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Abstract

Studies involving two methods for measuring a continuous response are regularly

conducted in health sciences to evaluate agreement of a method with itself and agree-

ment between methods. Notwithstanding their wide usage, the design of such studies,

in particular, the sample size determination, has not been addressed in the literature

when the goal is simultaneous evaluation of intra- and inter-method agreement. We

fill this need by developing a simulation-based Bayesian methodology for determin-

ing sample sizes in a hierarchical model framework. Unlike a frequentist approach, it

takes into account of uncertainty in parameter estimates. This methodology can be

used with any scalar measure of agreement available in the literature. We demonstrate

this for four currently used measures. The proposed method is applied to an ongoing

proteomics project, where we use pilot data to determine the number of individuals

and the number of replications needed to evaluate agreement between two methods for

measuring protein ratios. We also apply our method to determine sample size for an

experiment involving measurement of blood pressure.
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1 Introduction

Comparison of two methods for measuring a continuous response variable is a topic of consid-

erable interest in health sciences research. In practice, a method may be an assay, a medical

device, a measurement technique or a clinical observer. The variable of interest, e.g., blood

pressure, heart rate, cardiac stroke volume, etc., is typically an indicator of the health of the

individual being measured. Hundreds of method comparison studies are published each year

in the biomedical literature. Such a study has two possible goals. The first is to determine

the extent of agreement between two methods. If this inter-method agreement is sufficiently

good, the methods may be used interchangeably or the use of the cheaper or the more con-

venient method may be preferred. The second goal is to evaluate the agreement of a method

with itself. The extent of this intra-method agreement gives an idea of the repeatability of

a method and serves as a baseline for evaluation of the inter-method agreement.

The topic of how to assess agreement in two methods has received quite a bit of attention

in the statistical literature. See [1] for a recent review of the literature on this topic. There

are several measures of agreement — such as limits of agreement [2], concordance correla-

tion [3], mean squared deviation [4], coverage probability [5] and total deviation index or

tolerance interval [4, 6], among others. On the other hand, the topic of how to plan a method

comparison study — in particular, the sample size determination (SSD), has not received the

same level of attention. Although several authors [5, 6, 7, 8] provide frequentist sample size

formulas associated with agreement measures of their interest, they are restricted to only the

evaluation of inter-method agreement. However, a simultaneous evaluation of both intra-

and inter-method agreement is crucial because the amount of agreement possible between

two methods is limited by how much the methods agree with themselves. A new method,

which is perfect and worthy of adoption, will not agree well with an established standard if
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the latter has poor agreement with itself [9]. But we are not aware of any literature on SSD

when the interest lies in evaluating both intra- and inter-method agreement. This involves

determining the number of replicate measurements in addition to the number of individuals

for the study.

Our aim in this article is to fill this gap in the literature. We develop a methodology for

determining the number of individuals and the number of replicate measurements needed for

a method comparison study to achieve a given level of precision of simultaneous inference

regarding intra- and inter-method agreement. We take a Bayesian route to this SSD problem

as it allows us to overcome limitations of frequentist procedures. In the frequentist paradigm,

one generally casts the problem of agreement evaluation in a hypothesis testing framework,

and then derives an approximate sample size formula by performing an asymptotic power

analysis along the lines of [10, sec 3.3]. But this formula involves the asymptotic standard

error of the estimated agreement measure, which is a function of the unknown parameters in

the model. So typically one obtains their estimates, either from the literature or through a

pilot study, and substitutes them into the SSD formula. However, by merely inserting their

values in the formula no account is taken of the variability in the estimates. This issue can

be addressed in a Bayesian paradigm. See, e.g., the review articles [11, 12] and the references

therein.

Our approach is to use a suitable feature of the posterior distribution of the agreement

measure of interest as the measure of precision of inference, which is a monotonic function

of number of individuals and number of replications. This property is used to derive an SSD

procedure. We do not have explicit sample size formulas. Instead, the procedure has to

be implemented via simulation. It can be used in conjunction with any scalar measure of

agreement currently available in the literature.
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We now introduce two examples that we use to illustrate the application of the proposed

methodology. In both cases, we treat the available data as pilot data and use the estimates

obtained from them to determine sample sizes for future studies. These examples represent

two qualitatively different method comparison studies. As shown in Section 3, in the first

example, the measurements on the same individual, whether from the same method or two

different methods, appear only weakly correlated. This scenario is somewhat unusual. In

contrast, the measurements are highly correlated in the second example, which is the more

typical scenario. These distinct scenarios allow us to get a better insight into the workings

of the proposed methodology.

Example 1 (Protein ratios): In this ongoing project, we are interested in SSD for a study

to compare two softwares — XPRESS [13] and ASAPRatio [14] for computing abundance

ratios of proteins in a pair of blood samples. The former is labor intensive and requires much

user input, whereas the latter is automated to a large extent. These softwares are used in

proteomics for comparing protein profiles under two different conditions to discover proteins

that may be differentially expressed. See, e.g., [15] for a general introduction to proteomics.

The response of specific interest to us is the protein abundance ratios in blood samples of two

healthy individuals. These ratios are expected to be near one since both the samples come

from healthy people. We have ratios of 8 proteins in blood samples of 5 pairs of individuals

computed using the two softwares. However, only a total of 60 ratios are available as not all

proteins are observed in every sample. These data were collected in the laboratory of the

last author.

