\qquad

EXAMINATION II

Show your work!

$$
\begin{aligned}
& \oint_{\partial(\sigma)} \mathbf{V} \bullet d \mathbf{r}=\iint_{\sigma}(\nabla \times \mathbf{V}) \bullet \mathbf{n} d \sigma \\
& \iiint_{\tau} \nabla \bullet \mathbf{V} d \tau=\iint_{\sigma(\tau)} \mathbf{V} \bullet \mathbf{n} d \sigma
\end{aligned}
$$

Problem 1 [6-6.6]

Find a vector normal to the surface $x^{2}+y^{2}-z=0$ at the point $(3,4,25)$. Find the equations of the tangent plane and normal line to the surface at that point.
$\phi=x^{2}+y^{2}-z \Rightarrow \nabla \phi=2 x \mathbf{i}+2 y \mathbf{j}-\mathbf{k} \Rightarrow \nabla \phi(3,4,25)=\underline{6 \mathbf{i}+8 \mathbf{j}-\mathbf{k}}$
Tangent Plane: $6(x-3)+8(y-4)-(z-25)=0 \Rightarrow \underline{6 x+8 y-z=25}$
Normal Line: $\frac{x-3}{6}=\frac{y-4}{8}=\frac{z-25}{-1}$

Problem 2 [6-8.2]

Evaluate the line integral $\oint(x+2 y) d x-2 x d y$ along each of the following closed paths, taken counterclockwise:
(a) the circle $x^{2}+y^{2}=1$;
(b) the square with corners at $(1,1),(-1,1),(-1,-1),(1,-1)$;
(c) the square with corners $(0,1),(-1,0),(0,-1),(1,0)$.

We may use Green's (Stokes') Theorem with $P=(x+2 y)$ and $Q=-2 x$:
$\oint(x+2 y) d x-2 x d y=\iint_{\sigma}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d \sigma=\iint_{\sigma}(-4) d \sigma=-4 \times$ Area
Therefore, (a) $-4 \times \pi 1^{2}=\underline{-4 \pi}$

$$
\text { (b) }-4 \times 2^{2}=-16
$$

(c) $-4 \times(\sqrt{2})^{2}=\underline{-8}$

Note: Of course you can parameterize each of the curves and do the integrations and get the same answers,

Problem 3 [6-9.4]

Evaluate the integral $\int_{\mathcal{C}} e^{x} \cos y d x-e^{x} \sin y d y$, where \mathcal{C} is the broken line from $A=(\ln 2,0)$ to $D=(0,1)$ and then from D to $B=(-\ln 2,0)$. Hint: Consider the additional line from B to A.

Green's Theorem only applies to a closed curve but (even without the hint) we note that with the additional line L from B to A we have enclosed an area. The given integrand taken around the area on $\mathcal{C}+L$ yields zero by Green's Theorem so the value on L must cancel out the value on \mathcal{C}. Thus,

$$
\int_{\mathcal{C}} e^{x} \cos y d x-e^{x} \sin y d y=-\int_{L} e^{x} \cos y d x-e^{x} \sin y d y=
$$

But $y=0$ on L so

$$
=-\int_{-\ln 2}^{\ln 2} e^{x} d x=-\left[e^{x}\right]_{-\ln 2}^{\ln 2}=-(2-1 / 2)=\underline{-3 / 2}
$$

Problem 4 [6-10.5]

Evaluate $\iiint(\nabla \bullet \mathbf{F}) d \tau$ over the region $x^{2}+y^{2}+z^{2} \leq 25$, where

$$
\mathbf{F}=\left(x^{2}+y^{2}+z^{2}\right)(x \mathbf{i}+y \mathbf{j}+z \mathbf{k}) .
$$

