
Support Vector Classifier

Suppose now that the classes overlap in the feature space. We
still classify based on the sign of f(X) = β0 +XTβ and still
maximize the margin M of the hyperplane f(X) = 0, but allow
some points to be on the wrong side of the margin as well as
the hyperplane. Let ε1, . . . , εn denote slack variables. We
modify the constraint Yif(Xi) ≥M for all i = 1, . . . , n as

Yif(Xi) ≥M(1− εi), εi ≥ 0,

n∑

i=1

εi ≤ C.

“boundary” and “margin” are used interchangeably

εi = 0: correct side of the margin

εi > 0: wrong side of the margin (violates the margin)

εi > 1: wrong side of the hyperplane (misclassification)

Think of C as a budget for margin violation. If C = 0, all
εi = 0. If C > 0, # misclassifications ≤ C.

Large C = more tolerant of violations.

1 / 18

The support vector classifier is obtained by solving the same
optimization problem as in the maximal margin classifier but
with the new constraints. As before, upon taking M = 1/||β||,
we get the following equivalent problem:

min
β0,β

1

2
||β||2

subject to

Yif(Xi) ≥ 1− εi, εi ≥ 0, i = 1, . . . , n,

n∑

i=1

εi ≤ C.

Support vectors: The points that lie either on the margin
or violate the margin. Only these affect the classifier.

The observations that lie on the correct side of the margin
do not affect the classifier.

Slab (margin) boundaries: Y f(X) = 1; margin = 1/||β||.

2 / 18

346 9. Support Vector Machines

−0.5 0.0 0.5 1.0 1.5 2.0 2.5

−1
0

1
2

3
4

1

2

3

4 5

6

7

8
9

10

−0.5 0.0 0.5 1.0 1.5 2.0 2.5

−1
0

1
2

3
4

1

2

3

4 5

6

7

8
9

10

11

12

X1X1

X
2

X
2

FIGURE 9.6. Left: A support vector classifier was fit to a small data set. The
hyperplane is shown as a solid line and the margins are shown as dashed lines.
Purple observations: Observations 3, 4, 5, and 6 are on the correct side of the
margin, observation 2 is on the margin, and observation 1 is on the wrong side of
the margin. Blue observations: Observations 7 and 10 are on the correct side of
the margin, observation 9 is on the margin, and observation 8 is on the wrong side
of the margin. No observations are on the wrong side of the hyperplane. Right:
Same as left panel with two additional points, 11 and 12. These two observations
are on the wrong side of the hyperplane and the wrong side of the margin.

separate most of the training observations into the two classes, but may
misclassify a few observations. It is the solution to the optimization problem

(9.12)

subject to

p∑

j=1

β2
j = 1, (9.13)

yi(β0 + β1xi1 + β2xi2 + . . . + βpxip) ≥M(1− ϵi), (9.14)

ϵi ≥ 0,

n∑

i=1

ϵi ≤ C, (9.15)

where C is a nonnegative tuning parameter. As in (9.11), M is the width
of the margin; we seek to make this quantity as large as possible. In (9.14),
ϵ1, . . . , ϵn are slack variables that allow individual observations to be on

slack
variablethe wrong side of the margin or the hyperplane; we will explain them in

greater detail momentarily. Once we have solved (9.12)–(9.15), we classify
a test observation x∗ as before, by simply determining on which side of the
hyperplane it lies. That is, we classify the test observation based on the
sign of f(x∗) = β0 + β1x

∗
1 + . . . + βpx

∗
p.

The problem (9.12)–(9.15) seems complex, but insight into its behavior
can be made through a series of simple observations presented below. First
of all, the slack variable ϵi tells us where the ith observation is located,
relative to the hyperplane and relative to the margin. If ϵi = 0 then the ith

maximize
β0,β1,...,βp,ϵ1,...,ϵn

M
,M

Source: ISL
3 / 18

How to Choose C?

C is a tuning parameter that controls the bias-variance tradeoff.

Larger C = more tolerant of margin violations = wider
margin = more support vectors = potentially lower
variance (because the classifier is determined only by the
support vectors which are larger in number) but higher
bias (because the training error is larger due to the larger
number of margin violations)

C can be chosen in the usual manner using a
cross-validation or a validation-set approach.

Note: Support vector classifier has a linear decision boundary
because of which it may not work well when a non-linear
decision boundary is called for.