Example 2 (Blood pressure): In this case, we consider the blood pressure data of [16].

Here systolic blood pressure (in mmHg) is measured twice, each using two methods — a

manual mercury sphygmomanometer and an automatic device, OMRON 711, on a sample
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of 384 individuals. The manual device serves as the reference method and the automatic

device is the test method.

This article is organized as follows. In Section 2, we describe the proposed SSD method-

ology. Its properties are investigated in Section 3, and its application to the two examples

introduced above is illustrated in Section 4. Section 5 concludes with a discussion.

All the computations reported in this article were performed using the statistical package

R [17]. We also used the WinBUGS [18] package for fitting models to the pilot data sets by

calling it from R through the R2WinBUGS [19] package.

2 SSD for method comparison studies

Let yijk, k = 1, . . . , n, j = 1, 2, i = 1, . . . , m, represent the k-th replicate measurement

from the j-th method on the i-th individual. Here m is the number of individuals and n is

the common number of replicate measurements from each method on every individual. A

common number of replicates is assumed to simplify the SSD problem. Replicate measure-

ments refer to multiple measurements taken under identical conditions. In particular, the

underlying true measurement does not change during the replication.

Any SSD procedure depends on the model assumed for the data, the inference of interest,

and the measure of precision of inference. So we first describe them in Sections 2.1, 2.2

and 2.3, respectively. Section 2.4 explains how to compute the precision measure. Finally,

Section 2.5 describes the SSD procedure.
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2.1 Modelling the data

We assume that the data follow the model

yijk = βj + bi + bij + εijk, k = 1, . . . , n, j = 1, 2, i = 1, . . . , m, (1)

where βj is the effect of the j-th method; bi is the effect of the i-th individual; and bij is

the individual × method interaction. Oftentimes, there is no need for this interaction term.

Moreover, when n = 1, this term is not identifiable and we drop it from the model. We

assume that bi|ψ2 ∼ independent N (0, ψ2), bij|φ2 ∼ independent N (0, φ2) and εijk|σ2
j ∼

independent N (0, σ2
j ). In addition, these random variables are assumed to be mutually

independent. In what follows, we use γ as a generic notation for the vector of all relevant

parameters without identifying them explicitly. They will be clear from the context.

Let the random vector (y1, y2) denote the bivariate population of measurements from

two methods on the same individual. Also, let (yj1, yj2) denote the bivariate population of

two replicate measurements from the j-th method on the same individual. The model (1)

postulates that
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Next, let d12 = y1−y2 and djj = yj1−yj2 respectively denote the population of inter-method

differences and the population of intra-method differences for the j-th method. It follows

that

d12|γ ∼ N (µ12 = β1 − β2, τ
2
12 = 2φ2 + σ2

1 + σ2
2), djj|γ ∼ N (0, τ 2

jj = 2σ2
j ), j = 1, 2. (3)
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To complete the Bayesian specification of model (1), we assume the following mutually

independent prior distributions:

βj ∼ N (0, V 2
j ), ψ2 ∼ IG(Aψ, Bψ), φ2 ∼ IG(Aφ, Bφ), σ2

j ∼ IG(Aj, Bj), j = 1, 2, (4)

where IG(A,B) represents an inverse gamma distribution — its reciprocal follows a gamma

distribution with mean A/B and variance A/B2. All the hyperparameters in (4) are positive

and need to be specified. Choosing large values for V 2
j and small values for A’s and B’s

typically lead to noninformative priors. For βj, an alternative noninformative choice for

prior is an improper uniform distribution over the real line. It can also be thought of as

taking V 2
j = ∞ in (4). The resulting posterior is proper for fixed values of the remaining

hyperparameters. These prior choices are quite standard in the Bayesian literature [20,

ch 15]. See [21, 22] for some recent suggestions for priors on variance parameters. Under the

prior (4), the joint posterior of the parameters is not available in a closed-form. So we use

the Gibbs sampler [20, ch 11] — a Markov chain Monte Carlo (MCMC) algorithm, described

in the Appendix, to simulate draws from the posterior distribution.

2.2 Evaluation of agreement

Let θ12 be a measure of agreement between two methods and θjj be the corresponding mea-

sure of intra-method agreement for the j-th method, j = 1, 2. The former is a function of

parameters of the distribution of (y1, y2), whereas the latter is the same function of param-

eters of the distribution of (yj1, yj2). These distributions are given in (2). We assume that

θ12 and θjj are scalar and non-negative, possibly after a simple monotonic transformation,

and their low values indicate good agreement. All the agreement measures mentioned in the

introduction satisfy these criteria except the limits of agreement, which quantifies agreement

using a lower limit and an upper limit.
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Let U12 and Ujj be upper credible bounds for θ12 and θjj, respectively, each with (1−α)

posterior probability. The agreement is considered adequate when these bounds are small.

To compute them, we first obtain a large number of draws from the joint posterior of the

model parameter vector γ by fitting the model (1) to the data and using (4) as the prior

distribution. Then, noting that θ12 and θjj are functions of γ, we use the draws of γ to get

draws from the posteriors of θ12 and θjj. Their (1− α)-th quantiles are taken as the bounds

U12 and Ujj, respectively.

