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suggest a sampling rate F; > 2Fy; however, as we show in this section, there
mpling techniques that allow sampling rates consistent with the bandwidth B,
¢ than the highest frequency, Fy, of the signal spectrum. Sampling of bandpass
als is of great interest in the areas of digital communications, radar, and sonar

111S.

.1 Uniform or First-Order Sampling
form or first-order sampling is the typical periodic sampling introduced in Sec-
1 6.1. Sampling the bandpass signal in Figure 6.4.1(a) atarate F; = 1/T produces
equence x(n) = Xxq (nT) with spectrum

1 [o0)
X(F)=— Z X (F — kFy) (6.4.1)

k=—0c

he positioning of the shifted replicas X (F — kF) is controlled by a single param-
ter, the sampling frequency F;. Since bandpass signals have two spectral bands, in
eneral, it is more complicated to control their positioning, in order to avoid aliasing,
ith the single parameter Fj.

nteger Band Positioning, We initially restrict the higher frequency of the band to be
n integer multiple of the bandwidth, that is, Fy = mB (integer band positioning).

The number m = Fy /B , whichisin general fractional, is known as the band position.
Figures 6.4.1(a) and 6.4.1(d) show two bandpass signals with even (m = 4) and odd
(m = 3) band positioning. It can be easily seen from Figure 6.4.1(b) that, for integer-
positioned bandpass signals, choosing F; = 2B results in a sequence with a spectrum
without aliasing. From Figure 6.4.1(c), we see that the original bandpass signal can
be reconstructed using the reconstruction formula

oC
Xa(t) = Y Xa(nT)ga(t —nT) (6.4.2)
n=—00
where
in7 B
ga(t) = sinz Bt cos2m F.t (6.4.3)

is the inverse Fourier transform of the bandpass frequency gating function shown in
Figure 6.4.1(c). We note that g,(¢) is equal to the ideal interpolation function for
lowpass signals [see (6.1.21)], modulated by a carrier with frequency F..

It is worth noticing that, by properly choosing the center frequency Fe of G,(F),
we can reconstruct a continuous-time bandpass signal with spectral bands centered
at F. = 2(kB+ B/2),k=0,1,.... For k = 0 we obtain the equivalent baseband
signal, a process known as down-conversion. A simple inspection of Figure 6.4.1
demonstrates that the baseband spectrum for m = 3 has the same spectral structure
as the original spectrum; however, the baseband spectrum for m = 4 has been
“inverted.” In general, when the band position is an even integer the baseband
spectral images are inverted versions of the original ones. Distinguishing between
these two cases is important in communications applications. '
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F, F. Fy

Y/

Nyquist zones

X, (F)l

(e)

Figure 6.4.1 Illustration of bandpass signal sampling for integer band positioning,.

Arxbitrary Band Pesitioning. Consider now a bandpass signal with arbitrarily p
sitioned spectral bands, as shown in Figure 6.4.2. To avoid aliasing, the sampli:
frequency should be such that the (k —1)th and kth shifted replicas of the “negativ
spectral band do not overlap with the “positive” spectral band. From Figure 6.4.2(
we see that this is possible if there is an integer k and a sampling frequency F; th
satisfy the following conditions:

2Fy < kF, (6.4.
(k—1F, <2FL (6.4.
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X, (F

l<¥ B —>—| |<— B —>l

[\ | /\
FL Feo Fy -F. 0 F, F. Fy F

) (a)
Nyquist zones o
(

1 (k—1)th replica kih replica
0 F F

- 2F, >
KF,
B F. 4B
(b)
Figure 6.4.2 Illustration of bandpass signal sampling for arbitrary band positioning.
which is a system of two inequalities with two unknowns, k and F,. From (6.4.4) and
(6.4.5) we can easily see that F; should be in the range
2Fy 2F
LI 6.4.6
g F k= T k-1 (64.6)
To determine the integer k we rewrite (6.4.4) and (6.4.5) as follows:
2F, i k
— < — 6.4.7
F, ~ 2Fy (647
NS A (k — 1)F, <2Fy —2B (6.4.8)
3 4B F

By multiplying (6.4.7) and (6.4.8) by sides and solving the resulting inequality for k
we obtain

band position
and positioning, < Fu (6.4.9)

nal with arbitrarily po-
1 aliasing, the samplin;
plicas of the “negative”
d. From Figure 6.4.2(b
sling frequency F; tha

The maximum value of integer k is the number of bands that we can fit in the range
from 0 to Fy, thatis

Fy
kmax = LFJ (6.4.10)

where [b] denotes the integer part of b. The minimum sampling rate required to
avoid aliasing is Fymax = 2F#/kmax- Therefore, the range of acceptable uniform

sampling rates is determined by

[\

Fy 2F; ‘
T < F < 6.4.11
L~ 7 T k-1 ( )
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where k is an integer number given by

1<ks Lf-’iJ (64

As long as there is no aliasing, reconstruction is done using (6.4.2) and (6.4.3), wh
are valid for both integer and arbitrary band positioning.