4 / 18

9.3 Support Vector Machines 349

−4 −2 0 2 4

−4
−2

0
2

4

−4 −2 0 2 4

−4
−2

0
2

4

X1X1

X
2

X
2

FIGURE 9.8. Left: The observations fall into two classes, with a non-linear
boundary between them. Right: The support vector classifier seeks a linear bound-
ary, and consequently performs very poorly.

depends on the mean of all of the observations within each class, as well as
the within-class covariance matrix computed using all of the observations.
In contrast, logistic regression, unlike LDA, has very low sensitivity to ob-
servations far from the decision boundary. In fact we will see in Section 9.5
that the support vector classifier and logistic regression are closely related.

9.3 Support Vector Machines

We first discuss a general mechanism for converting a linear classifier into
one that produces non-linear decision boundaries. We then introduce the
support vector machine, which does this in an automatic way.

9.3.1 Classification with Non-linear Decision Boundaries

The support vector classifier is a natural approach for classification in the
two-class setting, if the boundary between the two classes is linear. How-
ever, in practice we are sometimes faced with non-linear class boundaries.
For instance, consider the data in the left-hand panel of Figure 9.8. It is
clear that a support vector classifier or any linear classifier will perform
poorly here. Indeed, the support vector classifier shown in the right-hand
panel of Figure 9.8 is useless here.

In Chapter 7, we are faced with an analogous situation. We see there
that the performance of linear regression can suffer when there is a non-
linear relationship between the predictors and the outcome. In that case,
we consider enlarging the feature space using functions of the predictors,

Source: ISL
5 / 18

Classification with Non-Linear Boundaries

Option 1: Fit a support vector classifier but instead of using
just the original features X1, . . . , Xp, we enlarge the feature
space using functions of predictors, e.g., polynomials in Xj and
interactions of the form Xj ∗Xl, j 6= l, and use all the features
in the enlarged space as predictors.

Decision boundary is linear in the enlarged space but
non-linear in the original space

There are many ways to enlarge the feature space. Unless
done carefully, we may end up with a prohibitively large
number of features, making the computations problematic.

Option 2: Use a support vector machine which also
involves fitting a support vector classifier in an enlarged space
but done so in a computationally efficient manner.

6 / 18

Support Vector Machine (SVM)

Inner product of two feature vectors Xi and Xl is:

〈Xi, Xl〉 = XT
i Xl =

p∑

j=1

XijXlj .

Note: It can be seen that in an SV classifier, the Xi play a role
in the optimization problem and the solution f̂(X) = β̂0 +XT β̂
only through the inner products involving them. In particular,
we have β̂ =

∑n
i=1 α̂iYiXi, where the coefficient α̂i is positive

for a support vector and is zero otherwise. Thus, we can write

f̂(X) = β̂0 +XT

(
n∑

i=1

α̂iYiXi

)
= β0 +

n∑

i=1

α̂iYi〈X,Xi〉.

7 / 18

To generalize, we can replace the inner product 〈Xi, Xl〉 by a
kernel function K(Xi, Xl), leading to the estimated function as

f̂(X) = β̂0 +

n∑

i=1

α̂iYiK(X,Xi).

This generalization is called an SVM. It fits an SV classifier in
the transformed feature space. By definition, K is a symmetric,
positive (semi)-definite function. We can think of the kernel K
as a measure of dissimilarity. Two popular choices for K in the
SVM literature are:

dth degree polynomial: K(X,X ′) = (1 + 〈X,X ′〉)d

Radial basis: K(X,X ′) = exp(−γ||X −X ′||2), γ > 0.

Taking K(X,X ′) = 〈X,X ′〉 (or equivalently d = 1 in the
polynomial kernel) gives the SV classifier. This is a linear
kernel whereas the other kernels are non-linear.

8 / 18

SVMs with Q (> 2) Classes

So far our focus was on binary classification. The concept of
separating hyperplanes does not extend naturally to more than
two classes. Two common approaches to deal with this:

One-versus-one classification: There are
(
Q
2

)
pairs of

classes. Fit an SVM for each pair. Then, classify a test point X
as follows: Obtain its

(
Q
2

)
classifications, one from each fit, and

assign it to the most frequent class.

One-versus-all classification: Fit Q SVMs, each time
comparing one class (coded as +1) with the remaining Q− 1
classes (coded as −1). For a test point X, compute f̂(X) from
each fit. Assign it to the class for which f̂(X) is largest.