2.3 A measure of precision of inference

Consider for now only the evaluation of the inter-method agreement using the credible bound

U12 for θ12. It satisfies F12|y(U12) = 1 − α, where y represents the observed data, and

F12|y represents the posterior cumulative distribution function (cdf) of θ12. Although this

condition ensures {θ12 ≤ U12} with a high posterior probability, it says nothing about how

the posterior density of θ12 is distributed near U12. In particular, if a large portion of this

density is concentrated in a region far below U12, then the inference is not very precise.

Various suggestions have been made in the literature for measuring the precision of a

credible interval. See [12] for a summary. But they are relevant only for a two-sided interval,

and not an one-sided bound such as U12, which is of interest in this article. So below we

develop a new measure of precision that is appropriate for upper bounds. Similar arguments

can be used to develop a precision measure for lower bounds.

It is well-known that, under certain regularity conditions, the posterior distribution of a

population parameter converges to a point mass as m increases to infinity [20, ch 4]. This

suggests that one can focus on the posterior probability Pr(δU12 ≤ θ12 ≤ U12|y), for a

specified δ ∈ (0, 1), as a measure of precision. Further, considering that SSD takes place
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prior to data collection, our proposal is to take E
{
Pr(δU12 ≤ θ12 ≤ U12|y)

}
= 1 − α −

E
{
F12|y(δU12)

}
, or equivalently

T12(m,n, δ) = E
{
F12|y(δU12)

}
, (5)

as the measure of precision of U12. The expectation here is taken over the marginal distri-

bution of y. A small value for T12 indicates high precision of inference since it implies a

small probability mass below δU12. In other words, a large probability mass is concentrated

between δU12 and U12. Also, for a fixed (m,n), T12 is an increasing function of δ — increasing

from zero when δ = 0 to (1− α) when δ = 1. For the bound Ujj, one can similarly take

Tjj(m,n, δ) = E
{
Fjj|y(δUjj)

}
, j = 1, 2, (6)

as the measure of precision. We have T11 = T22 when identical prior distributions are used

for the parameters of the two methods.

For T12 and Tjj to be useful in SSD, they must be decreasing functions of m and n,

and must tend to zero as m increases to infinity, keeping everything else fixed. Analytically

verifying the first property is hard, but simulation can be used to clarify the approximate

monotonicity (see Section 3). The second property follows from a straightforward application

of the asymptotic properties of posterior distributions [12].

2.4 Computing the precision measure

The expectations T12 and Tjj are not available in closed-forms under the model (1). So

we use the simulation-based approach of Wang and Gelfand [12] to compute them. Prior

to their work, Bayesian SSD focussed mostly on normal and binomial one- and two-sample

problems, partly because of a lack of a general approach for computing precision measures

under hierarchical models that are typically not available in closed-forms. Their key idea is
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to distinguish between a fitting prior and a sampling prior. A prior that is used to fit a model

is what they call a fitting prior. Frequently, this prior is noninformative and sometimes even

improper, provided the resulting posterior is proper. On the other hand, for SSD in practice,

we are usually interested in achieving a particular level of precision when γ is concentrated

in a relatively small portion of the parameter space. This uncertainty in γ is captured using

what they call a sampling prior. This prior is necessarily proper and informative. One choice

for this is a uniform distribution over a bounded interval, but other distributions can also

be used. In our case with model (1), the fitting prior is given by (4). Examples of sampling

priors appear in Section 3.

Let γ∗ denote a draw of γ from its sampling prior and y∗ be a draw of y from [y|γ∗], where

“[·]” denotes a probability distribution. This y∗ alone is a draw from [y∗] — the marginal

distribution of y under the sampling prior. Following [12], we compute the expectations

T12(m, n, δ) in (5) and Tjj(m,n, δ) in (6) with respect to [y∗], instead of [y]. They are

denoted as

T ∗
12(m,n, δ) = E

{
F12|y∗(δU

∗
12)

}
, T ∗

jj(m,n, δ) = E
{
Fjj|y∗(δU

∗
jj)

}
, j = 1, 2, (7)

where U∗
12 and U∗

jj are counterparts of the credible bounds U12 and Ujj when y∗ is used in

place of y. The expectations in (7) are approximated by Monte Carlo integration using the

following steps:

(i) Draw γ∗ from its sampling prior. Then use model (1) to draw y∗ from [y|γ∗].

(ii) Fit model (1) to y∗ treating it as the observed data and γ as the parameter vector, and

simulate draws from the posterior [γ|y∗]. The distributions in (4) are used as (fitting)

priors for γ in this model fitting.

(iii) Use the draws of γ to get draws from the posteriors [θ12|y∗] and [θjj|y∗].
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(iv) Take the (1 − α)-th percentiles of draws of θ12 and θjj as their respective credible

bounds U∗
12 and U∗

jj.

(v) Find the proportion of draws of θ12 that are less than or equal to δU∗
12, and the propor-

tion of draws of θjj that are less than or equal to δU∗
jj. These proportions respectively

approximate the cdf’s F12|y∗(δU∗
12) and Fjj|y∗(δU∗

jj) in (7).

