


5.3 Sampling of Bandpass Signals

The conditions developed in Section 5.2.1 for the unique representation of a continuous-time signal by
the discrete-time signal obtained by uniform sampling assumed that the spectrum of the continuous-time
signal is bandlimited in the frequency range from dc to some frequency Q. Such continuous-time signals
are commonly referred to as lowpass signals. There are applications where the continuous-time signal is
bandlimited to a higher range Q< 191 < 84, where Q; > . Sucha signal is usually referred to as
a bandpass signal and is often obtained by modulating a lowpass signal. We can of course sample such
a bandpass continuous-time signal with a sampling rate greater than twice the highest frequency, ie, by
ensuring
Qr = 28H,

to prevent aliasing. However, in this case, due to the bandpass specirim of the continuous-time signal,
the spectrum of the discrete-time signal obtained by sampling will have spectral gaps with no signal

components present in these gaps. Moreover, if Qg is very large, the sampling rate also has to be very
large which may not be practical in some situations,

We outline next a more practical and efficient approach [Por97]. Let AS2 = Qy — S define the
bandwidth of the bandpass signal. Assume first that the highest frequency $25 contained in the signal is

an integer multiple of the bandwidth, .2,
Qu = M(AQ).

We choose the sampling frequency.$27 tO satisfy the condition

Qr =200 = -%%—H—, {5.23)

e AT

smaller than 2Q g, the Nyquist rate. Substituting Eq (523)inEq (5.9) we arrive at the expression

for the Fourter transform G (j ) of the impulse-sampled signal gp(r):

1 00
Gplj == Y Ga(j(R = 28D (5.24)

k=—00

As before, Gp(j§2) consists of a sum of the original Fourier transform G, (jS2) and replicas of G ()
shifted by integer multiples of twice the bandwidth A2, and then scaled by 1/7  The amount of the
shift for each value of k ensures that there will be no overlap betwee
aliasing Figure 5 11 shows the spectrum of the original continuous-time signal g, () and that of the
sampled version g plt), sampled at the rate given by Eq. (523 for M =4 As can be seen from this figure,

(t) can be recovered from gp(r) by passing the latier through an ideal bandpass filier with a passband
given by 2 = Q] < Qpanda gainof T.

n all shifted replicas, and hence no
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Figure 5.11: Illustration of the effect in the frequency-domain of sampling below the Nyguist rate a bandpass signal
with highest frequency that is an integer multiple of its bandwidth: (a) spectrum of original bandpass signal, and {(b)
spectrim of sampled bandpass sigral
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Figure 5.12: llustration of the effect in the frequency-domain of sampling below the Nyquist rate a bandpass signal
with highest frequency that is not an integer multiple of its bandwidth: (a) spectrum of original bandpass signal, and
(b) spectrum of sampied bandpass signal

Note that any of the replicas in the Jower frequency bands can be retained by passing g, (t) through
bandpass filters with passbands Q7 ~ k(AQ) < 1Q] = Q@ —k(AR), ] = k <= M — 1 providing a
translation of the original bandpass signal to lower frequency ranges. If the bandpass signal has been
obtained by modulating a lowpass signal, then the latter can be recovered by passing g,(r) through a
lowpass filter with passband 0 < |Q] < Q. which retains the replica in the baseband. This approach is
often employed in digital radio recelvers.

If Q4 is not an integer multiple of the bandwidth £y ~ 27, we can artificially extend the bandwidth
either to the right ot to the left so that the highest frequency contained in the bandpass signal is an integer
multiple of the extended bandwidth, For example, if we extend the bandwidth to the left by assuming
the lowest frequency contained in the bandpass signal to be §2,, then §, is chosen such that the extended
bandwidth @y — 2, is an integer muitiple of Q . In both cases the spectrum of the sampled signal obtained
by sampling g,(t) will have small spectral gaps between the replicas. This is illustrated in Figure 5.12
when the bandwidth is extended to the left and M is chosen as 3




Bandpass Signals

For a signal m{f) whose highest-frequency spectral component is fa the sampling
frequency f, must be no less than f, = 2f3s only if the lowest-frequency spectral
component of m(t} is f; = 0. In the more general case, where f; # 0, it may be that
the sampling frequency need be no larger than f, = 2(fy, — 1) For example, if the
spectral range of a signal extends from 100 to 10.1 MHz, the signal may be reco-
vered from samples taken at a frequency f, = 2(10.1 — 10.0) = 0.2 MHz.

