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Abstract

Often the object of inference in biomedical applications is a range that brackets

a given fraction of individual observations in a population. A classical estimate of

this range for univariate measurements is a ‘tolerance interval.’ This article develops

its natural extension for functional measurements, a ‘tolerance band,’ and proposes

a methodology for constructing its pointwise and simultaneous versions that incorpo-

rates both sparse and dense functional data. Assuming that the measurements are

observed with noise, the methodology uses functional principal component analysis

in a mixed model framework to represent the measurements and employs bootstrap-

ping to approximate the tolerance factors needed for the bands. The proposed bands

also account for uncertainty in the principal components decomposition. Simulations

show that the methodology has generally acceptable performance unless the data are

quite sparse and unbalanced, in which case the bands may be somewhat liberal. The

methodology is illustrated using two real datasets, a sparse dataset involving CD4 cell

counts and a dense dataset involving core body temperatures.
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1 Introduction

Tolerance intervals for univariate data estimate a range containing a given fraction p of in-

dividual observations of a population. The p is usually large in practice, with 0.90 and 0.95

as the most common values. The intervals may be one- or two-sided. They are distinct from

confidence intervals that provide interval estimates of parameters of a population, and pre-

diction intervals that capture single future observations from a population (Vardeman, 1992).

A recent account of theory and methodology of tolerance intervals can be found in Krish-

namoorthy and Mathew (2009). The tolerance package of Young (2010) for the statistical

software R (R Core Team, 2014) can be used to compute many of the intervals described

therein. Although tolerance intervals are well-known for their application in manufacturing

(Montgomery, 2012), they also have a variety of applications in biomedical settings.

In particular, they are used as estimates of a 100p% reference interval, defined as the range

between the 100(1−p)/2 and 100(1+p)/2 percentiles of a random variable. Reference inter-

vals are widely used in clinical chemistry, toxicology and medicine to identify unusual values

warranting additional investigation (Harris and Boyd, 1995; Wright and Royston, 1999).

Pediatricians use reference intervals for height and weight plotted over age to track a child’s

development. Katki, Engels and Rosenberg (2005) use trends in reference intervals for viral

load and CD4 counts to compare disease progression in populations affected by the Human

Immunodeficiency Virus (HIV). Tolerance intervals are also used for establishing reference

thresholds for pollutants in environmental monitoring (Smith, 2002); assessment of individual

bioequivalence of drug formulations (Brown, Iyer and Wang, 1997); evaluation of agreement

in clinical measurement methods (Choudhary, 2008; Carrasco et al., 2014); estimation of

shelf life of pharmaceutical products (Komka, Kemeny and Banfai, 2010); and examining

occupational exposure levels (Krishnamoorthy, Mathew and Ramachandran, 2007).

Functional data are increasingly common in biomedical disciplines (Sorensen, Goldsmith,
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and Sangalli, 2013). They consist of repeated measurements on each subject taken over

“time,” which is usually a calendar time but may also be some other index such as a spatial

location. The measurements on a subject are assumed to be values of an underlying smooth

random function that is observed, possibly with noise, at discrete time points. The data

on a subject are treated as one observed curve (or function) rather than a sequence of

individual measurements. Thus, the functional data essentially consist of one observed curve

per subject. The curves for different subjects are assumed to be independent. The data are

generally classified as either “sparse” or “dense.” Sparse data result when the measurements

are recorded at only a few irregularly spaced time points that may vary from subject to

subject. The traditional longitudinal data are an example of sparse data. Dense data result

when the measurements are recorded on a fine grid of regularly spaced time points that

normally does not vary with subjects. Such data are usually recorded by a machine under

controlled conditions, e.g., in a laboratory.

The typical aims of an analysis of functional data are often the same as those of univariate

data; and developing theoretical and methodological tools for accomplishing those aims is

currently an active area of statistical research. Sorensen et al. (2013) provide an overview

of these tools with medical applications. See the books by Ramsay and Silverman (2005)

and Horvath and Kokoszka (2012) for more comprehensive accounts. Indeed, many standard

statistical procedures for univariate data already have their functional analogs. However, to

our knowledge, the analogs of tolerance intervals for functional data — the tolerance bands

— have not been developed yet. The goal of this article is to develop the notion of functional

tolerance bands and present a statistical methodology for constructing them. These bands

can be used much in the same way as the univariate tolerance intervals. For example, by

providing an estimate of a region that contains a specified large fraction of curves from the

sampled population, it can be used as a reference band for identifying subjects with unusual

profiles. Although a functional boxplot (Sun and Genton, 2011) can also potentially identify
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such subjects, it is primarily a tool for data visualization and is based on descriptive statistics.

It does not incorporate uncertainty in estimation, which is incorporated in a tolerance band

through a confidence guarantee (see Section 3).

Of course, a tolerance band may be constructed by disregarding the functional nature of

the data, and constructing a univariate tolerance interval separately for each time of interest,

using only the data at that time. But doing so ignores the within-subject dependence as

well as the inherent smoothness in the data, violating the spirit of functional data analysis.

Besides, it may not work for sparse data because the number of measurements at a given

time point may be too few to produce a reliable interval. The proposed methodology uses

all the data together to produce tolerance bands, and works for both sparse and dense data.

Our approach for functional tolerance band construction involves first writing a subject’s

observed curve as an unobservable true smooth curve that is assumed to follow a Gaussian

process plus an independent normally distributed measurement error. Then, we consider

a functional principal components (FPC) decomposition of the data within a mixed model

framework. This decomposition represents a subject’s true curve as a linear combination

of a small number of basis functions that are common to all subjects but have subject-

specific scores, allowing a parsimonious description of the data. Besides, the mixed model

framework lets the principal component scores be conveniently estimated as best linear

unbiased predictors (BLUPs) of certain random effects.

We specifically use the framework of Yao, Müller and Wang (2005) for the FPC analysis.

Herein the individual curves are represented directly through the Karhunen-Loève expansion

with eigenfunctions obtained from the selected FPC decomposition of the data. Alternative

frameworks include those of Shi, Weiss and Taylor (1996), Rice and Wu (2001), and James,

Hastie and Sugar (2000) wherein the individual curves are modeled through B-splines. These

articles also develop prediction bands for individual curves conditional on the selected FPC

decomposition. But this decomposition is itself subject to uncertainty because it is based
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on estimated covariance structure of the data. Goldsmith, Greven and Crainiceanu (2013)

suggest taking this additional variability into account because it can be substantial when

the number of subjects is small and the data are sparse. They propose a bootstrap method

for doing so within the Yao et al. framework.

After the FPC analysis, we combine the estimated mean and the variance functions of

the population with tolerance factors estimated by bootstrap to construct pointwise and

simultaneous tolerance bands. Both one- and two-sided bands are considered. These bands

also take into account of the uncertainty due to the FPC decomposition. This work differs

from Sharma and Mathew (2012), who also construct tolerance intervals under a mixed model

framework, but their concern is univariate data, not functional data. Below we introduce

two motivating examples.

CD4 count data: This is a classical CD4 cell count dataset from Kaslow et al. (1987).

The counts of CD4 cells in blood are a marker of progression of Acquired Immune Deficiency

Syndrome because the cells are destroyed by the HIV. The data consist of cell counts collected

over a period of about four years with roughly semi-annual visits of 366 subjects infected

with HIV. The time here represents the number of months since seroconversion, i.e., the

time when HIV becomes detectable. These data are sparse as the number of observation

times on a subject varies from 1 to 11, with an average of 5.16. The data have a total of

61 distinct observation times and a total of 1888 observations. These and related data have

been analyzed in a number of publications as longitudinal data as well as sparse functional

data, including Yao et al. (2005) and Goldsmith et al. (2013). Our interest is in constructing

a two-sided tolerance band for the population CD4 curve. Figure 1 shows pointwise and

simultaneous versions of this band superimposed on a plot of the observed individual curves.