(vi) Repeat the steps (i)-(v) a large number of times, say, L, and take the averages of

proportions in (v) as the approximated expected values in (7).

A URL for an R program for computing these averages is provided in the last section. As

in the case of T12 and Tjj, the approximate monotonicity of T ∗
12 and T ∗

jj with respect to the

number of individuals m and the number of replicates n can be clarified using simulation.

This issue is investigated in Section 3.

2.5 The SSD procedure

We would like to find sample sizes (m, n) to make each of the measures T ∗
12 and T ∗

jj, j = 1, 2,

defined in (7), sufficiently small, say, less than (1 − β) ∈ (0, 1 − α). There may be several

combinations of (m,n) that give this precision of inference. So the cost of sampling must

be taken into account to find the optimal combination. Let CI be the cost associated with

sampling an individual and CR be the cost of taking one (replicate) measurement from both

methods. Thus the total cost of sampling n replicates on each of m individuals is

CT (m,n) = m(CI + nCR), CI , CR > 0. (8)

We now propose the following SSD procedure: Specify the sampling priors, a large δ ∈

(0, 1) and a small (1− β) ∈ (0, 1− α). Find (m,n) such that

max
{
T ∗

12(m,n, δ), T ∗
11(m,n, δ), T ∗

22(m, n, δ)
} ≤ 1− β, (9)
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and CT (m,n) is minimized. The condition in (9) ensures that the posterior probabilities of

the intervals [δU∗
12, U

∗
12], [δU∗

jj, U
∗
jj], j = 1, 2, are all at least (β − α), providing sufficiently

precise inference. In practice, one may take δ ≥ 0.75 and (1− β) ≤ 0.20.

3 Simulation study

We now use simulation to verify monotonicity of the precision measures T ∗
12(m,n, δ) and

T ∗
jj(m, n, δ), j = 1, 2, defined in (7), with respect to m and n. This investigation is done

for four agreement measures — concordance correlation [3], coverage probability [5], mean

squared deviation [4], and total deviation index [4, 6]. They are defined as follows for the

evaluation of inter-method agreement.

concordance correlation:
2cov(y1, y2)(

E(y1)− E(y2)
)2

+ var(y1) + var(y2)
.

coverage probability: Pr(|y1 − y2| ≤ q0) for a specified small q0.

mean squared deviation: E
(
(y1 − y2)

2
)
.

total deviation index: p0-th quantile of |y1 − y2| for a specified large p0.

The first one is based on the joint distribution of (y1, y2), whereas the others are based

on the distribution of y1 − y2. For the evaluation of intra-method agreement of the j-th

method, these measures are defined simply by substituting (yj1, yj2) in place of (y1, y2).

Table 1 gives their expressions assuming distributions (2) and (3). It may be noted that the

usual range of concordance correlation is (−1, 1), but here they are restricted to be positive

because cov(y1, y2) and cov(yj1, yj2) under model (1) are positive. Moreover, the intra-

method versions of the last three measures depend on the model parameters only through

σ2
j .
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The first two measures, namely the concordance correlation and the coverage probability,

range between (0, 1) and their large values indicate good agreement. For the purpose of SSD,

we take their negative-log transformation to satisfy the assumptions that the agreement

measure lies in (0,∞) and its small value indicates good agreement. On the other hand, no

transformation is needed in the case of mean squared deviation and total deviation index as

they range between (0,∞) and their small values indicate good agreement.

For the simulation study, we focus on the two examples introduced in Section 1. First,

we need to choose sampling priors for the parameters in model (1). We now describe how

we construct them by fitting appropriate models to the pilot data in the two examples.

In the first example, we take the ASAP software as method 1 and the XPRESS software

as method 2. After a preliminary analysis, we model the available data as

yijr = βj + bi + proteinr + εijr,

bi|ψ2 ∼ independent N (0, ψ2), εijr|σ2
j ∼ independent N (0, σ2

j ),

where yijr represents the log-ratio of the r-th protein from the j-th method on the i-th blood

sample pair, r = 1, . . . , 8, j = 1, 2 i = 1, . . . , m = 5. The interaction term bij is not included

here as the data do not have enough information to estimate it. To fit this model, we assume

mutually independent (fitting) priors — uniform (−103, 103) for β’s and protein effects, and

IG(10−3, 10−3) for variance parameters. The model is fitted using WinBUGS [18] by calling

it from R [17] through the R2WinBUGS [19] package. Table 2 presents posterior summaries

for (β1, β2, log σ2
1, log σ2

2, log ψ2). Further, the central 95% credible intervals for corr(y1, y2),

corr(y11, y12) and corr(y21, y22), after adjusting for protein effects, are (0.01, 0.44), (0.01, 0.43)

and (0.01, 0.51), respectively. These correlations are computed using (2). They are relatively

small for a method comparison study because the between-individual variation ψ2 here is

small in comparison with the within-individual variations σ2
j , j = 1, 2. Under this model,
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the agreement measures listed in Table 1 do not depend on proteins. So for the purpose

of SSD for a future study, we ignore their effects and assume model (1). Further, to ex-

amine the effect of sampling priors on SSD, we consider two sets of sampling priors for

(β1, β2, log σ2
1, log σ2

2, log ψ2) — independent normal distributions with means and variances

equal to their posterior means and variances, and independent uniform distributions with

ranges given by their central 95% credible intervals. The posterior summaries obtained using

the pilot data are given in Table 2. Moreover, since the interaction term variance φ2 could

not be estimated in this small pilot study but might be present in a bigger study, we take

the sampling prior for log φ2 to be the same as that of log ψ2.