9 / 18

SV Classifier vs Logistic Regression

SV classifier: sign{f(X)}, where f(X) = β0 +XTβ. The
margin (width) is 1/||β|| and its boundaries are Y f(X) = 1. An
observation does not violate the margin if Y f(X) ≥ 1. The
optimization problem for fitting it can be rewritten as

min
β0,β

{
n∑

i=1

max[0, 1− Yif(Xi)] + λ||β||2
}
,

where λ (> 0) is a tuning parameter. This is the familiar “loss
(or error) + penalty” formulation that leads to regularized
estimation. The penalty here is same as the ridge penalty.

Loss function, max[0, 1− Y f(X)]: It equals zero if
Y f(X) ≥ 1,i.e., the observation does not violate the margin,
and equals 1− Y f(X) if Y f(X) < 1, i.e., the observation
violates the margin — hinge loss function. It tends to be
similar to the loss function (− logL) used in logistic regression.

10 / 18

358 9. Support Vector Machines

−6 −4 −2 0 2

0
2

4
6

8

Lo
ss

SVM Loss
Logistic Regression Loss

yi(β0 + β1xi1 + . . . + βpxip)

FIGURE 9.12. The SVM and logistic regression loss functions are compared,
as a function of yi(β0 +β1xi1 + . . .+βpxip). When yi(β0 +β1xi1 + . . .+βpxip) is
greater than 1, then the SVM loss is zero, since this corresponds to an observation
that is on the correct side of the margin. Overall, the two loss functions have quite
similar behavior.

When the support vector classifier and SVM were first introduced, it was
thought that the tuning parameter C in (9.15) was an unimportant “nui-
sance” parameter that could be set to some default value, like 1. However,
the “Loss + Penalty” formulation (9.25) for the support vector classifier
indicates that this is not the case. The choice of tuning parameter is very
important and determines the extent to which the model underfits or over-
fits the data, as illustrated, for example, in Figure 9.7.

We have established that the support vector classifier is closely related
to logistic regression and other preexisting statistical methods. Is the SVM
unique in its use of kernels to enlarge the feature space to accommodate
non-linear class boundaries? The answer to this question is “no”. We could
just as well perform logistic regression or many of the other classification
methods seen in this book using non-linear kernels; this is closely related
to some of the non-linear approaches seen in Chapter 7. However, for his-
torical reasons, the use of non-linear kernels is much more widespread in
the context of SVMs than in the context of logistic regression or other
methods.

Though we have not addressed it here, there is in fact an extension
of the SVM for regression (i.e. for a quantitative rather than a qualita-
tive response), called support vector regression. In Chapter 3, we saw that

support
vector
regression

least squares regression seeks coefficients β0, β1, . . . , βp such that the sum
of squared residuals is as small as possible. (Recall from Chapter 3 that
residuals are defined as yi − β0 − β1xi1 − · · · − βpxip.) Support vector
regression instead seeks coefficients that minimize a different type of loss,
where only residuals larger in absolute value than some positive constant

Source: ISL
11 / 18

Takeaways

Maximal margin hyperplane — classes are linearly
separable

SV classifier — linear decision boundary (works like
regularized logistic regression)

SVMs with non-linear kernels lead to non-linear decision
boundaries

12 / 18

Boosting Decision Trees

Bagging: Create multiple copies of the original dataset using
bootstrap, fit a separate tree to each dataset, and combine to
create a single predictive model.

Boosting: Grow the trees sequentially — grow each tree using
information from previously grown trees. Each tree in the
sequence is “weak” by itself but together they produce a
“powerful committee” — a general idea that works in other
contexts as well.

Does not involve bootstrap sampling

Learns slowly

We will consider boosting only in the context of regression
trees. Similar ideas apply for classification trees (see Chapter 10
of Elements of Statistical Learning, 2nd edition, for details).

13 / 18

8.3 Lab: Decision Trees 323

Algorithm 8.2 Boosting for Regression Trees

1. Set f̂(x) = 0 and ri = yi for all i in the training set.

2. For b = 1, 2, . . . , B, repeat:

(a) Fit a tree f̂ b with d splits (d + 1 terminal nodes) to the training
data (X, r).