The underlying details of the estimation procedure and the interpretation of results are

postponed to Section 5. Here we just note that the bands mark a region that is estimated

to contain 90% of individual CD4 curves in the sampled population with 95% confidence.
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Core body temperature data: The core body temperature refers to the temperature of

the tissues deep within the body. This dataset from Li and Chow (2005) consists of core

body temperatures — as measured by esophageal temperatures (in ◦C) — of 12 subjects

recorded every minute over a period of 90 minutes. These are dense functional data with a

total of 12×90 =1,080 observations. They were collected in a study at the Noll Physiological

Research center of the Pennsylvania State University. The experiment was conducted in a

chamber set at 36◦C and 50% humidity. During the experiment, each subject sat quietly for

10 minutes, then exercised on a treadmill for 20 minutes, and this cycle was repeated three

times. Li and Chow (2005) provide further details of the experiment. Just like Figure 1,

Figure 2 shows two-sided pointwise and simultaneous tolerance bands that delineate a region

which is estimated contain 90% of individual temperature curves with 95% confidence in the

sampled population. See Section 5 for further details of the estimation procedure and the

interpretation of results.

The rest of this article is organized as follows. Section 2 explains the mixed model frame-

work used for the FPC analysis. Section 3 describes our methods for constructing tolerance

bands based on the FPC decomposition. Section 4 presents the results of a simulation study

to evaluate the proposed methods. The methods are illustrated in Section 5 using the CD4

and the temperature data. Section 6 concludes with a discussion. All the computations

herein have been performed using the statistical software R (R Core Team, 2014).

2 FPC analysis based on a mixed model

2.1 The data model

Let the random function X(t), t ∈ T denote the true but unobservable smooth curve for a

randomly selected subject from the population. The domain T is a closed, bounded interval

on R. It is assumed that X(t) follows a Gaussian process with mean function µ(t) and
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covariance function G(s, t). The true curve is observed with error as Y (t), where

Y (t) = X(t) + ε(t), t ∈ T . (1)

The random error ε(t) follows an independent N1(0, τ
2) distribution for each t, mutually

independent of the true values. The assumptions imply that Y (t) follows a Gaussian process

with mean function µ(t), variance function σ2(t) = G(t, t) + τ 2, and covariance function

G(s, t) + τ 2I(s = t), with I denoting the indicator function. A spectral decomposition of the

covariance function of X(t) is G(s, t) =
∑∞

k=1 λkφk(s)φk(t), where φ1, φ2, . . . are orthonormal

eigenfunctions and λ1 ≥ λ2 ≥ . . . are the corresponding non-increasing eigenvalues. This

decomposition gives a Karhunen-Loève expansion of X(t) as

X(t) = µ(t) +
∞∑
k=1

ξkφk(t), t ∈ T , (2)

where ξk =
∫
T {X(t)−µ(t)}φk(t)dt are independent N1(0, λk) random variables. See Castro,

Lawton and Sylvestre (1986), Rice and Silverman (1991), and Staniswalis and Lee (1998) for

some early developments and applications in the functional data analysis literature involving

this expansion, with or without the normality assumption.

The observed data consists of n curves, namely, Y1(t), . . . , Yn(t), t ∈ T — one from

each subject in the study. The ith curve is observed at Ni discrete time points tij, j =

1, . . . , Ni. The set of these time points is assumed to be dense in T . Let Xi(t) denote

the true unobservable curve underlying the ith curve and εi(t) denote the associated random

error. The random functions Yi(t), Xi(t) and εi(t) are respectively assumed to be independent

copies of Y (t), X(t) and ε(t) defined in (1). Thus, from (1) and (2), the model assumed for

the observed data can be written as

Yi(tij) = µ(tij) +
∞∑
k=1

ξikφk(tij) + εi(tij), j = 1, . . . , Ni, i = 1, . . . , n, (3)

where the coefficients ξik are independent copies of ξk defined in (2). In this formulation,

the true curve for a subject is written as an infinite linear combination of basis functions
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that are common to all subjects but have subject-specific coefficients. The eigenfunctions

φk serve as the basis functions. The coefficients ξik are called scores, and the eigenvalues λk

are called score variances.

2.2 Parameter estimation and FPC analysis

An FPC analysis within a mixed model framework is essentially a dimension reduction

device that allows approximating the true model (3) by truncating the infinite sum therein

to K terms and comes equipped with a prescription for estimating the unknowns in the

model. Here K is the number of FPC to be selected. For notational convenience, let

φ = (φ1, . . . , φK)′ be the K × 1 vector of FPC basis functions, ξi = (ξi1, . . . , ξiK)′ be the

K×1 vector of FPC scores for the ith subject, and Λ be a K×K diagonal matrix with score

variances λ1, . . . , λK on the diagonal. Following Yao et al. (2005), the truncated model (3)

is a mixed model,

Yi(tij) ≈ µ(tij) +
K∑
k=1

ξikφk(tij) + εi(tij), j = 1, . . . , Ni, i = 1, . . . , n, (4)

where the score vectors ξi follow independent NK(0,Λ) distributions and the errors follow

independent N1(0, τ
2), mutually independent of the scores. This approximate model is used

for all subsequent inference based on the data.

Let θ = {µ,K,Λ,φ, τ 2} be the collection of the unknown components of the model (4).

The dependency of µ and φ functions on t ∈ T is suppressed in the notation θ. Estimating

it to get θ̂ = {µ̂, K̂, Λ̂, φ̂, τ̂ 2} involves obtaining smoothed estimates of mean and covariance

functions and using them to perform an FPC decomposition. A variety of strategies can be

used for this purpose without affecting our underlying methodology for the construction of

tolerance bands. Although we specifically use the 6-step approach of Goldsmith et al. (2013),

described in Web Appendix A, due to its ease of implementation via the refund package

(Crainiceanu et al., 2011) in R, but other alternatives, including the principal components
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analysis through conditional expectation (PACE) approach of Yao et al. (2005), can also be

used. Once θ̂ is available, the score vector ξi is estimated using its estimated BLUP ξ̂i (Yao et

al., 2005; see also Web Appendix A). Besides, we also have the estimated mean function µ̂(t),

covariance function Ĝ(s, t) =
∑K̂

k=1 λ̂kφ̂k(s)φ̂k(t), and variance function σ̂2(t) = Ĝ(t, t) + τ̂ 2,

s, t ∈ T . It may be noted that µ̂(t) is obtained prior to the FPC decomposition but σ̂2(t)

depends on the decomposition.

3 Functional tolerance bands

3.1 Definition for univariate data

Consider a scalar random variable Y following a continuous probability distribution that

is parameterized in terms of an unknown parameter vector θ. Let F be the cumulative

distribution function (cdf) of Y . Suppose we have a random sample Y1, . . . , Yn from the

population represented by Y . Let L and U respectively denote lower and upper limits

computed from the sample data. Also, let Cθ = F (U)−F (L) denote the probability content

of the interval (L,U). It represents the fraction of observations of the population contained

in (L,U). Obviously, it is a function of data as well as θ and has a sampling distribution.

Let 1−α be a specified confidence level, and as before, p be a specified fraction. The interval

(L,U) is a (p, 1− α) tolerance interval if

Pθ(Cθ ≥ p) = 1− α. (5)

That is, a tolerance interval contains at least 100p% of individual observations of a population

with 100(1− α)% confidence.

The notation allows the tolerance interval to be one- or two-sided. If either L = −∞ or

U = ∞, the interval is one-sided, otherwise it is two-sided. When L = −∞, the interval

becomes (−∞, U). The upper limit U is called a (p, 1 − α) upper tolerance bound. In this
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case, the probability content Cθ = F (U). Because {F (U) ≥ p} = {U ≥ F−1(p)} due to

the distribution being continuous, we have from (5) that P (U ≥ F−1(p)) = 1 − α. Thus,

U also represents a 100(1 − α)% upper confidence bound for the 100pth percentile of the

distribution of Y . Likewise, a (p, 1 − α) lower tolerance bound L is a 100(1 − α)% lower

confidence bound for the 100(1− p)th percentile of the distribution of Y .