In the second example, we take the manual device as method 1 and the automatic device

as method 2. These data are modelled as (1) with (m,n) = (384, 2) but without the interac-

tion term bij. This term is dropped from the model on the basis of an exploratory analysis of

the data and the deviance information criterion [23]. This model is fitted along the lines of

the previous model with the same (fitting) priors for β’s and variances. Posterior summaries

for (β1, β2, log σ2
1, log σ2

2, log ψ2) are given in Table 2. The central 95% credible intervals for

corr(y1, y2), corr(y11, y12) and corr(y21, y22) are (0.86, 0.90), (0.86, 0.90) and (0.85, 0.90), re-

spectively. Such high correlations are typical in method comparison studies. In this case

also, we consider two sampling priors for (β1, β2, log σ2
1, log σ2

2, log ψ2) — they are constructed

using posterior summaries in exactly the same way as the previous example except that bij

term is not included in (1). This is because the present study, which itself is quite large,

does not seem to suggest its need.

Our investigation of properties of precision measures T ∗
12(m,n, δ) and T ∗

jj(m,n, δ), j =

1, 2, given by (7), focuses on the following settings: (α, δ) = (0.05, 0.80); fitting priors for

βj’s in (1) as independent (improper) uniform distributions on real line, and as independent
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IG(10−3, 10−3) distributions for variances; m ∈ {15, 20, . . . , 150}; and n ∈ {1, 2, 3, 4}. We

restrict attention to n ≤ 4 as it is rare to find studies in the literature with more than

four replicates. The Gibbs sampler described in Appendix is used for posterior simulation.

The Markov chain is run for 2,500 iterations and the first 500 iterations are discarded as

burn-in. These numbers were determined through a convergence analysis of the simulated

chains. Finally, the expectations in (7) are approximated using L = 2, 000 Monte Carlo

repetitions. These calculations are performed entirely in R. It took about 45 minutes on a

Linux computer with 4 GB RAM to compute one set of the three averages, (T ∗
12, T

∗
11, T

∗
22).

The values of T ∗
11 and T ∗

12 in case of normal sampling priors are plotted in Figure 1 for

concordance correlation (both examples), in Figure 2 for total deviation index with p0 = 0.8

(both examples), and in Figure 3 for mean squared deviation and coverage probability with

q0 = log(1.5) (only example 1). The omitted scenarios have qualitatively similar results.

The graphs confirm that the averages T ∗
11 and T ∗

12 can be considered decreasing functions of

m and n. This is also true for T ∗
22 for which the results are not shown. Some of the curves

do show minor departures from monotonicity, particularly in case of n = 1 when the curves

drop rather slowly with m. But they are due to the Monte Carlo error involved in averaging

and can be ignored. A slow decline also means that a precise evaluation of agreement is

difficult even with a large m.

In both examples, we have max{T ∗
12, T

∗
11, T

∗
22} = max{T ∗

11, T
∗
22} for all (m,n), in case of

all agreement measures except concordance correlation. It implies that to achieve the same

precision of inference, as measured by (δ, β), these measures require a larger sample size

for intra-method evaluation than for inter-method evaluation. This property also holds for

concordance correlation in example 2, but it holds in example 1 only when n = 1. The

Figures 1-3 also demonstrate that different sample sizes are needed for different agreement
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measures to attain the same precision of inference.

The above conclusions for normal sampling priors also hold for uniform sampling priors

(results not shown). Upon further investigation, we find that the two priors lead to virtually

identical average probabilities in case of example 2. Even in case of example 1, their differ-

ences are generally small — about 2-3% at most. Since these two priors represent different

distributions over practically the same range of values, this suggests that for SSD, it does

not matter much which distribution is used as both lead to similar results.

4 Illustration

The results in the previous section demonstrate, in particular, that the SSD procedure

proposed in Section 2.5 can be used in conjunction with any of the four agreement measures

listed in Table 1. In this section, we apply this procedure to determine sample sizes in case of

the two examples introduced in Section 1. To avoid repeating the same ideas, we focus only on

the total deviation index as the measure of agreement. We also investigate the robustness of

various choices one has to make for SSD based upon this measure. Other agreement measures

can be handled similarly. The method for computing T ∗’s, and the sampling and fitting priors

remain the same as in the previous section, with the exception that the uniform sampling

priors will now be called “Uniform-I” priors. We also take (α, β, δ) = (0.05, 0.85, 0.8). Our

choice of δ = 0.80 is motivated by bioequivalence studies [24, 25] where a difference of about

20% is considered a threshold for practical equivalence.

