7 94.7
E[Y2(t)] 96.8 97.4 95.4 95.9 95.3 95.3 94.0 94.0

E[Y1(t)]� E[Y2(t)] 96.9 97.1 96.1 95.4 95.3 95.3 94.0 94.3
CCC(t) 96.7 96.1 95.7 95.0 95.3 94.3 93.7 94.0

UPACE 50 E[Y1(t)] 94.9 94.4 93.2 93.5 93.0 92.3 91.3 91.3
E[Y2(t)] 94.1 94.4 93.0 93.9 91.3 92.7 91.0 91.0

E[Y1(t)]� E[Y2(t)] 95.3 95.4 94.3 94.3 93.7 92.3 92.7 92.0
CCC(t) 94.0 94.5 95.1 94.9 92.0 92.0 93.0 92.3

100 E[Y1(t)] 96.2 95.7 95.2 94.1 95.3 93.7 93.0 92.3
E[Y2(t)] 96.6 95.4 95.0 94.3 95.0 94.3 93.0 92.0

E[Y1(t)]� E[Y2(t)] 96.6 95.5 95.1 95.1 95.7 94.0 93.7 94.0
CCC(t) 94.6 94.7 94.5 94.2 93.7 93.7 93.0 93.3

200 E[Y1(t)] 96.8 96.9 96.4 96.7 95.3 95.0 94.7 94.7
E[Y2(t)] 96.8 96.8 95.4 95.9 95.3 94.7 94.7 94.0

E[Y1(t)]� E[Y2(t)] 96.8 97.1 96.1 95.4 95.3 95.3 94.0 94.3
CCC(t) 95.6 95.0 94.4 94.5 94.3 93.7 92.7 93.0
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methods,” and they are called “Tes” and “Tre,” respectively. These are dense functional
data. It is known that Tre has a slower response time than Tes to body temperature changes
during short durations. Our interest is in evaluating agreement between the two methods.
See Li and Chow [1] for further details of the study.

Supplemental Figure 1 displays the observed curves separately for each method. Also
superimposed on the curves are their smoothed mean functions. The body temperature
is expected to increase during the exercise periods and decrease during the rest periods.
Although this e↵ect can be seen in the curves for both methods, the e↵ect is less prominent
for Tre because of its slower response time than Tes. The two mean functions clearly appear
di↵erent. Supplemental Figure 2 presents scatterplots of the data together with the line
of equality at t = 10, 30, 40, 60, 70, 90 minutes. These times correspond to the end of the
rest and exercise periods in the three cycles. The measurements range between 36.5 and
38.5. The curves for both measurement methods show a general upward trend. There is
periodicity in the curves due to the three cycles of rest and exercise periods. The periodicity
is more prominent for Tes curves than Tre curves. The Tre measurements are almost always
a bit higher than the corresponding Tes measurements. The methods appear moderately
correlated at these times, with sample correlations ranging between 0.75 and 0.93. The
agreement between the methods is less than perfect because in that case all points in the
scatterplot would fall on the line of equality. On the whole, there is a small but persistent
di↵erence in the measurement methods.

Next, we fit the model given by equation (9) in the main paper using both MPACE
and UPACE approaches. As before, the smoothing is performed using gam function in
mgcv package of R with default settings. The two smoothed mean functions are displayed
in Supplemental Figure 3. Both functions have overall increasing trends—the Tes mean
increases from 37.2 at t = 1 to 37.7 at t = 90, and the Tre mean increases from 37.4 to 38.0
over the same period. The Tre mean lies above the Tes mean throughout. The two functions
also appear di↵erent. The Tes mean exhibits a marked cyclical behavior that more or less
coincides with the cycles of rest and exercise periods in the experiment. In particular, in
each cycle, the Tes mean tends to decrease during the rest period and increase during the
exercise period. Although the times of troughs and peaks do not correspond exactly to the
end of rest and exercise periods, their discrepancy is small. In contrast, the cyclical behavior
of the Tre mean function is less apparent. It tends to increase during the exercise period but
it does not decrease as much as the Tes mean during the rest period. This di↵erence in the
means may be explained by the slower response time of Tre than Tes to body temperature
changes during short durations.

The next step in model fitting is to perform an FPCA of these data. The respective
estimates of the number of FPC needed to explain at least 99% of variability in the observed
curves, eigenvalues, and error variances computed using MPACE are:

K̂ = 6, (�̂1, �̂2, �̂3, �̂4, �̂5, �̂6) = (14.29, 1.15, 0.60, 0.22, 0.11, 0.07), (⌧̂ 21 , ⌧̂
2
2 ) = (6.3, 1.4)⇥ 10�3.

The same estimates using UPACE are:

K̂ = 5, (�̂1, �̂2, �̂3, �̂4, �̂5) = (14.28, 1.13, 0.59, 0.20, 0.10), (⌧̂ 21 , ⌧̂
2
2 ) = (6.5, 1.4)⇥ 10�3.
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Supplemental Figure 1: The observed individual core body temperature curves (in grey)
for the two methods superimposed with estimated mean functions (in black). The vertical
broken lines at t = 10, 40, 70 mark the beginning of the 20-minute exercise period within
each cycle, and those at t = 30, 60, 90 mark its end. A 10-minute rest period precedes each
exercise period.
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Supplemental Figure 2: Scatterplots of body temperatures from two methods at t =
10, 30, 40, 60, 70, 90 minutes. These time points mark the end of the 10-minute rest period
and the 20-minute exercise period for each of the 3 cycles.
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Supplemental Figure 3: The estimated mean, standard deviation, correlation, and mean
di↵erence functions for Tre and Tes methods. The bottom right panel also shows a 95%
simultaneous confidence band for the mean di↵erence function.
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Compared to MPACE, UPACE selects one fewer FPC and its eigenvalues are slightly smaller.
On the whole, however, the two sets of estimates are quite similar. Supplemental Figure 4
presents the estimated eigenfunctions for Tes and Tre temperatures (�̂kj, k = 1, . . . , K̂,
j = 1, 2) using the two approaches. The two sets of first five eigenfunctions are similar
(ignoring the sign flip for the first component). The eigenfunctions for both temperatures
exhibit trend and cyclical behavior. To try to gain further insights, let us focus on UPACE
eigenfunctions and examine their behavior.