When Y ∼ N1(µ, σ
2) with both parameters unknown, the tolerance limits are of the form

L = Y − qαS, U = Y + qαS, (6)

where Y is the sample mean and S2 is the sample variance (with divisor n− 1) of the data,

and the tolerance factor qα = qα(n, p) is computed so that the probability statement in (5)

holds. Let tα,ν(δ) and χ2
ν,α(δ) respectively denote the 100αth percentiles of a noncentral t-

and χ2-distributions both with ν degrees of freedom and noncentrality parameter δ. Also,

let zα denote the 100αth percentile of a N1(0, 1) distribution. Then, the tolerance factor for

one-sided intervals (Krishnamoorthy and Mathew, 2009) is

qα =
t1−α,n−1(

√
n zp)√

n
. (7)

The tolerance factor for two-sided intervals is not available in a closed form. But it can be

computed either directly via numerical integration or via an approximation, including

qα ≈

√
(n− 1)χ2

p,1(1/n)

χ2
α,n−1(0)

, (8)

which is considered remarkably accurate even for small sample sizes (Krishnamoorthy and

Mathew, 2009). The tolerance package (Young, 2010) in R currently implements these two

as well as five other methods for computing the factor, many of which are reviewed in the

Krishnamoorthy and Mathew book.

10



3.2 Definition for functional data

We now return to the functional data setup of Section 2. To define a functional tolerance

band, first we need time-dependent analogs of certain quantities involved in the definition of

univariate intervals. For t ∈ T , let Ft be the cdf of Y (t); L(t) and U(t) be the tolerance limits

computed from the sample data; and Cθ(t) = Ft{U(t)}−Ft{L(t)} be the probability content

of the interval (L(t), U(t)). A tolerance band can be pointwise or simultaneous depending

upon the confidence guarantee sought. From a natural extension of (5), the sequence of

intervals (L(t), U(t)), t ∈ T is a pointwise (p, 1− α) tolerance band if

Pθ(Cθ(t) ≥ p) = 1− α, t ∈ T , (9)

and is a simultaneous (p, 1− α) tolerance band if

Pθ

(
inf
t∈T

Cθ(t) ≥ p
)

= 1− α. (10)

The pointwise band essentially joins together univariate tolerance intervals for each time. It

does not guarantee containing entire individual curves. On the other hand, the simultaneous

band is designed to contain at least 100p% of entire individual curves in the population with

100(1− α)% confidence.

A tolerance band can also be one- or two-sided. In particular, an upper tolerance band

U(t) is obtained by setting L(t) = −∞ for all t ∈ T . As in the univariate case, U(t) can be

interpreted as an upper confidence band for the 100pth percentile of Y (t). Similarly, a lower

tolerance band L(t) is obtained by setting U(t) = ∞ for all t ∈ T , and can be interpreted

as a lower confidence band for the 100(1− p)th percentile of Y (t). The confidence bands are

pointwise or simultaneous depending upon the nature of the associated tolerance bands.

The assumptions for the true model (3) imply that Y (t) ∼ N1

(
µ(t), σ2(t)

)
, t ∈ T .

From (6), this normality suggests that the functional tolerance limits can be of the form

L(t) = µ̂(t)− qασ̂(t), U(t) = µ̂(t) + qασ̂(t), t ∈ T , (11)
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where µ̂(t) and σ̂2(t) are respectively the estimated mean and variance functions from the

FPC analysis in Section 2, and qα is a tolerance factor that ensures that the probability

statements in (9) or (10) hold. The probability content of (L(t), U(t)) can be written as

Cθ(t, qα) = Φ
[
{µ̂(t) + qασ̂(t)− µ(t)}/σ(t)

]
− Φ

[
{µ̂(t)− qασ̂(t)− µ(t)}/σ(t)

]
, (12)

where Φ is the cdf of a N1(0, 1) distribution. The notation for the content now includes qα

as an argument to make its dependence on the tolerance factor explicit.

The tolerance factor for the univariate interval will obviously not work for the simulta-

neous band, but one may naively use it for the pointwise band. However, doing so produces

a generally inaccurate band (see Section 4) because the sampling distribution of the proba-

bility content in (12) for a given t is not the same as in the univariate case. In fact, due to

the complexity of the parameter estimation procedure for functional data, it is difficult to

get a handle on this distribution analytically. Therefore, we resort to a bootstrap procedure

to compute tolerance factors for both pointwise and simultaneous bands.

3.3 The proposed procedure

The strategy for computing the tolerance factor in the functional limits (11) involves first

replacing qα therein by a value q and considering the limits as functions of q. This in turn

makes the probability content in (12) and hence the probabilities on the left in (9) and (10)

functions of q. Then, we estimate these probabilities by bootstrap with a large number of

repetitions B. The specific algorithm is as follows:

1. In the bth repetition of bootstrap, n subject indices are sampled with replacement

from the integers 1, . . . , n. The observed curves for the sampled indices are taken as a

resample of the original data. Next, we proceed as in Section 2 to estimate (θ, µ, σ2)

from the resampled data as (θ̂b, µ̂b, σ̂
2
b ) through an FPC analysis. The estimated func-

tions µ̂b(t) and σ̂2
b (t) are then evaluated for t over a reasonably fine grid in T , which
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can be taken as the union set of the observed time points or a subset thereof.

2. For a fixed q, we compute the bootstrap counterpart Cb,θ̂(t, q) of Cθ(t, q) given in (12)

by replacing (µ̂, σ̂2, µ, σ2) in it with (µ̂b, σ̂
2
b , µ̂, σ̂

2) over the grid in step 1 for b = 1, . . . , B.

Thereupon, the probability on the left in (9) can be estimated as

P̂1(t, q) =
1

B

B∑
b=1

I
(
Cb,θ̂(t, q) ≥ p

)
, t ∈ T .

Similarly, the probability on the left in (10) can be estimated as

P̂2(q) =
1

B

B∑
b=1

I
(

inf
t∈T

Cb,θ̂(t, q) ≥ p
)
.

In the next step, we essentially need to set these estimated probabilities equal to 1− α and

solve for q. However, the probabilities are not continuous in q. An alternative motivated by

the way percentiles of a discrete probability distribution are defined is to find the smallest q

such that P̂1(t, q) ≥ 1−α and take it as the approximate qα that satisfies (9) for the pointwise

band. Likewise, the smallest q such that P̂2(q) ≥ 1− α is taken as the approximate qα that

satisfies (10) for the simultaneous band. The tolerance factor approximated this way for

the pointwise band depends on t and has to be computed separately for each t on the grid.

This paradoxically makes obtaining the pointwise band somewhat more computationally

demanding than the simultaneous band. Also since P̂2(q) ≤ P̂1(t, q) for all t ∈ T , the

tolerance factor for the pointwise band cannot exceed that of the simultaneous band, thereby

ensuring that the pointwise band is contained within the simultaneous band.

The following features of this procedure are noteworthy. First, the bootstrap resampling

is done just once and the results are saved for computing P̂1(t, q) and P̂2(q) as functions

of q. Second, a separate FPC analysis is performed for each bootstrap resample of the

original sample. Thus, the tolerance factor calculation also accounts for variability due to

the FPC decomposition in addition to the sampling variability of the estimates. Third, the

simultaneous band is smooth because µ̂(t) and σ̂(t) are smooth functions and the tolerance
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factor is a constant. However, the same is not true for the pointwise band because its

tolerance factor is computed separately for each t, albeit using the same data.

3.4 Tolerance bands for the true curve

The tolerance bands described thus far are for the observed curve Y (t), t ∈ T . As in the

univariate case (Krishnamoorthy and Mathew, 2009), the bands may also be desired for the

true curve X(t), t ∈ T . They can be defined and constructed in exactly the same manner as

the observed curve by simply replacing the variance function σ2(t) of Y (t) and its estimate

σ̂2(t) with the variance function G(t, t) of X(t) and its estimate Ĝ(t, t).

