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In this chapter we present an elementary discussion of linear difference
equations with constant coefficients. Our motivation for doing so is that
such difference equations will be used in Chapter 5 to describe and
analyze discrete-time (DT) systems. Two methods for solving this class
of difference equations will be included in this chapter, while a third
method will be discussed in Chapter 3.

2.1 INTRODUCTORY REMARKS
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The notion of linear difference equations with constant coefficients is
best introduced by means of the simple resistive network that is shown
in Fig. 2.1-1, where V(n) denotes the voltage at the nth node, for —2 =
n < 3. We wish to describe this network by means of a difference equa-
tion. To this end, we consider a typical section (below Fig. 2.1-1) of this
network, where I, I, and I5 denote currents leaving the node n — 1.
Application of Kirchhoff’s current law to node n — 1 leads to the equa-
tion

11 + 12 + 13 = O
Substituting for I,, I,, and 75 in the preceding equation, we obtain

V(n—1)——V(n)+V(n—1)—V(n—2)+V(n—1)——O_
1 1 1 B

0
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2.2 Solution of Difference Equations

V(;Z) vi(—1) v(0) v(1) v(2) v(3)

89 VOIS e

Vin — 2)0——MW M © V(n)
et

which simplifies to yield
Vi) = 3Vn — 1) + V(n —2)=0, 0=n=3 (2.1-1)

Equation (2.1-1) is the desired difference equation that describes the
network in Fig. 2.1-1 in terms of its node voltages. We observe that it
is a second-order difference equation since the voltage at node n [i.e.,
V(n)] is expressed as a linear combination of the voltages at two previous
node voltages V(n — 1) and V(n -2).

2.2 SOLUTION OF DIFFERENCE

EQUATIONS

A logical question that arises at this point is how one can solve (2.1-1)
to obtain V(n). Since (2.1-1) represents a second-order difference equa-
tion, we would require two known voltages, say V(-2) and V(-1), to
obtain the rest. To illustrate,

V(-2) = 89 volts
and V(—1) = 34 volts

Then a simple procedure for obtaining the remaining V(n) for 0 = n <
3 would be a recursive method, since (2.1-1) implies that

Vin) = 3Vin — 1) — V(n — 2), 0=n=<3 (2.2-1)
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With n = 0, 1, 2, and 3, (2.2-1) yields the desired voltages to be as
follows:

V(0) = 3V(-1) — V(—2) = 13 volts
V(1) = 3V(0) — V(—1) = 5 volts
V(2) = 3V(1) — V(0) = 2 volts

and V(3) = 3V(2) — V(1) = 1 volt

We shall refer to the preceding scheme as the recursive method
for solving difference equations. It is observed that, although this method
yields each V(n) in a simple recursive manner, it does not provide a
closed-form solution, that is, a solution which yields V(n) without having
to first compute V(0), V(1), ..., V(n — 1). If a closed-form solution is
desired, one can solve difference equations using the method of unde-
termined coefficients, which parallels the classical method of solving
linear differential equations with constant coefficients.

Method of Undetermined Coefficients

We illustrate this method via examples. Suppose we seek the general
solution of the second-order difference equation

y(n) — %y(n -1+ —éy(n —2) =57 n=0 (2.2-2)

with initial conditions y(—2) = 25 and y(—1) = 6.

In (2.2-2), y(n) may be interpreted as the response (output) of a
DT system to the input (forcing) function 5-" for n = 0, where n is a
time index. It is apparent that (2.2-2) is a second-order difference equa-
tion since it expresses the output y(n) at time # as a linear combination
of two previous outputs y(n — 1) and y(n — 2).

The general (or closed-form) solution y(n) of (2.2-2) is obtained in
three steps that are similar to those used for solving second-order dif-
ferential equations. They are as follows:

Obtain the complementary solution y(n) in terms of two arbitrary con-
stants ¢; and c,.

Obtain the particular solution y,(n), and write
y(n) = y(n) + y,(n) = fler,ca) + y,(n) (2.2-3)

where y.(n) = f(c,, c,) implies that y.(n) is a function of ¢, and c,.
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3. Solve for ¢; and ¢, in (2.2-3) using two given initial conditions.

In what follows, we elaborate on the preceding steps.

STEP 1. We assume that the complementary solution y.(#) has
the form

vdn) = c,at + c,a3 (2.2-4)

where the q; are real constants.
Next substitute y(n) = a” in the homogeneous equation to get
a’ — §‘a”‘1 + 1a”~2 =0 (2.2-5)
6 6

Dividing both sides of (2.2-5) by a”"~ 2, we obtain
5 1

2 _ 2 —

a 6 a + 6

1 1
R
which yields the characteristic roots

a, = and a, =

N | =
W=

Thus the complementary solution is
yn) = 127" + 37"

where c¢; and ¢, are arbitrary constants.