Table 3 presents values of the smallest m, separately for each 1 ≤ n ≤ 4, such that T ∗
12 ≤

1− β, T ∗
jj ≤ 1− β, j = 1, 2, hold individually. In other words, for these (m, n) combinations

we have at least β−α = 0.8 individual probabilities in the intervals [0.8U∗
12, U

∗
12], [0.8U∗

jj, U
∗
jj],
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j = 1, 2, where the probabilities below the upper bounds equal 0.95. Due to the discreteness

of (m,n), the exact probabilities in these intervals may be slightly higher than 0.8. Their

difference tends to increase with n and may be as much as 0.03 when n = 4. In Table 3,

the sample sizes are provided for both examples by taking p0 ∈ {0.80, 0.85, 0.90, 0.95}, and

assuming normal and Uniform-I sampling priors.

As we expect from the simulation studies, larger sample sizes are needed for intra-method

evaluation than for inter-method evaluation. Moreover, substantially large values of m are

needed for intra-method evaluation with n = 1. But this scenario is not of much practical

interest as precise estimation of within-individual variances σ2
1 and σ2

2 is difficult in this case.

Furthermore, the sample sizes for intra-method evaluation do not depend on p0 since the

term involving p0 in total deviation index appears as a multiplicative constant (see Table 1).

On the other hand, in case of inter-method evaluation, sometimes the values of m do increase

by one as p0 increases to the next level, but their maximum difference over the four settings

of p0 is three and most of the differences are two or less. This demonstrates that the sample

sizes for inter-method evaluation are also quite robust to the choice of p0.

It is interesting to note that, with the exception of n = 1 case, the sample sizes for our

two very different examples show remarkable similarity. In case of n = 1, the values of m

for intra-method evaluation are substantially higher for the second example than the first

example. This is because, as discussed in Section 3, the measurements on an individual in

the second example are highly correlated, whereas they are only weakly correlated in the

first example.

Suppose for the time being that SSD for simultaneous evaluation of intra- and inter-

method agreement is to be performed assuming Uniform-I sampling priors. It follows from

(9) and the results in Table 3 that the desired precision of inference can be achieved by

17



any of the following (m,n) combinations: (121, 1), (58, 2), (34, 3) and (23, 4) for example 1;

and (655, 1), (60, 2), (33, 3) and (23, 4) for example 2. These values do not depend on p0.

To find the optimal combination, recall that the cost of sampling is given by (8), where

we expect that the relative cost (CR/CI) ∈ (0, 1]. Under this cost function, a combination

(m2, n2) has lower total sampling cost than (m1, n1) if (m2−m1) < (CR/CI)(m1n1−m2n2).

In particular, if (m1n1 −m2n2) > 0 and (m2 −m1) < 0, then the (m2, n2) combination is

better than (m1, n1) irrespective of the cost of sampling. A naive application of this criterion,

without any subject-matter knowledge, suggests that a higher n is better. Hence (23, 4) is

the optimal sample size choice in both examples.

In case of example 1, the experimental protocol does allow us to draw enough blood from

individuals to have four replications. So we decide to use (m,n) = (23, 4) as the sample

size for a future study. In case of example 2, however, it is unlikely that four replicate

measurements of blood pressure can be obtained from each method without a change in the

pressure. On the other hand, we do need replications, especially for evaluating intra-method

agreement. So, as a compromise, we can take (m,n) = (60, 2) for a future study.

We now investigate robustness of the sample sizes with respect to the specification of

sampling priors and fitting priors. First consider the former. Results in Table 3 show that

the values of m in case of Uniform-I sampling priors tend to be a bit higher than normal

sampling priors. But they differ by at most two except in the case of intra-method evaluation

with n = 1. Note, however, that these two sampling priors represent different distributions

over essentially the same range of values.

Next, to specifically examine the impact of the range of sampling prior distributions, we

determine sample sizes assuming independent uniform distributions over the central 50%

posterior intervals of parameters as their sampling priors. These intervals based on the pilot
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data are reported in Table 2. We jointly refer to these priors as “Uniform-II”. Their ranges

are shorter than the ranges of Uniform-I priors, which represent uniform distributions over

the central 95% posterior intervals. From Table 2, the differences between the two sets of

ranges appear substantial in case of example 1, whereas they appear negligible in case of

example 2. Upon comparing values of m in Table 3 for Uniform-I and Uniform-II priors, we

find that there is virtually no difference between them in case of example 2. Even in case of

example 1, their differences are considerable only for intra-method evaluation with n = 1.

In all other cases, the differences mostly equal two or three but can be as much as five.

In a nutshell, these results suggest that except in the uninteresting case of intra-method

evaluation with n = 1, the choice between a normal and a uniform sampling prior distribution

over similar range of values is not important. More important is the choice of the range of

parameter values, but even that affects the sample sizes only to a limited extent.

We now use normal and Uniform-II sampling priors to determine the optimal (m, n)

combination that takes sampling cost and feasibility into account. This combination turns

out to be the same as in the case of Uniform-I sampling priors — (23, 4) for example 1

and (60, 2) for example 2. This finding is somewhat odd as, in general, we do expect some

difference in the optimal sample sizes for different sampling priors.

The above discussion assumed noniformative fitting priors for the parameters in model (1)

— improper uniform distributions over real line for βj’s, and IG(10−3, 10−3) distributions for

variance components. To examine sensitivity of the variance hyperparameter choice, we re-

peat determining the optimal (m,n) combination with two other noniformative choices, 10−1

and 10−2, for the common hyperparameter value. Uniform-I sampling priors are assumed for

this computation. We find that m changes by at most one — indicating that the sample sizes

are not sensitive to the choice of hyperparameters, provided they are in the noninformative
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range. This conclusion is not surprising since the inference with a noninformative prior is

dominated by the data.