4 A simulation study

Our task in this section is to evaluate performance of the proposed tolerance band proce-

dure for dense and sparse data situations. Of specific interest is examining how closely the

procedure satisfies the defining confidence statements (9) and (10). The bands for both ob-

served and true curves are considered. We proceed along the lines of Goldsmith et al. (2013)

to simulate data from the true model (3) by taking the domain as T = [0, 1]; the mean

function as µ(t) = t
4
; the eigenvalues as λk = 0.75k−1 for k ≤ 4 and zero for k > 4, thus

effectively truncating the infinite sum in (3) to four terms; and the corresponding four eigen-

functions as the orthonormal shifted Legendre polynomials, φ1(t) = 1, φ2(t) =
√

3(2t − 1),

φ3(t) =
√

5(6t2 − 6t+ 1) and φ4 =
√

7(20t3 − 30t2 + 12t− 1). The actual observation times

are selected as points on the grid tgrid = {(u− 0.5)/50, u = 1, . . . , 50}. In the dense case, a

balanced design with Ni = 50 observations per subject is considered. The observation times

are points on tgrid. In the sparse case, three scenarios with progressively higher sparsity are

considered. Two are balanced designs with Ni = 30 and 20, and the third is an unbalanced

design with Ni following a Poisson distribution with mean 15. The observation times in all
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these scenarios are drawn from a uniform distribution on tgrid separately for each subject.

We also choose three values for the error variance, τ 2 ∈ {0.0025, 0.01, 0.25}; and four values

for the number of subjects, n ∈ {20, 50, 100, 200}. Thus, we consider a total of 48 designs.

For each design, we simulate a dataset, estimate the mean and variance functions as

described in Section 2, and follow Section 3 to construct both pointwise and simultaneous

versions of an upper tolerance band and a two-sided tolerance band initially with (p, 1−α) =

(0.90, 0.95). The bands are constructed over tgrid and the tolerance factors therein are

computed using B = 200 bootstrap resamples. For comparison, we also construct “naive”

bands that too have the form (11) but use the univariate tolerance factors (7) and (8) in

the pointwise case. In the simultaneous case, the naive bands use Bonferroni-type tolerance

factors obtained by replacing α in (7) and (8) with α/L, where L = 50 is the number of points

on tgrid. After a band is obtained, we compute its true probability content for each t ∈ tgrid

assuming the true underlying distribution. This distribution is N1

(
µ(t), σ2(t) = G(t, t)+ τ 2

)
for the observed curve Y (t) and N1

(
µ(t), G(t, t)

)
for the true curve X(t), where G(t, t) =∑4

k=1 λkφ
2
k(t). The entire process from simulating data to computing probability contents

is repeated 500 times. Thereupon, for a pointwise band, we compute for each t ∈ tgrid the

proportion of times its content at that t exceeds p. For a simultaneous band, we compute

the proportion of times its smallest content over tgrid exceeds p. These proportions estimate

the respective probabilities of correct content in (9) and (10), and can be compared with the

nominal confidence level of 0.95 to judge a method’s accuracy. The standard errors of these

estimates are about 0.01. The proportions for a pointwise band are averaged over tgrid to

get a single measure of accuracy. Tables 1 and 2 respectively present these estimates for the

observed and the true curves.

We see that the results for the two curves are very similar, and the value of τ 2 does not

seem to have much impact on them. The results, however, depend on whether the data are

dense or sparse and whether the band is pointwise or simultaneous. Let us first consider
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the dense data scenarios. The proportions herein for both naive and bootstrap methods are

close to 0.95 for pointwise bands, implying that both methods are equally accurate. But the

same cannot be said for simultaneous bands. In this case, the naive method’s performance

is especially poor, with proportions hovering around 0.99, whereas the bootstrap method

works quite well, with proportions close to 0.95 in almost all situations. Next, we consider

sparse data scenarios. Herein the naive method’s performance may be considered acceptable

for both pointwise and simultaneous bands when the data are least sparse, but the method

becomes unacceptably liberal, with proportions falling well below 0.95, as the sparsity level

increases. Even the bootstrap method’s accuracy decreases with increasing sparsity and the

method becomes slightly liberal, with proportions mostly falling between 0.91-0.92 in the

worst case. This accuracy is generally higher for simultaneous bands than pointwise bands.

In case of the latter, an examination of the individual proportions on tgrid — whose averages

are reported in Tables 1 and 2 — shows that the proportions are in fact close to 0.95 at all

but a few values of t near the edges of the grid. It is also apparent from the tables that the

accuracy is generally higher for one-sided bands than two-sided bands. Increasing n tends

to increase the accuracy as expected, although the case of two-sided bands with unbalanced

sparse data is an exception where the impact of n is less clear.

These conclusions remain qualitatively the same when the entire simulation study is

repeated with three more combinations of (p, 1 − α), namely, (0.90, 0.90), (0.95, 0.90) and

(0.95, 0.95). The results for the last setting are presented in Web Tables 1-2 in Web Ap-

pendix B. Overall, these findings suggest that the naive method’s accuracy is generally not

acceptable except for pointwise bands with dense data. The bootstrap method works well

for dense data for both pointwise and simultaneous bands. The method is somewhat liberal

for sparse data. Nevertheless, its accuracy can be considered acceptable except when data

are quite sparse and unbalanced.

A reviewer noted that the naive method for pointwise bands, which uses the tolerance
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factors (7) and (8) for univariate data, works well for 20 subjects observed densely but not for

200 subjects observed sparsely. This is explained by the fact that for dense data the sampling

distribution of the probability content in (12) for each t ∈ tgrid is well approximated by that

of its univariate data counterpart. This in turn makes the univariate tolerance factors be

good approximations of the true factors. This, however, is the not the case for sparse data

even with 200 subjects. In this case, the univariate factors appear to underestimate the true

factors, especially near the edges of tgrid, causing the individual proportions on the grid and

hence their averages reported in the tables to fall below the desired nominal level.

5 Illustration

We now return to the two datasets introduced in Section 1 and construct tolerance bands

for them. The CD4 data are sparsely observed whereas the temperature data are densely

observed. For both, first we estimate the unknown θ and perform the FPC analysis as

described in Section 2 and Web Appendix A. Then, we apply the bootstrap methodology

of Section 3 with B = 500 to construct two-sided (0.90, 0.95) pointwise and simultaneous

tolerance bands for the observed curves. Although we do not consider one-sided bands or

bands for the true curves, they can be constructed in a similar manner if needed.

5.1 Application to CD4 cell count data

Figure 1 displays the n = 366 individual observed curves of CD4 counts in the dataset.

Also overlaid in the plot is the smoothed mean function µ̂(t) for t ∈ T = [−18, 42] months.

Initially, the mean count increases slightly from 960 at t = −18 to 1,010 at t = −7. Then, it

decreases somewhat rapidly to 676 at t = 10 and slowly thereafter to about 550 at t = 37.

The estimated standard deviation (SD) function σ̂(t) of the counts is presented in Figure 3.

It appears to be a convex function, decreasing from 380 at t = −18 to 314 at t = 11 and then
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increasing back up to roughly where it started. This estimate is based on an FPC analysis

that yields K̂ = 3 components as being enough to explain at least 99% of variability in the

observed curves. It additionally provides

(λ̂1, λ̂2, λ̂3) = (3729468, 497024, 192232), τ̂ 2 = 41450,

as the estimates of the score variances and the error variance.

Figure 1 also shows the simultaneous and pointwise tolerance bands for the CD4 counts.

The bands are computed over a grid consisting of the 61 distinct observation times in the

data. As expected, the pointwise band is contained within the simultaneous band. The

latter’s upper limit ranges from 1280 to 1754 and its lower limit ranges from −223 to 291.

The tolerance factor for the simultaneous band is q0.05 = 2.09. This factor depends on t for

the pointwise band. The tolerance limits for both bands behave similarly. They are widest

near the two endpoints and narrowest near t = 11 perhaps due to the convexity of the

estimated SD function. There is, however, one aberration near the right endpoint: the lower

limits fall below zero. These negative values can be set to zero to avoid negative counts. The

simultaneous band estimates the region that is expected to contain the entire CD4 curves

for at least 90% of subjects in the sampled population with 95% confidence. Interestingly,

the observed curves for 321 out of 366 subjects (88%) fall completely within this band.