To establish the sampling theorem for such bandpass signals, let us select a
sampling frequency f; = 2(f3r — /1) and let us initially assume that it happens that *
the frequency f, turns out to be an integral multiple of f,, that is, f; = nf, with n %
an integer. Such a situation is represented in Fig. 5.1-4. In part a is shown the %
two-sided spectral pattern of a signel mit} with Fourier transform M(jw). Here it ==
has been arranged that n = 2; that is, f; coincides with the second harmonic of
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-+ Tigure 5.1-4 {a) The spectrum of a bandpass signal (b) The spectrum of the sampled bandpass signal.




the sampling frequency, while the sampling frequency is exactly f, = 2(f,, — fi) In

- part b is shown the spectral pattern of the sampled signal S(t)m(t). The product of
~. mft) and the dc term of S{t) [Eq. (5.1-1)] duplicates in part b the form of the spec-

tral pattern in part a and leaves it in the same frequency range fromf, tof,,. The

product of m(t) and the spectral component in 5{t) of frequency f,{ = J/ T;) gives

rise in part b to a spectral pattern derived from part a by shifting the pattern in

part a to the right and also to the left by amount f,. Similarly, the higher harmo-~
nics of £, in S(¢) give rise to corresponding shifts, right and left, of the spectral

pattern in part a. We now note that if the sampled signal S()m(t) is passed

through a bandpass filter with arbitrarily sharp cutoffs and with passband from

J1.t0 far, the signal m(t) will be recovered exactly.

In Fig 5.1-4 the spectrum of m(t) extends over the first half of the frequency
interval between harmonics of the sampling frequency, that is, from 2.0/, to 2.5f,.
As a result, there is no spectrum overlap, and signal recovery is possible. It may
also be seen from the figure that if the spectral range of m(t) extended over the
second haif of the interval from 2.5/, to 3.0f,, there would similarly be no overlap.
Suppose, however, that the spectrum of m(t) were confined neither to the first half
nor to the second half of the interval between sampling-frequency harmonics. In
such a case, there would be overlap between the spectrum patterns, and signaj
recovery would not be possible. Hence the minimum sampling frequency allow-
able is f, = 2(fy ~ f;) provided that either fj, or f; is a harmonic of /.

If neither fy, nor f; is a harmonic of f,, a more general analysis is required. In
Fig. 5.1-5a we have reproduced the spectral pattern of Fig, 5.1-4. The positive-
frequency part and the negative-frequency part of the spectrum are called PS and
NS respectively. Let us, for simplicity, consider separately PS and NS and the
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Figure 5.3-5 () Spectrum of the bandpass signal (k) Spectrum of NS shifted by the (N ~ 1)st and the
Nth harmonic of the sampling waveform
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manner in which they are shifted due to the sampling and let us consider initially
what constraints must be imposed so that we cause no overlap over, say, PS.

The product of m(t) and the dec component of the sampling waveform leaves
PS unmoved and it is this part of the spectrum which we propose to selectively
draw out to reproduce the original signal. If we select the minimum value of f, to
be f, = 2(fy — f;) = 2B then the shifted PS patterns will not overlap PS. The NS
will also generate a series of shifted patterns to the left and to the right. The lelt
shiftings cannot cause an overlap of PS. However, the right shiftings of NS might
cause an overlap and these right shiftings of NS are the only possible source of
such overlap over PS.

Shown in Fig. 5.1-5b are the right shifted patterns of NS due to the
(N-1)st and Nth harmonics of the sampling waveform. It is .clear that to avoid
overlap it is necessary that

N-Dfi~f<h; (51-3

and Nf, —fu 2 for (5.1-4)
so that, with B = f, — f; we have

(N —1f, s 2fy — B) (51-5)

and Nf, = %y (5.1-6)

If we let k = f,,/B, Eqs. (5 1-5) and (5 1-6) become

k—1
: il 5.1-7
f,sZB(N_l) . 5.1-1)
f.= 2B L2 (51-8)
and PR N

in which k = N since f, > 28. Equations (51-7) and (5.1-8) :es'tablish ic con-
straint which must be observed to avoid an overlap on PS.‘It. is clear from the
symmetry of the initial spectrum and the symmetry of the shiftings required that
this same constraint assures that there will be no overlap on NS.

Equations (5.1-7) and (5.1-8) have been plotted in Fig. 5. 1-6 for several values

of N. The shaded regions are the regions where the constraints are satisﬁ_ed, while
in the unshaded regions the constraints are not satisfied an'd ove.rlap will oceur.
As an example of the use of these plots consider a case in Iwhach a baseband
signal has a spectrum which extends from f; = 25 kHz to f, = 3.5 kHz. Here
B =1 kHz and k =f,/B = 35 On the plot of Fig. 51-6 we have accordingly
erected a dashed vertical line at k == 3.5. We observe that for this value of &, the

selection of a sampling frequency f, = 2B = 2 kHz brings us to a point in an
overlap region. As f, is increased there is a small range of f,, corresponding to
N =3, where there is no overlap. Further increase in f, again takes us to an
overlap region, while still further increase in f, provides a nonoverlap range, cor-
responding to N = 2 (from f, = 3.58 to J: = 5B). Increasing f, further we apain
enter an overlap region while at f, = 7B we enter the nonoverlap region for
N = 1. When J, > 7B we do not again enter an overlap region. (This is the region

where f, > 2f,,; that is, we assume we have a lowpass rather than a bandpass
signal.) ‘
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Figure 5.1-6 Showing the regions (shaded) in which both Egs (51-7) and (5 1-8) are satisfied