(b) Update f̂ by adding in a shrunken version of the new tree:

f̂(x)← f̂(x) + λf̂ b(x). (8.10)

(c) Update the residuals,

ri ← ri−λf̂ b(xi). (8.11)

3. Output the boosted model,

f̂(x) =
B∑

b=1

λf̂ b(x). (8.12)

the interaction order of the boosted model, since d splits can involve
at most d variables.

In Figure 8.11, we applied boosting to the 15-class cancer gene expression
data set, in order to develop a classifier that can distinguish the normal
class from the 14 cancer classes. We display the test error as a function of
the total number of trees and the interaction depth d. We see that simple
stumps with an interaction depth of one perform well if enough of them
are included. This model outperforms the depth-two model, and both out-
perform a random forest. This highlights one difference between boosting
and random forests: in boosting, because the growth of a particular tree
takes into account the other trees that have already been grown, smaller
trees are typically sufficient. Using smaller trees can aid in interpretability
as well; for instance, using stumps leads to an additive model.

8.3 Lab: Decision Trees

8.3.1 Fitting Classification Trees

The tree library is used to construct classification and regression trees.

> library (tree)

Source: ISL
14 / 18

Given the current model, we fit a tree to the residuals from
the model rather than the outcome Y . Then, add the new
tree into the fitted function to update the residuals.

Each of these trees can be rather small — controlled by d.

By fitting small trees to the residuals, we slowly improve f̂
in areas where it does not perform well.

The shrinkage parameter λ slows down this process further,
allowing more and different shaped trees.

A slow learning approach generally performs well.

See ESLII for the objective function being minimized using
a gradient boosting algorithm. Allows loss functions other
than the squared error and misclassification error, and
performs subsampling — at each iteration we sample a
fraction η of the training observations (without
replacement) and grow the next tree using that subsample.
In practice, η = 0.5 is typical.

15 / 18

324 8. Tree-Based Methods

0 1000 2000 3000 4000 5000

0.
05

0.
10

0.
15

0
.2

0
0.

25

Number of Trees

Te
st

 C
la

ss
ifi

ca
tio

n
E

rr
or

Boosting: depth=1
Boosting: depth=2
RandomForest: m= p

FIGURE 8.11. Results from performing boosting and random forests on the
15-class gene expression data set in order to predict cancer versus normal. The
test error is displayed as a function of the number of trees. For the two boosted
models, λ = 0.01. Depth-1 trees slightly outperform depth-2 trees, and both out-
perform the random forest, although the standard errors are around 0.02, making
none of these differences significant. The test error rate for a single tree is 24 %.

We first use classification trees to analyze the Carseats data set. In these
data, Sales is a continuous variable, and so we begin by recoding it as a
binary variable. We use the ifelse() function to create a variable, called

ifelse()
High, which takes on a value of Yes if the Sales variable exceeds 8, and
takes on a value of No otherwise.

> library (ISLR)

> attach (Carseats)

> High=ifelse (Sales <=8," No"," Yes ")

Finally, we use the data.frame() function to merge High with the rest of
the Carseats data.

> Carseats =data.frame(Carseats ,High)

We now use the tree() function to fit a classification tree in order to predict
tree()

High using all variables but Sales. The syntax of the tree() function is quite
similar to that of the lm() function.

> tree.carseats =tree(High∼.-Sales ,Carseats)

The summary() function lists the variables that are used as internal nodes
in the tree, the number of terminal nodes, and the (training) error rate.

> summary (tree.carseats)

Classification tree:

tree(formula = High ∼ . - Sales , data = Carseats)

Variables actually used in tree construction:

[1] "ShelveLoc " "Price" "Income " "CompPrice "

Source: ISL
16 / 18

Three Tuning Parameters in Boosting

trees B: Boosting can overfit if B is too large —
unlike bagging and random forest. We can use cross-validation
to select B.

Shrinkage parameter λ: A small positive # that controls the
rate at which boosting learns. A very small value can require a
very large B to achieve good performance. Typical values are
0.01 or 0.001, but the right choice depends on the problem.

of splits d (or terminal nodes d+ 1): It controls the
complexity of the trees. Often, d = 1 works well — each tree is
a stump, consisting of a single split. More generally, d is called
the interaction depth as it controls the interaction order of the
boosted model, since d splits can involve at most d variables. In
practice, d ≈ 5 is often good enough.

17 / 18

What Else?

Regularization

Kernels

Deep learning

· · ·

Note: Proof is in the pudding — apply all methods you know
and pick the one that has the smallest test error.

18 / 18