The remaining 45 subjects have at least one observation exceeding the corresponding upper

tolerance limit. In particular, 22 subjects have only one observation exceeding, 14 have two

observations exceeding, and 9 have three or more observations exceeding. These 45 subjects

may be considered to have unusual CD4 profiles for the sampled population and may be

flagged for additional examination.
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5.2 Application to core body temperature data

Figure 2 presents the observed esophageal temperature curves over the domain T = [1, 90]

minutes for n = 12 subjects in the data together with the smoothed mean function µ̂(t). On

the whole, the mean temperature shows an increasing trend. It increases from 37.2 at t = 1

to 37.7 at t = 90, and exhibits a cyclical behavior which roughly coincides with the cycles

of rest and exercise periods in the experiment. Recall that the experiment involved three

30-minute cycles, each consisting of a 10-minute rest period followed by a 20-minute exercise

period. In the first cycle, the mean decreases till t = 12, then increases till t = 29, and starts

decreasing thereafter. This pattern of initial decrease followed by an increase is repeated in

the next two cycles. Although there appears to be a lag between the times of the troughs

and the peaks of the mean function and the end of the rest and the exercise periods, the

discrepancy between the values at these times is fairly small. The discrepancy may also be

an artifact of smoothing or there may be some other explanation for this.

The FPC analysis of these data yields K̂ = 4 for explaining at least 99% of variability in

the curves, and also produces the following estimates for the score and the error variances:

(λ̂1, λ̂2, λ̂3, λ̂4) = (6.49, 0.50, 0.14, 0.06), τ̂ 2 = 0.005.

Relative to the score variances, the error variance here is much smaller than what we saw

for the CD4 data. Figure 3 presents the estimated SD function σ̂(t) computed via the

FPC analysis. It ranges between 0.05 to 0.14 over the domain, and also exhibits a cyclical

pattern similar to the mean function, troughing at t = 12, 39, 70 minutes and peaking at

t = 29, 55, 86 minutes. Next, the mean and the SD functions are combined to get the

pointwise and simultaneous (0.90, 0.95) tolerance bands. The tolerance factor for the latter

is q0.05 = 3.34, a considerably larger value than that for the CD4 data. The bands are plotted

in Figure 2. The upper and lower limits of both bands have overall increasing trends, and the

former also exhibit a cyclical pattern akin to the mean and SD functions. While a cyclical
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patten can be seen in the lower limit also, especially for the simultaneous band, it is not as

prominent as the other functions. The upper limit of the simultaneous band ranges between

38 to 39 and its lower limit ranges between 36 to 36.8. As before, this band estimates the

region that contains entire temperature curves for at least 90% of subjects in the sampled

population with 95% confidence. However, unlike the CD4 data, both bands contain all the

observed curves, thereby implying that none of the temperature curves appears unusual for

the sampled population. This may also be due to the fact that n is quite small, causing the

tolerance factor to be large. A similar scenario occurs for tolerance intervals for univariate

data with small sample sizes (see Krishnamoorthy and Mathew, 2009, pages 32-33).

6 Discussion

This article presented a methodology for constructing functional tolerance bands that works

for both sparse and dense data. It relies upon existing methods for smoothing and FPC

analysis within a mixed model framework to come up with estimates for the mean and

variance functions. These estimates are then combined with a tolerance factor estimated

using bootstrap to form tolerance bands. The use of bootstrap also allows the methodology

to account for uncertainty due to the FPC decomposition in the analysis. Although the

FPC analysis provides an efficient way of estimating the unknowns in the model, it is by

no means an indispensable element of our procedure. It can be replaced by any alternative

method for estimation of mean and variance functions. Moreover, we have used penalized

splines for smoothing, but other smoothing methods can also be used without affecting the

procedure. For example, motivated by the cyclical nature of the temperature data, we also

smoothed the mean function using the Fourier basis system (Ramsay and Silverman, 2005,

Chapter 3). This led to similar tolerance bands as in Figure 2.

The methodology is computationally intensive but the computations can be easily pro-
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grammed. An R program is available at http://www.utdallas.edu/~pankaj/. It uses the

output of FPC analysis from the refund package (Crainiceanu et al., 2011) and produces the

tolerance bands. On a Windows computer with a 2.4 GHz processor and 2 GB RAM, the

program takes about 29 minutes for the CD4 data and about 109 minutes for the temperature

data with B = 500 bootstrap repetitions.

The methodology appears somewhat liberal when the data are quite sparse and unbal-

anced. For such data, an alternative is to treat them as the traditional longitudinal data

and model them semiparametrically using penalized splines regression within a mixed model

framework (Ruppert, Wand and Carroll, 2003). The tolerance band procedure of this article

is easily adapted to work under the longitudinal data model by simply using the new model

to estimate the mean and variance functions. Another alternative is to correct the tolerance

factor. For this, the iterative bootstrap approach of Fernholz and Gillespie (2001) proposed

for univariate data may be adapted by taking the tolerance factor from our method as an

initial guess. Another possibility may be to use a nested bootstrap step, along the lines of

Rebafka, Clémençon and Feinberg (2007), to estimate the content of a given interval non-

parametrically rather than estimating it using (12) that assumes normality. However, the

last two approaches add another layer of bootstrapping, making them even more computa-

tionally demanding than the proposed procedure. It would be of interest to see if any of

these alternatives lead to substantial improvements in the performance.

Our approach assumed that the mean function does not depend on covariates. Never-

theless, tolerance bands may be needed when covariates are available to model the mean

function, see, e.g., Sharma and Mathew (2012) for univariate data examples. Further re-

search is needed to extend the methodology to account for covariates in the construction of

functional tolerance bands.
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Supplementary Materials

The Web Appendix A referenced in Sections 2 and 5 and the Web Appendix B referenced

in Section 4 are available as a separate file.

Acknowledgements

The authors thank Profs. Runze Li and Mosuk Chow for providing the temperature data.

They also thank the two reviewers and the associate editor for providing thoughtful comments

that have led to a greatly improved article.

References

Brown, E. B., Iyer, H. K. and Wang, C. M. (1997). Tolerance intervals for assessing individual

bioequivalence. Statistics in Medicine 16, 803–820.

Carrasco, J. L., Caceres, A., Escaramis, G. and Jover, L. (2014). Distinguishability and

agreement with continuous data. Statistics in Medicine 33, 117–128.

Castro, P., Lawton, W. and Sylvestre, E. (1986). Principal modes of variation for processes

with continuous sample curves. Technometrics 28, 329–337.

Choudhary, P. K. (2008). A tolerance interval approach for assessment of agreement in

method comparison studies with repeated measurements. Journal of Statistical Planning

and Inference 138, 1102–1115.

Crainiceanu, C., Reiss, P., Goldsmith, J., Huang, L., Huo, L. and Scheipl, F. (2011). refund:

Regression with Functional Data. R package version 0.1-5.

22



Fernholz, L. T. and Gillespie, J. A. (2001). Content-corrected tolerance limits based on the

bootstrap. Technometrics 43, 147–155.

Goldsmith, J., Greven, S. and Crainiceanu, C. (2013). Corrected confidence bands for func-

tional data using principal components. Biometrics 69, 41–51.

Harris, E. K. and Boyd, J. C. (1995). Statistical Bases of Reference Values in Laboratory

Medicine. CRC Press, Boca Raton, FL.

Horvath, L. and Kokoszka, P. (2012). Inference for Functional Data with Applications.

Springer, New York.

James, G. M., Hastie, T. J. and Sugar, C. A. (2000). Principal component models for sparse

functional data. Biometrika 87, 587–602.

Kaslow, R. A., Ostrow, D. G., Detels, R., Phair, J. P., Polk, B. F., Rinaldo, C. R. et al.

(1987). The Multicenter AIDS Cohort Study: Rationale, organization, and selected

characteristics of the participants. American Journal of Epidemiology 126, 310–318.