STEP 2. The particular solution y,(n) is assumed to be
yp(n) = c357"

since the forcing function is 577; see (2.2-2). .
Substitution of y(n) = y,(n) = ¢35 " in (2.2-2) leads to

5 1
s[5 " — <'6'>5_("_1) + <g>5_("'2)] = 5"
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Dividing both sides of this equation by 5", we obtain

5 1\,
C3[1 — (g)S + <g>5] =1

which implies that ¢; = 1. Thus

y(n) = yn) + y,(n) (2.2-6)

=2 "+ 37"+ 57"
STEP 3. Since the initial conditions are
y(—=2) =25 and y(-1) =6

(2.2-6) yields the simultaneous equations

4C1 + 9C2 =0 (22_7)
and 2c; + 3¢, =1
Solving (2.2-7) for ¢, and ¢,, we obtain
3 2
Cl=§ and Cy, = —3
Thus the desired general solution is given by (2.2-6) to be
3. 2, _
y(n) = 5(2 ") — 3(3 )+ 5" n=0 (2.2-8)

As mentioned earlier, y(n1) can be interpreted as the output of a
DT system when it is subjected to the exponential input (forcing func-
tion) 57, which is the right-hand side of the given difference equation
in (2.2-2).

RULES FOR CHOOSING PARTICULAR SOLUTIONS. As is the case
with the solution of differential equations, there are a set of rules one
must follow to form appropriate particular solutions while solving dif-
ference equations, as summarized in Table 2.2-1. For example, the form
of the particular solution related to the difference equation in (2.2-2)
was ¢35~ ", which agrees with line 3 of Table 2.2-1. We will illustrate
the use of this table by means of more examples.
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Table 2.2-1  Rules for Choosing Particular Solutions

Terms in forcing function Choice of particular solutiont
1. A constant c; ¢ is a constant
. co + cin + cn? + - -+ ok
2. byn*; b, is a constant 0 ! C2 Cr
the ¢; are constants
3. b,d*"; b, and d are constants Proportional to d**
4. b; cos (nw) b; and
b, are ¢, sin (nw) + ¢, cos (nw)
5. by sin (nw) constants

If a term in any of the particular solutions in this column is a part of the
complementary solution, it is necessary to modify the corresponding choice
by multiplying it by n before using it. If such a term appears r times in the
complementary solution, the corresponding choice must be multiplied by #".

Example 2.2-1: Solve the second-order difference equation

Y - Sy - D 43y -D =143 n=0 (229

with the initial conditions y(—2) = 0 and y(—1) = 2.
Solution: The solution consists of three steps.

STEP 1. Assume the complementary solution as y(n) = c,af +
c,aj. Substituting y(n) = a” in the homogeneous counterpart of (2.2-9),
we obtain the characteristic equation

3 1
2 _ = - =
a > a + > 0
1
the roots of which are a; = 3 and a, = 1
Thus
yn) = 27" + 1" =27 + ¢, (2.2-10)

STEP 2. To choose an appropriate particular solution, we refer
to Table 2.2-1. From the given forcing function and lines 1 and 3 of Table
2.2-1, it follows that a choice for the particular solution is ¢3 + ¢;37".
However, we observe that this choice for the particular solution and
y(n) in (2.2-10) have common terms, each of which is a constant; that
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—

is, ¢z and ¢, respectively. Thus in accordance with the footnote of Table
2.2-1, we modify the choice ¢3 + ¢437" to obtain

() = c3n + c437" (2.2-11)

Next, substitution of y,(n) in (2.2-11) into (2.2-9) leads to

cn+c3‘”——é +é _2 3"
3 4 3 C3n > C3 > C4
1 9 ~
+ -2-c3n - c3 + 5043“” =3""+1 (2.2-12)
From (2.2-12) it follows that
1
§C3 =1
9 9
1 — -+ - -n — Q—n
and 04[ 3 2]3 3

which results in
c; =2 and ¢, =1
Thus, combining (2.2-10) and (2.2-11), we get
y(n) = 27"+ ¢, +2n+ 37" (2.2-13)
STEP 3. To evaluate ¢, and ¢, in (2.2-13), the given initial con-

ditions are used; that is, y(—2) = 0 and y(—1) = 2. This leads to the
simultaneous equations

401 + Cr = —5
2c; + ¢, =1
Solving, we obtainc; = —3 and ¢, = 7, which yields the desired solution
as
yin) = (=3)2"+ 7+ 2n + 377, n=0

Example 2.2-2: Find the general solution of the first-order difference
equation
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y(n) — 09y(n — 1) = 0.5 + (0.9 1, n=0 (2.2-14)
with y(—1) = 5.

Solution:
STEP 1. Substituting y(n) = a” in the homogeneous equation

y(n) — 09(n — 1) =0
we obtain yn) = ¢,(0.9)" (2.2-15)

since we are dealing with a first-order difference equation.