5 Discussion

In this article, we described a Bayesian SSD approach for planning a method comparison

study. It is conceptually straightforward and can be used with any scalar agreement mea-

sure. However, a disadvantage of this approach is that it is simulation-based and hence is

computationally intensive. Nevertheless, the computations are easy to program in the pop-

ular software package R. An R program that can be used for SSD is publicly available on the

website http://www.utdallas.edu/~pankaj/Bayesian_ssd.

This approach involves specifying sampling priors for the model parameters. Although

the sample sizes seem somewhat sensitive to the ranges of parameter values, they seem quite

robust to the shapes of their distributions. So for practical purposes, it suffices to specify

a likely range of values for a parameter and use a uniform distribution over this interval

as its sampling prior. Information about the likely parameter values can be obtained from

literature or through a pilot study, as we do here. The sample sizes are also robust to the

choice of fitting priors, provided they are noninformative. The proposed approach involves

making rather subjective choices for (δ, β) that control how much precision of inference is

desired. But, broadly speaking, their roles here are similar to the roles of effect size and

desired power that also need to be specified in the usual frequentist SSD approach.

In both examples, among the (m,n) combinations that yielded the same precision, the

combination with the higher n also happened to be more cost efficient one, at least in the

range of n investigated. This was true irrespective of what the cost of taking a replicate
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was relative to the cost of sampling an individual. This conclusion is not true in general. It

is easy to construct examples where a higher n is more cost efficient only when the cost of

sampling a replicate is small relative to the cost of sampling an individual.
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Appendix: Gibbs sampler for posterior simulation

The model (1) can be written in a hierarchical fashion as

y|(β,b, R) ∼ N (Xβ + Zb, R), b|G ∼ N (0, G),

where X and Z are appropriately chosen design matrices consisting of zeros and ones; y =

(y1, . . . ,ym)′ is the data vector; β = (β1, β2)
′; b = (b1, . . . , bm, b11, b12, . . . , bm1, bm2)

′; R =

diag{R1, . . . , Rm} is the conditional covariance matrix of y; and G = diag{ψ2Im, φ2I2m} is

the covariance matrix of b. Here Im denotes an m ×m identity matrix, and yi and Ri are

respectively a column vector and a covariance matrix of order 2n, given as

yi = (yi11, . . . , yi1n, yi21, . . . , yi2n)′, Ri = diag{σ2
1In, σ

2
2In}.

The parameters in this case are (β,b, ψ2, φ2, σ2
1, σ

2
2). It is well-known that this model is con-

ditionally conjugate under the priors (4) [26]. In particular, the full conditional distribution

— the conditional distribution of a parameter given the remaining parameters and y, of the

column vector (β,b) is

N ({C ′R−1C + D}−1C ′R−1y, {C ′R−1C + D}−1
)
,
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where C = [X,Z], D = diag{B−1, G−1}, and B = diag{V 2
1 , V 2

2 }. The matrices involved in

this distribution can be computed using QR decompositions. Further, the full conditionals

of variance parameters are the following independent inverse gamma distributions:

ψ2 ∼ IG
(
Aψ + m/2, Bψ +

∑
i

b2
i /2

)
; φ2 ∼ IG

(
Aφ + m,Bφ +

∑
i

∑
j

b2
ij/2

)
;

σ2
j ∼ IG

(
Aj + (mn)/2, Bj +

∑
i

∑

k

(yijk − βj − bi − bij)
2/2

)
, j = 1, 2.

The Gibbs sampler algorithm simulates a Markov chain whose limiting distribution is

the desired joint posterior distribution of the parameters [20, ch 11]. It iterates the following

two steps until convergence: First, use the current draw of (ψ2, φ2, σ2
1, σ

2
2) to sample from the

normal full conditional of (β,b). Then, use the draw of (β, b) in the previous step to sample

from the independent inverse gamma full conditionals of (ψ2, φ2, σ2
1, σ

2
2). The estimates of

variance parameters from a frequentist mixed model fit can be used as the starting points

in this algorithm.
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List of Tables

Table 1. Expressions for various agreement measures for inter-method evaluation and

intra-method evaluation of the j-th method, j = 1, 2. They are derived using (2)

and (3) under model (1). Here Φ(·) represents a N (0, 1) cdf; and χ2
1(p0, ∆) represents

the p0-th quantile of a chi-squared distribution with one degree of freedom and non-

centrality parameter ∆.

Table 2. Posterior means, standard deviations and selected quantiles for various pa-

rameters. They are computed using the pilot data.

Table 3. Values of m for specified values of n that give the desired precision for

agreement evaluation. Here “1-1”, ‘2-2” and “1-2” respectively indicate intra-method

agreement of method 1, method 2, and inter-method agreement. Results are presented

assuming total deviation index is used as the measure of agreement with various com-

mon choices for p0. The sample sizes for intra-method evaluation do not depend on p0

— they are marked as “n/a”.
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List of Figures

Figure 1. Average probabilities T ∗
11 (left panel) and T ∗

12 (right panel) when agreement

is measured using concordance correlation. The top panel is for the protein ratios

example and the bottom panel is for the blood pressure example. These probabil-

ities measure precisions of inter-method agreement and intra-method agreement of

method 1, respectively. Here n represents the number of replicates.