Katki, H. A., Engels, E. A. and Rosenberg, P. S. (2005). Assessing uncertainty in reference

intervals via tolerance intervals: Application to a mixed model describing HIV infection.

Statistics in Medicine 24, 3185–3198.

Komka, K., Kemeny, S. and Banfai, B. (2010). Novel tolerance interval model for the estima-

tion of the shelf life of pharmaceutical products. Journal of Chemometrics 24, 131–139.

Krishnamoorthy, K. and Mathew, T. (2009). Statistical Tolerance Regions: Theory, Appli-

cations, and Computation. John Wiley, New York.

Krishnamoorthy, K., Mathew, T. and Ramachandran, G. (2007). Upper limits for exceedance

probabilities under the one-way random effects model. Annals of Occupational Hygiene

51, 397–406.

23



Li, R. and Chow, M. (2005). Evaluation of reproducibility for paired functional data. Journal

of Multivariate Analysis 93, 81–101.

Montgomery, D. C. (2012). Introduction to Statistical Quality Control, 7th edn. John Wiley,

New York.

R Core Team (2014). R: A Language and Environment for Statistical Computing. R Foun-

dation for Statistical Computing. Vienna, Austria.

Ramsay, J. O. and Silverman, B. W. (2005). Functional Data Analysis, 2nd edn. Springer,

New York.
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pointwise band simultaneous band

naive bootstrap naive bootstrap

n τ 2 (a) (b) (c) (d) (a) (b) (c) (d) (a) (b) (c) (d) (a) (b) (c) (d)

one-sided band

20

0.0025 93.8 92.2 90.5 90.4 93.3 92.3 91.1 91.4 98.0 96.4 92.8 86.6 95.2 95.4 94.6 94.0

0.01 94.3 92.2 92.0 88.5 94.0 92.2 92.2 89.9 98.4 96.0 95.0 86.6 95.8 95.6 95.8 93.8

0.25 95.3 93.7 92.9 90.5 92.1 91.4 91.4 89.8 99.6 98.2 93.2 89.0 95.6 94.8 94.2 92.8

50

0.0025 95.2 93.7 91.9 89.1 94.9 94.0 93.3 92.2 99.2 97.4 91.8 82.0 96.2 95.6 94.2 92.4

0.01 94.5 92.5 91.4 89.7 93.9 92.8 93.1 92.7 99.4 96.0 92.2 83.8 95.4 93.8 95.0 91.6

0.25 95.7 93.6 91.9 89.3 93.8 92.4 92.4 91.6 100 96.8 93.4 87.8 95.0 92.8 92.8 92.8

100

0.0025 94.9 92.8 91.0 89.4 94.7 93.6 93.2 93.3 98.8 94.8 88.4 84.2 95.2 93.0 92.2 95.0

0.01 94.7 92.7 91.7 88.6 94.2 93.6 93.9 92.7 98.8 94.8 91.6 79.6 95.0 92.8 94.8 91.2

0.25 95.8 93.7 93.3 89.5 94.2 93.4 93.7 92.3 98.6 97.0 92.0 82.6 93.8 91.6 94.6 89.6

200

0.0025 95.5 93.7 91.8 89.6 95.0 94.9 94.0 93.9 99.2 96.0 90.4 82.2 96.2 94.4 94.2 93.0

0.01 95.2 93.6 91.3 89.0 94.8 94.8 93.7 93.3 99.0 96.2 90.0 78.8 96.0 94.4 94.6 92.6

0.25 96.2 94.6 92.9 90.6 94.5 94.7 94.3 94.0 99.0 98.0 93.2 83.8 94.2 94.8 93.4 94.2

two-sided band

20

0.0025 92.4 90.7 88.5 87.4 92.3 91.4 90.5 90.7 97.4 92.8 88.8 81.4 95.6 94.6 95.6 93.8

0.01 94.0 90.7 89.7 85.4 93.9 91.3 91.3 89.2 97.0 93.4 90.2 77.6 96.6 95.2 97.4 92.4

0.25 95.3 92.6 91.6 87.4 91.8 89.6 90.6 88.6 99.0 96.0 92.2 82.8 94.6 93.8 94.2 93.2

50

0.0025 94.3 91.9 89.7 86.1 94.5 93.2 92.5 91.0 99.6 92.8 82.6 70.0 97.8 94.8 92.8 89.6

0.01 93.8 90.3 88.7 86.1 93.3 91.8 91.8 91.0 99.2 92.4 85.0 68.6 95.6 93.2 93.6 91.0

0.25 96.0 92.2 89.2 85.3 93.6 91.1 90.7 89.6 99.8 93.8 86.6 72.2 94.4 91.4 91.8 91.4

100

0.0025 94.9 90.7 88.7 85.6 94.6 92.6 92.2 93.3 99.6 89.4 78.0 68.6 97.6 91.8 90.2 94.2

0.01 93.4 90.7 88.7 84.8 93.4 92.6 92.3 91.2 98.4 89.4 79.0 60.0 92.2 92.2 92.8 89.0

0.25 96.0 92.4 89.8 85.5 93.9 92.4 92.2 90.6 99.0 92.8 81.6 69.2 92.4 91.8 91.6 88.8

200

0.0025 95.0 91.4 88.8 86.0 94.9 93.6 93.0 92.5 98.6 89.8 76.8 63.4 94.6 93.2 91.8 92.0

0.01 94.9 91.3 88.3 84.5 94.5 93.4 92.6 91.6 98.6 89.4 73.8 60.4 94.2 93.0 90.2 90.8

0.25 95.1 92.6 89.6 86.2 93.2 93.1 92.7 92.4 99.2 93.2 78.4 65.8 91.6 91.8 90.2 89.2

Table 1: Estimated probability of correct content (in %) of (0.90, 0.95) tolerance bands for

the observed population curve in case of (a) Ni = 50 (dense data), (b) Ni = 30 (sparse data),

(c) Ni = 20 (sparse data) and (d) unbalanced design (sparse data).
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pointwise band simultaneous band

naive bootstrap naive bootstrap

n τ 2 (a) (b) (c) (d) (a) (b) (c) (d) (a) (b) (c) (d) (a) (b) (c) (d)

one-sided band

20

0.0025 93.7 92.0 90.0 88.8 93.3 92.0 90.7 90.2 98.0 96.4 92.0 84.4 95.0 95.6 95.0 95.6

0.01 94.2 92.0 91.5 86.7 93.9 92.0 91.7 88.5 98.2 96.2 95.0 84.2 95.8 95.4 97.0 95.2

0.25 93.3 91.8 91.2 88.3 90.3 89.7 89.8 87.7 98.4 96.2 92.0 84.6 96.2 96.6 96.2 94.4

50

0.0025 95.1 93.2 91.4 88.0 94.8 93.7 92.9 91.2 99.2 97.2 91.8 81.0 96.2 95.6 94.8 92.4

0.01 94.4 92.2 91.0 88.9 93.8 92.6 92.7 92.2 99.4 96.0 91.8 83.0 95.4 93.8 94.8 92.0

0.25 94.3 91.9 90.6 87.1 92.1 90.7 91.0 89.3 98.8 94.8 90.8 83.2 94.8 93.4 94.4 94.6

100

0.0025 94.8 92.4 90.7 88.4 94.6 93.3 92.9 92.6 98.8 94.4 88.4 81.8 95.2 92.6 92.4 95.4

0.01 94.6 92.4 91.3 87.7 94.1 93.3 93.4 92.0 98.8 94.4 89.8 78.8 94.8 92.6 94.8 91.0

0.25 94.5 92.2 92.0 87.9 92.7 91.8 92.5 90.7 97.6 94.6 90.8 76.6 93.4 93.0 95.4 91.0

200

0.0025 95.4 93.4 91.3 88.6 94.9 94.6 93.6 93.1 99.2 96.0 90.2 80.0 96.2 94.2 94.6 93.0