Beginning with Tes, we see that �̂11 does not have a prominent trend, whereas the others
have increasing trends. Likewise, �̂31 does not have a prominent cyclical behavior, whereas
the others do. Both �̂11 and �̂21 peak near the middle of the exercise periods and trough near
the end of the rest periods. The times of peaks and troughs for �̂41 are swapped with those
�̂11 and �̂21, i.e., �̂41 peaks near the end of the rest periods and troughs near the middle of
exercise periods. The function �̂51 peaks the near the middle of the rest periods and troughs
near the middle of the exercise periods, and appears to provide a contrast between the two
periods. In case of Tre, �̂12 has a slight decreasing trend but no prominent cyclical behavior.
However, all others exhibit both trend and cyclical behavior. Specifically, �̂22 increases up
to the end of the second exercise period, decreases in the following rest period, and increases
again in the third exercise period. On the other hand, �̂32 decreases up to the end of the
first exercise period and then starts exhibiting a cyclical behavior like �̂41, i.e., it peaks near
the end of the rest periods and troughs near the middle of the exercise periods. The function
�̂42 behaves like �̂41 from the beginning; and �̂52 is almost like a mirror image of �̂42. The
initial trends in �̂32 and �̂42 may be manifestations of the slow response time of Tre to body
temperature changes during short durations.

Supplemental Figure 3 also presents the estimates of standard deviation functions �j(t)
and correlation function ⇢(t), given by equation (6) in the main paper.Unsurprisingly, both
MPACE and UPACE lead to similar estimates. These functions also exhibit periodicity.
Essentially, the standard deviation functions of Tes and Tre tend to decrease during the rest
periods and increase during the exercise periods. They also cross. There is a downward trend
in the function for Tre, which is absent for Tes. The correlation function ranges between 0.68
and 0.95. It tends to trough during the rest periods and peak during the exercise periods.
Its values match up well with the raw sample correlations shown in Supplemental Figure 2.

Now, we consider evaluation of similarity. Supplemental Figure 3 presents the estimate
and a two-sided 95% simultaneous confidence band for the mean di↵erence function �(t).
These and other interval estimates reported here use Q = 500 bootstrap repetitions. The
estimated mean di↵erence function (Tes � Tre) is negative throughout T . The entire con-
fidence band lies below zero. The mean di↵erence function does not have any trend but
it varies around �0.25 in a cyclical manner. It tends to decrease during the rest periods
and increase during the exercise periods. In absolute value terms, this means that the mean
di↵erence tends to increase during the rest periods and decrease during the exercise periods.
This cyclical pattern is similar to that of the correlation function. The estimate for precision
ratio ⌧ 21 /⌧

2
2 using MPACE is 4.5 and its 95% confidence interval is (2.2, 9.0). These quanti-

ties are estimated as 4.6 and (2.3, 9.7), respectively, using UPACE. Although the confidence
intervals are somewhat wide, there is indication that Tre is more precise than Tes. These
findings indicate that, because of the di↵erence in their mean functions and precisions, the
two methods cannot be regarded as similar.
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Supplemental Figure 4: Estimated eigenfunctions for Tes (left panel) and Tre (right panel)
temperatures using MPACE (top panel) and UPACE (bottom panel) approaches.
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Supplemental Figure 5: Estimate of TDI function with p0 = 0.90 and its 95% simultaneous
upper confidence band (left) and estimate of CCC function and its 95% simultaneous lower
confidence band (right) using MPACE and UPACE approaches.

Next, we consider evaluation of agreement. The probability for TDI is taken as p0 = 0.90.
Supplemental Figure 5 presents estimates and 95% one-sided simultaneous confidence bands
for CCC and TDI. Lower bands for CCC and upper bands for TDI are presented. Both
MPACE and UPACE lead to similar results. The estimates of both CCC and TDI functions
as well as their confidence bands continue to exhibit the familiar cyclical pattern. On the
basis of both CCC and TDI, we see that the extent of agreement between the methods tends
to decrease during the rest periods and increase during the exercise periods. This cyclical
pattern is similar to the one observed for the mean di↵erence and correlation functions. The
CCC ranges between 0.28 and 0.87 and its lower band ranges between 0 and 0.76. Thus, even
during the exercise periods, the CCC represents a rather weak amount of agreement between
the methods. This finding is consistent with the conclusion of Li and Chow [1]. The TDI
estimate ranges between 0.29 and 0.65 and its upper band ranges between 0.36 and 0.92. The
largest upper bound of 0.95 implies that 90% of di↵erences between Tes and Tre methods
is within ±0.95. Thus, if a di↵erence of up to ±0.95�C is acceptable for the application at
hand, the methods may be considered to agree su�ciently well for interchangeable use in
that application, but not otherwise. It is also clear from the similarity evaluation that one
reason why the methods do not agree well is that their mean functions di↵er.
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