Corrections to Digital Signal Processing, $4^{\text {th }}$ Edition

## by

## John G. Proakis and Dimitris G. Manolakis

1. Page 18 , two lines below equation (1.3.18)
sk(n) should be $\mathrm{s}_{\mathrm{k}}(\mathrm{n})$
2. Page 34, Figure 1.4.8

The quantized value of the signal between 2 T and 3 T should be 4
3. Page 66 , line below equation (2.2.43)
"is relaxed" should be "is non-relaxed"
4. Page 101 , last term of equation (2.4.24)
n
n should be $N$
5. Page 147 , last sentence above Section 3.1

Move this sentence to line above, just before the word "Finally, "
6. Page 161, figure 5.2.1

The mapping is $w=a^{-1} z$
7. Page 237 , line 2 from the top of page
"radian" should be "radial"
8. Page 321, Figure 5.2.3, magnitude plot

Scale on the ordinate should be multiplied by 5
9. Page 387, line 8 below equation (6.1.15)
$\mathrm{X}\left(\mathrm{F}_{\mathrm{s}}\right)$ should be $\mathrm{X}(\mathrm{F})$
10.Page 390, Figure 6.1.3(b)
$\mathrm{X}\left(\mathrm{F} / \mathrm{F}_{\mathrm{s}}\right)$ should be $\mathrm{X}(\mathrm{F})$
11.Page 391, Figure 6.1 .5 upper right-hand part of the figure
$\mathrm{X}\left(\mathrm{F} / \mathrm{X}_{\mathrm{f}}\right)$ should be $\mathrm{X}(\mathrm{F})$
12.Page 396, Figure 6.2.3, graph of $\mathrm{Y}(\mathrm{F})$

For $\mathrm{F}<0$, the $\mathrm{F}_{\mathrm{s}}$ on the abscissa should be $-\mathrm{F}_{\mathrm{s}}$
13.Page 424, two lines below equation (6.4.68)

The word "envelop" should be "envelope"
14.Page 454, equation on line above Section 7.1.2
$\mathrm{e}^{-\mathrm{j} 2 \mathrm{kN}}$ should be $\mathrm{e}^{-\mathrm{j} 2 \mathrm{k} / \mathrm{N}}$
15.Page 463, line below equation (7.1.39)
(7.1.38) should be (7.1.39)
16.Page 506, problem 7.23(e)

The exponent should be $\mathrm{j}(2 / \mathrm{N}) \mathrm{k}_{\mathrm{o}} \mathrm{n}$
17. Page 526, Figure 8.1.10

Delete the factor of 2 in the expression for B
18. Page 582 , line 4 from the top

$$
B_{2}(z)=1 / 2+3 / 8 z^{-1}+z^{-2}
$$

19. Page 646, Problem 9.22

In the denominator of $\mathrm{H}(\mathrm{z})$, the term r 2 should be $\mathrm{r}^{2}$
20. Page 672, two lines below equation (10.2.35)
$\mathrm{G}(\mathrm{k}+\mathrm{x})$ should be ((k+)
21. Page 679 , line above equation (10.2.52) and in equation (10.2.52)

Add the term

$$
\mathrm{b}(1)=2 \mathrm{~b}(1)-2 \mathrm{~b}(0) \text {; Then, in }(10.2 .52), \mathrm{k}=2,3, \ldots, \mathrm{M} / 2-2
$$

22. Page 680, line above Case 4:

The equation should be

$$
c(0)-1 / 2 c(2)=c(1)
$$

23. Page 725, Figure 10.3.14, graph on left

The value of 1 is the peak value
24. Page 742 , problem 10.2.3, lines 4 and 6

Add subscripts I and $u$ on the expressions for
$H(s)$ should $b H_{a}(s)$
25. Page 809 , equation (11.12.15)

$$
Q\left(z^{M}\right) \text { should be } \mathbf{Q}^{t}\left(z^{M}\right)
$$

26. Page 811, in Solution of example 11.12.1

The matrix for $G_{0}(z), G_{1}(z)$ and $G_{2}(z)$ should be transposed
Thus,

$$
\mathrm{G}_{0}(\mathrm{z})=1-\mathrm{z}^{-1}+\mathrm{z}^{-2}, \mathrm{G}_{1}(\mathrm{z})=-1-\mathrm{z}^{-1}+3 \mathrm{z}^{-2}, \mathrm{G}_{2}(\mathrm{z})=1+3 \mathrm{z}^{-1}-5 \mathrm{z}^{-2}
$$

27. Page 818, problem 11.16

Change the statement of the problem to the following:
Use the result in Problem 11.15 to determine the type II form of the I=3 interpolator in Figure 11.5.12(b)
28. Page 821, third line from bottom of page

Should be $\mathrm{f}_{0}=1 / 6$ and $\mathrm{f}=1 / 3$
29. Page 958, problem 13.19

In the expression for the least squares error, $f(m) n$ should be $f_{m}(I)$ and $g m(n)$ should be $g_{m}(I)$
30. Page 962 , equations (14.1.6), (14.1.7) and (14.1.8)
$\mathrm{X}(\mathrm{F} / \mathrm{X}(\mathrm{F}))$ should be $\mathrm{X}(\mathrm{F})$
31. Page 964, in Solution of Example 14.1.1, line 2

Figure 10.2.2(a) should be Figure 10.2.2
32. Page 1038, problem 14.35

In the denominator of the equation, $\mathbf{v}_{\mathrm{k}} \mathbf{v}_{\mathrm{k}}$ should be $\mathbf{v}_{\mathrm{k}} \mathbf{v}_{\mathrm{k}}{ }^{\mathrm{H}}$