0.01 95.1 93.4 90.7 88.4 94.7 94.6 93.3 92.8 99.0 96.2 90.2 78.2 96.0 94.4 94.4 92.8

0.25 94.8 93.1 91.4 89.3 92.9 93.3 92.9 92.8 98.6 96.4 90.0 78.8 95.0 95.4 94.0 94.4

two-sided band

20

0.0025 92.3 90.1 90.0 85.1 92.3 91.5 90.7 90.9 97.4 92.6 87.4 79.2 95.6 94.8 96.6 95.4

0.01 93.8 90.1 88.9 83.2 94.0 91.5 91.6 89.7 97.0 93.0 89.6 74.6 96.6 95.4 97.8 94.4

0.25 92.8 89.8 89.5 84.4 93.6 91.7 92.6 91.2 97.6 92.0 87.0 76.2 96.4 97.2 96.4 95.8

50

0.0025 94.2 91.2 88.9 84.5 94.4 91.9 92.3 90.9 99.6 92.6 81.8 68.0 97.8 94.8 93.2 90.0

0.01 93.6 89.9 88.2 84.7 93.2 91.7 91.9 91.0 99.2 92.4 84.0 67.4 95.6 93.4 94.0 91.6

0.25 93.9 89.6 87.3 82.5 94.4 92.0 92.0 90.7 98.4 89.8 82.6 66.8 95.8 92.8 93.2 93.8

100

0.0025 94.8 90.3 88.0 84.0 94.6 92.5 92.2 91.5 99.6 89.0 76.6 65.2 97.6 91.8 90.0 94.4

0.01 93.2 90.4 88.1 83.3 93.4 92.5 92.2 90.9 98.4 88.8 77.0 58.0 92.0 92.8 92.8 90.0

0.25 94.1 90.2 88.1 83.0 94.3 92.7 92.9 91.4 97.2 88.2 78.6 62.8 92.6 93.0 93.2 89.2

200

0.0025 94.9 90.9 88.0 84.7 94.8 93.5 92.7 92.3 98.6 89.4 75.0 61.0 94.8 93.0 91.8 91.6

0.01 94.7 90.9 87.5 83.4 94.4 93.5 92.4 91.8 98.6 89.4 73.6 57.2 94.2 93.0 90.2 91.2

0.25 93.0 90.6 87.4 84.3 93.4 93.5 93.1 92.7 96.8 88.6 74.4 59.8 92.0 92.8 90.8 91.6

Table 2: Estimated probability of correct content (in %) of (0.90, 0.95) tolerance bands for

the true population curve in case of (a) Ni = 50 (dense data), (b) Ni = 30 (sparse data),

(c) Ni = 20 (sparse data) and (d) unbalanced design (sparse data).
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Figure 1: The observed individual curves for the CD4 data superimposed with pointwise

and simultaneous (0.90, 0.95) tolerance bands as well as the estimated mean function.
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Figure 2: The observed individual curves for the temperature data superimposed with point-

wise and simultaneous (0.90, 0.95) tolerance bands as well as the estimated mean func-

tion. The vertical lines at t = 30, 60, 90 minutes mark the end of each cycle, and those at

t = 10, 40, 70 minutes mark the times at which the rest period within each cycle ends and

exercising begins.
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Figure 3: The estimated SD functions (σ̂) for (a) the CD4 data and (b) the temperature

data.
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Web-based Supplementary Materials for “Tolerance

Bands for Functional Data” by Lasitha N. Rathnayake

and Pankaj K. Choudhary

Web Appendix A

This section describes the methodology of Goldsmith et al. (2013) that we use for estimating

the unknown quantities θ in the approximate model (4). Let ti = (ti1, . . . , tiNi
)′ be the

Ni× 1 vector of observation times for the ith subject, and let Yi(ti) = (Yi(ti1), . . . , Yi(tiNi
))′,

φk(ti) = (φk(ti1), . . . , φk(tiNi
))′, and µ(ti) = (µ(ti1), . . . , µ(tiNi

))′ be Ni × 1 vectors of values

at these times. Also, let φ(ti) be a K × Ni matrix with kth row as φ′k(ti), and N0 be the

number of unique observation times in the dataset. The N0 × 1 vector of these times forms

a grid t0 in the domain T . The steps in the estimation are as follows:

1. Compute a smooth estimate µ̂(t) of the mean function µ(t) by pooling observations

from all subjects and smoothing them by fitting a penalized splines under the assump-

tion of independence.

2. Use the centered observations Yi(tij) − µ̂(tij) on the bivariate grid t0 × t0 to form an

N0 ×N0 sample covariance matrix of Y (t)− µ̂(t), t ∈ t0. The elements of this matrix

provide a raw estimate of the true covariance function G(s, t) + τ 2I(s = t) of Y (t)

under the model (3) for s, t ∈ t0 (Yao et al., 2005).

3. Smooth the off-diagonal elements of the matrix in step 2 by bivariate penalized splines

to obtain a smooth preliminary estimate of the true covariance function G(s, t) of X(t).

Evaluate the estimated function at s, t ∈ t0 to get a N0 ×N0 covariance matrix.

4. Obtain the spectral decomposition of the matrix computed at the end of step 3. Based

on this decomposition, choose K̂ as the smallest number of FPC that explain at least

1



99% of variability in the observed curves. Use the eigen values λ̂1, . . . , λ̂K̂ to form an

estimate Λ̂ of the score variance matrix Λ. Also, use the corresponding eigen vectors

to get an estimate φ̂ = (φ̂1, . . . , φ̂K̂)′ of the vector φ of basis functions evaluated at t0.

5. Obtain the revised estimate Ĝ(s, t) of the covariance function G(s, t) as Ĝ(s, t) =∑K̂
k=1 λ̂kφ̂k(s)φ̂k(t) for s, t ∈ t0.

6. Take τ̂ 2 as the average difference between the middle 60% of diagonal elements of the

sample covariance matrix in step 2 and Ĝ(s, t). The differences on the extremes are

ignored to get a more stable estimate of τ 2.

The method of restricted maximum likelihood (REML) is used to select the amount of

smoothing for estimation of both the mean and covariance functions. Once θ̂ is available,

Yao et al. (2005) is followed to estimate the FPC score vector ξi by its estimated BLUP

under the model (4),

ξ̂i =
(
φ̂(ti)φ̂

′
(ti) + τ̂ 2Λ̂

−1)−1
φ̂(ti)

(
Yi(ti)− µ̂(ti)

)
.

This methodology is implemented in the R package refund (Crainiceanu et al., 2011). It

specifically uses penalized linear splines to estimate the mean function and penalized lin-

ear thin plate splines to estimate the covariance function. The number of knots and their

locations are set at their default setting, which is ten for the number of knots.

Web Appendix B

This section presents simulation results similar to those presented in Tables 1 and 2 but for

(p, 1− α) = (0.95, 0.95).
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pointwise band simultaneous band

naive bootstrap naive bootstrap

n τ 2 (a) (b) (c) (d) (a) (b) (c) (d) (a) (b) (c) (d) (a) (b) (c) (d)

one-sided band

20

0.0025 94.2 92.8 91.7 88.2 93.6 91.9 92.0 90.4 98.6 95.4 91.4 84.6 96.4 94.8 93.2 91.0

0.01 94.3 92.8 91.6 88.2 93.5 91.9 91.9 90.3 98.8 95.0 91.2 84.2 96.4 94.6 93.2 91.2

0.25 95.9 94.1 92.0 88.9 92.7 90.9 90.6 89.0 99.8 97.2 93.4 86.4 94.8 93.8 91.4 90.2

50

0.0025 94.8 93.1 91.7 88.4 94.3 93.7 93.5 91.6 99.4 96.0 90.8 80.4 95.2 95.8 94.4 92.6

0.01 94.8 93.1 91.6 88.4 94.3 93.6 93.4 91.6 99.4 96.2 90.8 81.2 95.0 96.0 94.6 93.2

0.25 95.8 94.6 92.1 89.1 93.7 93.4 92.7 91.0 99.6 96.2 91.6 82.6 95.2 95.8 92.6 91.6