Figure 2. Average probabilities T ∗
11 (left panel) and T ∗

12 (right panel) when agreement

is measured using total deviation index with p0 = 0.80. The top panel is for the

protein ratios example and the bottom panel is for the blood pressure example. Here

n represents the number of replicates.

Figure 3. Average probabilities T ∗
11 (left panel) and T ∗

12 (right panel) when agreement is

measured using mean squared deviation (top panel) and coverage probability (bottom

panel) with q0 = log(1.5). Here n represents the number of replicates and the results

are presented only for example 1.
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measure inter-method intra-method

concordance correlation 2ψ2

µ2
12+2ψ2+2φ2+σ2

1+σ2
2

ψ2+φ2

ψ2+φ2+σ2
j

coverage probability Φ( q0−µ12

τ12
)− Φ(−q0−µ12

τ12
) Φ( q0

τjj
)− Φ(−q0

τjj
)

mean squared deviation µ2
12 + τ 2

12 τ 2
jj

total deviation index τ12{χ2
1(p0, µ

2
12/τ

2
12)}1/2 τjj{χ2

1(p0, 0)}1/2

Table 1: Expressions for various agreement measures for inter-method evaluation and intra-

method evaluation of the j-th method, j = 1, 2. They are derived using (2) and (3) under

model (1). Here Φ(·) represents a N (0, 1) cdf; and χ2
1(p0, ∆) represents the p0-th quantile of

a chi-squared distribution with one degree of freedom and non-centrality parameter ∆.
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mean sd 2.5% 25% 75% 97.5%

Example 1 (Protein ratios)

β1 0.16 0.07 0.01 0.12 0.21 0.31

β2 0.10 0.08 -0.07 0.05 0.15 0.25

log σ2
1 -3.48 0.30 -4.01 -3.69 -3.29 -2.84

log σ2
2 -3.26 0.30 -3.82 -3.45 -3.08 -2.62

log ψ2 -5.92 1.11 -7.96 -6.68 -5.27 -3.55

Example 2 (Blood pressure)

β1 133.40 0.98 131.36 132.76 134.09 135.29

β2 131.24 0.98 129.36 130.55 131.89 133.09

log σ2
1 3.96 0.06 3.84 3.92 4.00 4.07

log σ2
2 3.98 0.06 3.86 3.94 4.02 4.10

log ψ2 5.94 0.07 5.81 5.90 5.99 6.08

Table 2: Posterior means, standard deviations and selected quantiles for various parameters.

They are computed using the pilot data.
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Normal Uniform-I Uniform-II

n n n

agreement p0 1 2 3 4 1 2 3 4 1 2 3 4

Example 1 (Protein ratios)

1-1 n/a 120 57 33 23 121 58 34 23 107 54 32 23

2-2 n/a 103 54 32 23 108 56 33 23 96 51 31 23

1-2 0.80 61 29 21 16 62 30 22 17 60 28 19 15

1-2 0.85 60 29 20 16 61 30 21 17 58 27 19 15

1-2 0.90 59 28 20 16 59 29 21 17 58 27 18 14

1-2 0.95 58 27 19 15 58 28 20 16 57 26 18 14

Example 2 (Blood pressure)

1-1 n/a 646 60 33 23 655 60 33 23 654 60 33 23

2-2 n/a 633 60 33 23 633 60 33 23 632 60 33 23

1-2 0.80 76 29 18 13 76 29 18 13 76 29 18 13

1-2 0.85 76 28 18 13 76 28 18 13 76 28 18 13

1-2 0.90 75 28 17 13 75 28 17 13 76 28 17 13

1-2 0.95 75 28 17 13 75 28 17 13 75 28 17 13

Table 3: Values of m for specified values of n that give the desired precision for agreement

evaluation. Here “1-1”, ‘2-2” and “1-2” respectively indicate intra-method agreement of

method 1, method 2, and inter-method agreement. Results are presented assuming total

deviation index is used as the measure of agreement with various common choices for p0.

The sample sizes for intra-method evaluation do not depend on p0 — they are marked as

“n/a”.
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Figure 1: Average probabilities T ∗
11 (left panel) and T ∗

12 (right panel) when agreement is

measured using concordance correlation. The top panel is for the protein ratios example and

the bottom panel is for the blood pressure example. These probabilities measure precisions

of inter-method agreement and intra-method agreement of method 1, respectively. Here n

represents the number of replicates.
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Figure 2: Average probabilities T ∗
11 (left panel) and T ∗

12 (right panel) when agreement is

measured using total deviation index with p0 = 0.80. The top panel is for the protein ratios

example and the bottom panel is for the blood pressure example. Here n represents the

number of replicates.
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Figure 3: Average probabilities T ∗
11 (left panel) and T ∗

12 (right panel) when agreement is

measured using mean squared deviation (top panel) and coverage probability (bottom panel)

with q0 = log(1.5). Here n represents the number of replicates and the results are presented

only for the protein ratios example.
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