Choosing 2 Sampling Frequency. To appreciate the implications of conditions (6.4
and (6.4.12), we depict them graphically in Figure 6.4.3, as suggested by Vaugh:

al. (1991). The plot shows the sampling frequency, normalized by B, as a functio
of the band position, Fy/B. This is facilitated by rewriting (6.4.11) as follows:

2Fy; F, 2 [Fy ;
- < e L b — —
s ( : ) (6.4.13

i

The shaded areas represent sampling rates that result in aliasing. The allowed rang
of sampling frequencies is inside the white wedges. For k = 1, we obtain 2Fy -
F, < oo, which is the sampling theorem for lowpass signals. Each wedge in the plc
corresponds to a different value of k.

To determine the allowed sampling frequencies, for a given Fy and B, we dras
a vertical line at the point determined by Fy/B. The segments of the line within th
allowed areas represent permissible sampling rates. We note that the theoreticall
minimum sampling frequency F; =28, corresponding to integer band positionin

Fy
B

Figure 6.4.3 Allowed (white) and forbidden (shaded) sampling frequency re-
gions for bandpass signals. The minimum sampling frequency Fy = 2B, which
corresponds to the corners of the alias-free wedges, is possible for integer-

positioned bands only.



e, any small variation Of tne sdipisis

the wedges. Therefore,
nal will move the sampling frequency into the

is to sample at a higher sampling rate, which

curs at the tips of
te or the carrier frequency of the sig

rbidden area. A practical solution
equivalent to augmenting the signal band with a guard band AB = ABL + ABgH.
e au mented band locations and bandwidth are given by

(6.4.2) and (6.4.3), w &

, Fp=FL— ABg (6.4.14)
ions of conditions (§ F F

= + AB 6.4.15

suggested by Vaugh, H H H (( )
: B =B+ AB 6.4.16)

Jlized by B, as a fun

1 (6.4.11) as follows:
. ge of allowed samplingare given by

The lower-order wedge and the correspondingran

2Fy 2F; F;

_ 8 < F‘_ < ___———L k, p=1 _H 6.4.

L <F=gq where \B’} (6.4.17)
The k'th wedge with the guard bands and the sampling frequency tolerances

are illustrated in Figure 6.4.4. The allowable range of sampling rates is divided into

ls. Each i .
ach wedge " the values above and below the practical operating points as

given Fy and B, we 2F,  2Fy
1ents of the line within AFs=7"7""T% = AFgq + AFsn (6.4.18)
note that the theoretic
» integer band positioni From the shaded orthogonal triangles in Figure 6.4.4, we obtain
k-1
ABL = TAFSH (6.4.19)
k/
ABy = EAFSL (6.4.20)
which shows that symmetric guard bands lead to asymmetric sampling rate tolerance.
2 Fi
B k-1 B
______________________________ Practical operating
Afy 1 Sampling point
By |frequency .
AFy i folerance .../ '
B X ot L P\R_2 B
o i “ Tk B
Figure 6.4.4 : :
Tllustration of the '
. relationship between the : :
E‘ng frequency re- size of guard bands and fe—} >
¢y Fy =2B, which allowed sampling frequency AB, AB,,
deviations from its nominal B B
Guard-band widths

ble for integer-

value for the kth wedge.
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If we choose the

Practical operating point at the vertical midpoint of t}
the sampling rate is

1/2F; 2F]
F.=_ (|2 H L
: 2( K +k’—1)
Since, by construction, A F;

L=AFy = AF,/2, the guard bands become

14

k' —
ABy =

1
AF;
k/
ABy = ZAFY

We next provide an example that illustrates the use of this approach.

EXAMPLE 6.4.1

Suppose we are given a bandpass si

gnal with B = 25 kHz and Fr
(6.4.10) the maximum wedge index i

= 10,702.5 kH:
s

-

kmax = | F /B = 429

This yields the theoretically minimum sampling frequency

Fo_ 2Fy

=50.0117 kHz

kmax

AB; =2.5kHzand ABy =2.5kHzon each side of the sj
of the signal becomes B’ — B+ AB

kHz and Fro= Fy + ABy =10.73

Kinax = LF},/B'] = 357

Substitution of kmax into the inequality in (6.4.17) provides the range of acceptable sam;
frequencies

60.1120 kHz < £, <60.1124 kHz

A detailed analysis on how to choose in practice the sampling rate for bandy
signals is provided by Vaug

han et al. (1991) and Qj et al. (1996).

6.4.2 Interleaved or Nonuniform Second-Order Sampling

Suppose that we sample a continuous-time signal x,
at time instants s —

() with sampling rate F; = I,
=nT; + A;, where A; is a fixed ti

me offset. Using the sequence

X (nT}) =x.(nTi + A;), —o0o <H <00 (6.4.2