100

0.0025 95.7 92.4 91.6 88.3 95.3 93.4 93.9 92.9 99.4 94.0 88.8 77.8 96.2 93.6 94.6 93.6

0.01 95.7 92.3 91.6 88.2 95.3 93.3 93.8 92.8 99.6 94.4 88.4 78.4 95.8 93.6 94.2 94.0

0.25 96.7 93.5 91.2 88.0 95.0 93.0 93.3 92.0 100 96.0 89.0 81.2 94.8 93.4 93.6 93.2

200

0.0025 94.2 92.6 90.1 88.7 93.9 93.8 93.1 93.4 98.8 95.6 86.2 76.8 93.0 93.8 93.4 91.4

0.01 95.5 92.6 90.0 88.6 95.0 93.8 93.0 93.2 99.8 95.0 86.0 77.0 95.2 93.8 93.6 91.4

0.25 95.4 93.6 91.0 89.1 94.0 93.5 92.9 93.1 99.2 95.6 89.8 78.8 92.8 94.0 93.0 91.4

two-sided band

20

0.0025 93.4 91.2 89.3 86.4 93.4 91.7 91.0 90.0 98.8 93.8 87.2 77.2 97.0 95.2 92.4 93.2

0.01 94.5 91.1 89.3 86.5 93.5 91.7 90.9 90.0 98.8 93.8 87.0 78.4 97.2 95.2 93.0 93.2

0.25 95.6 92.9 89.9 87.5 92.0 90.2 89.2 88.7 100 96.4 88.6 81.8 95.0 93.6 91.0 92.0

50

0.0025 93.4 92.4 89.8 85.8 93.2 93.4 92.6 90.5 98.2 93.6 83.4 69.2 94.8 94.4 93.8 92.0

0.01 93.4 92.3 89.6 85.7 93.2 93.3 92.5 90.5 98.6 93.8 83.4 70.0 95.0 95.0 94.0 92.0

0.25 95.2 93.7 90.2 86.5 92.7 92.8 91.6 89.9 99.6 95.8 85.4 73.0 93.8 94.2 92.0 91.2

100

0.0025 94.9 91.3 89.2 86.5 94.7 93.0 92.6 92.2 98.8 90.6 82.6 67.0 95.0 93.6 92.8 92.6

0.01 95.0 91.2 89.2 86.4 94.6 93.0 92.5 92.1 98.6 90.6 82.4 66.6 95.2 93.4 92.6 92.8

0.25 96.3 92.7 89.2 86.3 94.2 92.4 91.4 91.4 99.2 93.2 80.4 69.2 94.0 91.8 92.0 90.2

200

0.0025 93.0 91.6 88.3 85.5 92.9 93.9 92.9 92.4 96.6 89.4 79.4 64.6 90.6 93.4 91.0 91.2

0.01 95.0 91.6 88.1 85.4 94.8 93.9 92.8 92.3 100 89.8 79.4 64.8 95.4 93.2 91.4 91.0

0.25 94.9 93.0 89.4 85.5 92.8 93.5 92.4 91.9 98.0 92.4 81.6 66.8 91.0 93.0 91.2 90.6

Web Table 1: Estimated probability of correct content (in %) of (0.95, 0.95) tolerance bands

for the observed population curve in case of (a) Ni = 50 (dense data), (b) Ni = 30 (sparse

data), (c) Ni = 20 (sparse data) and (d) unbalanced design (sparse data).
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pointwise band simultaneous band

naive bootstrap naive bootstrap

n τ 2 (a) (b) (c) (d) (a) (b) (c) (d) (a) (b) (c) (d) (a) (b) (c) (d)

one-sided band

20

0.0025 94.1 92.4 91.0 87.1 93.5 91.6 91.3 89.4 98.6 94.8 91.0 82.0 96.4 95.0 93.8 93.6

0.01 94.1 92.4 91.0 87.1 93.4 91.6 91.3 89.4 98.8 94.6 90.8 82.0 96.4 94.8 94.2 93.4

0.25 94.0 92.1 90.3 86.8 90.4 89.3 88.8 86.9 98.6 94.0 90.4 78.8 97.2 94.8 94.2 93.8

50

0.0025 94.7 92.7 91.3 87.0 94.3 93.5 93.2 90.5 99.4 95.2 90.4 79.0 95.2 95.4 94.8 93.6

0.01 94.7 92.8 91.2 87.0 94.2 93.4 93.2 90.6 99.2 95.6 90.4 80.0 95.0 95.6 94.4 93.4

0.25 94.2 92.9 90.6 86.7 92.0 91.6 91.4 88.9 99.0 95.6 88.0 79.0 95.6 95.8 94.0 93.0

100

0.0025 95.7 92.0 91.1 87.2 95.2 93.0 93.5 92.2 99.4 94.0 88.8 77.2 96.2 93.4 94.6 93.8

0.01 95.6 92.0 91.2 87.2 95.2 93.0 93.5 92.2 99.6 94.2 88.8 77.6 95.6 93.2 94.8 93.8

0.25 95.3 91.7 89.9 86.7 93.6 91.2 91.2 90.5 99.4 93.6 86.0 76.0 96.2 94.4 92.0 94.8

200

0.0025 94.1 92.1 89.4 87.5 93.8 93.5 92.5 92.4 98.8 94.6 85.6 75.6 93.0 93.6 92.8 91.8

0.01 95.3 89.4 89.4 87.5 94.8 92.5 92.5 93.2 99.8 94.6 85.6 75.6 95.2 93.6 93.2 91.4

0.25 94.1 91.8 89.3 87.3 92.3 91.8 91.3 91.5 98.6 93.4 84.8 74.8 92.6 93.4 93.8 91.6

two-sided band

20

0.0025 93.3 90.7 88.6 85.0 93.5 91.7 91.1 90.7 98.6 93.2 86.4 75.4 97.0 95.2 94.0 94.4

0.01 93.3 90.7 88.5 85.0 93.5 91.8 91.2 90.7 98.6 93.2 86.4 76.0 97.2 95.4 94.0 94.4

0.25 93.0 90.3 88.0 84.7 93.9 92.3 91.6 91.4 98.0 91.4 83.8 73.2 96.8 95.4 95.0 94.2

50

0.0025 93.3 92.0 89.2 84.2 93.2 93.3 92.6 90.3 98.2 93.6 82.6 66.6 94.8 95.0 94.0 92.8

0.01 93.3 92.0 89.2 84.2 93.2 93.4 92.5 90.4 98.2 93.8 83.0 67.8 95.0 95.0 94.0 92.6

0.25 93.0 91.8 88.4 83.8 93.5 93.7 92.6 91.0 97.6 93.6 81.2 65.8 95.4 95.0 93.8 93.6

100

0.0025 94.8 90.9 88.6 85.1 94.6 93.0 92.3 92.0 98.4 89.4 82.2 64.4 95.0 93.4 93.4 93.0

0.01 94.8 90.9 88.5 85.1 94.6 92.9 92.4 92.0 98.2 89.2 81.8 64.4 95.2 93.0 92.8 93.0

0.25 94.5 90.4 87.6 84.4 94.6 93.0 92.2 92.1 98.0 89.0 76.6 63.0 95.8 93.2 93.0 92.6

200

0.0025 92.8 91.1 87.5 84.2 92.8 93.6 92.6 92.2 96.6 88.8 77.8 63.4 90.4 93.0 91.4 91.2

0.01 94.9 91.1 87.5 84.2 94.8 93.6 92.6 92.2 100 88.8 77.8 63.2 95.6 93.0 91.6 91.0

0.25 92.8 90.7 87.3 83.7 93.1 93.6 92.7 92.2 95.8 88.2 77.2 60.0 91.4 92.8 91.6 91.8

Web Table 2: Estimated probability of correct content (in %) of (0.95, 0.95) tolerance bands

for the true population curve in case of (a) Ni = 50 (dense data), (b) Ni = 30 (sparse data),

(c) Ni = 20 (sparse data) and (d) unbalanced design (sparse data).
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