STEP2. From the forcing function in (2.2-14), the complementary
solution in (2.2-15), and lines 1 and 3 of Table 2.2-1, it follows that

yp(n) = c,n(0.9)" + ¢;
Substitution of y(n) = y,(n) in (2.2-14) results in
c3 + ¢,n(0.9)" — 09¢c,(n — 1)(0.9)*~! — 09¢; = 0.5 + (0.9)"!

which leads to

0.1c; = 0.5
and 0.9)'c; = (0.9~
Thus we have
10

cz=135 and ¢, = 5

which implies that
10
yp(n) = ) n(0.9)" + 5 (2.2-16)

Combining (2.2-15) and (2.2-16), we get

y(n) = ¢,(0.9)" + —1—9911(0.9)" + 5 (2.2-17)
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STEP 3. From (2.2-17) and the initial condition y(—1) = 5, it

10 . . .
follows that ¢; = 5 Hence the desired solution can be written as

y(n) = (n + 1)(0.9"! + 5, n=0

Example 2.2-3: Find the general solution of the second-order difference
equation

y(n) — 1.8y(n — 1) + 0.81y(n — 2) = 277, n=0 (2.2-18)

Leave the answer in terms of unknown constants, which one can eval-
uate if the initial conditions are given. :

Solution:
STEP 1. With y(n) = a” substituted into the homogeneous coun-

terpart of (2.2-18), we obtain
a’> - 18a + 081 =0
which results in the repeated roots
a = a, = 09

Thus, as in the case of differential equations, we consider the comple-
mentary solution to be

ydn) = ¢,(0.9)" + c,1(0.9)" (2.2-19)

STEP 2. From the given forcing functioh in (2.2-18), y.(n) in (2.2-
19), and line 3 of Table 2.2-1, it is clear that

yp(n) = c327" (2.2-20)
Substitution of (2.2-20) in (2.2-18) leads to
cs[1 — (3)(6) + 3)24)]2~" = 2~

which yields ¢; = f—g— Thus the desired solution is given by (2.2-19) and
(2.2-20) to be

y(n) = ¢1(0.9)" + c;n(0.9)" + (%%)2-"
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where ¢; and ¢, can be evaluated if two initial conditions are specified.

Example 2.2-4: Find the particular solution for the first-order difference
equation

y(n) — 0.5y(n — 1) = sin <"77’) n=0 (2.2-21)

Solution: Since the forcing function is sinusoidal, we refer to line 5 of
Table 2.2-1 and choose a particular solution of the form

nw

yp(n) = ¢; sin (?) + ¢, cos (-—2——) (2.2-22)

Substitution of y(n) = y,(n) in (2.2-21) leads to

) nw n ) n— 1w
c; sin <—2—> + ¢, COS <7> — 0.5¢; sin [g———z—)]

— 0.5¢, cos [("—_5—1—)—”] = sin (—’2—”) (2.2-23)

We now use the following identities:

O G V. R (n_ﬂ _ z) o cos <ﬂ)
L2 2 2 2 (2.2-24)
cos | A= D] _ (n_ff B 31) _ sin <Ef)
2 2 2 2

Substituting (2.2-24) in (2.2-23), we obtain

(c1 — 0.5¢,) sin (?) + (0.5¢; + ¢3) cos <£27—T> = sin <11—27—T>

which yields the simultaneous equations

¢y — 05¢c, =1 (2.2-25)
05¢; + ¢, =0
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and ¢, = —-?:. Hence the desired

The solution of (2.2-25) yields ¢, = 5

wn|

result is given by (2.2-22) to be

(n)—is'n nmy _ 2 nm n=0
Yo = 5 S 5°°\2 ) =

Example 2.2-5: In Example 2.2-3, suppose the forcing function is (0.9)"
instead of 27", n = 0. What would be the appropriate choice for the
particular solution?

Solution: The complementary solution is given by (2.2-19) to be
yn) = ¢1(0.9)" + ¢c,n(0.9)"

Since the forcing function is (0.9)7, line 3 of Table 2.2-1 implies that a
choice for the particular solution is ¢3(0.9)". However, since this choice
and the preceding y.(n) have a term in common, we must modify our
choice according to the footnote of Table 2.2-1 to obtain ¢31(0.9)". But
this choice again has a term in common with y.(n). Thus we apply to
the footnote of Table 2.2-1 once again to obtain

yp(n) = c3n*(0.9)" (2.2-26)

which has no more terms in common with y.(n).

Hence y,(n) in (2.2-26) is the appropriate choice for the particular
solution for the difference equation in (2.2-18) when the forcing function
is (0.9)"; that is,

y(n) — 1.8y(n — 1) + 0.81y(n — 2) = (09", n=0

2.3 SUMMARY

Our treatment of linear difference equations with constant coefficients
in this chapter was confined to first- and second-order difference equa-
tions. Higher-order difference equations of this type will be considered
in Chapters 3 and 5. Although our interest in such difference equations
is restricted to DT systems as they relate to electrical engineering, they
have a variety of applications in diverse areas such as economics, psy-
chology, and sociology. The interested reader may refer to [3] for more
details.