Calculating the gradient: $\mathbf{n}=\frac{x \mathbf{i}+y \mathbf{j}+z \mathbf{k}}{\sqrt{x^{2}+y^{2}+z^{2}}} \Rightarrow \mathbf{F} \bullet \mathbf{n}=\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}$.
By the Divergence Theorem, where the surface is $x^{2}+y^{2}+z^{2}=25$ so $\mathbf{F} \bullet \mathbf{n}=(25)^{3 / 2}$:

$$
\iiint(\nabla \bullet \mathbf{F}) d \tau=(25)^{3 / 2} \times \text { Area }=5^{3} \cdot 4 \pi \cdot 5^{2}=\underline{4 \pi \cdot 5^{5}}
$$

$==1$
BTW: If the Divergence Theorem is not obvious immediately (a volume, the divergence of a field, the left hand side of the Divergence Theorem, ENGR 3300), you can do it directly. Work out carefully that

$$
\nabla \bullet \mathbf{F}=5\left(x^{2}+y^{2}+z^{2}\right)=5 r^{2}
$$

in spherical coordinates (naturally, since it's a sphere). Integrate

$$
\int_{0}^{2 \pi} \int_{0}^{\pi} \int_{0}^{5}\left(5 r^{2}\right)\left(r^{2} \sin \theta\right) d r d \theta d \phi=2 \pi \cdot 2 \cdot 5^{5}=\underline{4 \pi \cdot 5^{5}}
$$

Problem 5 [6-11.12]

Evaluate $\oint \mathbf{V} \bullet d \mathbf{r}$ around the circle $(x-2)^{2}+(y-3)^{2}=4, z=0$, where

$$
\mathbf{V}=\left(x^{2}+y z^{2}\right) \mathbf{i}+\left(2 x-y^{3}\right) \mathbf{j}
$$

For Stokes' Theorem, we calculate

$$
\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
\left(x^{2}+y z^{2}\right) & \left(2 x-y^{3}\right) & 0
\end{array}\right|=2 y z \mathbf{j}+\left(2-z^{2}\right) \mathbf{k}=2 \mathbf{k}
$$

on the (x, y)-plane with $z=0$.
Since $\mathbf{n}=\mathbf{k}$ (see Example 1 on page 328),

$$
\iint_{\sigma}(2 \mathbf{k}) \bullet \mathbf{k} d \sigma=2 \iint_{C} d \sigma=2 \cdot \pi \mathbf{2}^{2}=\underline{\mathbf{8} \pi}
$$

Note: Of course Green's Theorem yields the same result.

BTW: If you don't immediately think of Green's (or Stokes') Theorem, it can be done directly!

$$
\oint \mathbf{V} \bullet d \mathbf{r}=\oint\left(x^{2}+y z^{2}\right) d x+\left(2 x-y^{2}\right) d y=\oint x^{2} d x+\left(2 x-y^{3}\right) d y
$$

on $z=0$. But

$$
=\oint x^{2} d x-\oint y^{3} d y+2 \oint x d y=2 \oint x d y
$$

because the first two terms are exact differentials and so give zero around a circle. To parameterize the circle with center at $(2,3)$, let $x=2+2 \cos \theta$ and $y=3+2 \sin \theta$; so $d x=-2 \sin \theta d \theta$ and $d y=2 \cos \theta d \theta$.

$$
=2 \int_{0}^{2 \pi}(2+2 \cos \theta)(2 \cos \theta) d \theta=8 \int_{0}^{2 \pi} \cos ^{2} \theta=\underline{8 \pi}
$$

Problem 6 [6-10.7]

Evaluate $\iint \mathbf{r} \bullet \mathbf{n} d \sigma$ over the entire surface of the cone with base $x^{2}+y^{2} \leq 16, z=0$, and vertex at $(0,0,3)$, where $\mathbf{r}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$.

Divergence Theorem: $=\iiint_{\tau} \nabla \bullet \mathbf{r} d \tau=3 \times$ Volume $=3 \cdot \frac{1}{3} \pi \cdot 4^{2} \cdot 3=\underline{48 \pi}$

Note: If you didn't remember the $1 / 3$, this test was so short that you could integrate and find the volume of a cone using cylindrical coordinates with $z=-\frac{H}{R} r+H$ for a general cone of height H and radius R !

End of Test

