Chapter 9

Filter Design

9.1 INTRODUCTION

This chapter considers the problem of designing a digital filter. The design process begins with the filter specifi-
cations, which may include constraints on the magnitude and/or phase of the frequency response, constraints on
the unit sample response or step response of the filter, specification of the type of filter (e.g., FIR or IR}, and the
filter order. Once the specifications have been defined, the next step is to find a set of filter coefficients that pro-
duce an acceptable filter. After the filter has been designed, the last step is to implement the system in hardware
or software, quantizing the filter coefficients if necessary, and choosing an appropriate filter structure (Chap 8).

9.2 TILTER SPECIFICATIONS

Before a flter can be designed, a set of filter specifications must be defined. For example, suppose that we would
like to design a low-pass filter with a cutoff frequency w,. The frequency response of an ideal low-pass filter
with linear phase and a cutoff frequency w, is

; g—fow w <
Hd(ejw) = i 1 — =
w, < |wl <m
which has a unit sample response
sin(n - o,
hy(n) = ————

win —a)

Because this filter is unrealizable (ntoncausal and unstable), it is necessary to relax the ideal constraints on the
frequency response and allow some deviation from the ideal response. The specifications for a low-pags filter
will typically have the form A

1_8p<‘iH(€jw)§Sl+5p 0 < lo| < w,
|H{(e™)| <8, w<|ow|<m

as illustrated in Fig. 9-1. Thus, the specifications include the passband cutoff frequency, w,, the stopband cutoff
frequency, ws, the passband deviation, 8, and the stopband deviation, §;. The passband and stopband deviations
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Fig. 9-1. Filter specifications for a low-pass filter
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are often given in decibels {dB) as follows:
a, = —20log{l — 4&,)
and e = - 2{Flog(d;)

The interval [w,, w;] is called the transition band.

Once the filter specifications have been defined, the next step is to design a filter that meets these specifica-
tions.

93 FIR FILTER DESIGN

The frequency response of an Nth-order causal FIR filter is

N
H{e™) = Zh(n)e""""

fs)

and the design of an FIR filter involves finding the coefficients A(n) that result in a frequency response that
satisfies a given set of filter specifications. FIR filters have two important advantages over IIR filters. First, they
are guaranteed to be stable, even after the filter coefficients have been quantized. Second, they may be easily
constrained to have (generalized) linear phase. Because FIR filters are generally designed to have linear phase,
in the following we consider the design of linear phase FIR filters.

9.3.1 Linear Phase FIR Design Using Windows

Let hig(n) be the unit sample response of an ideal frequency selective filter with linear phase,
Hy(e!*) = A(e/*)e /P

Because fry(n) will generally be infinite in length, it is necessary to find an FIR approximatiorn to Hy(el®y. With
the window design method, the filter is designed by windowing the unit sample response,

hin) = hy(mw{m

where w(n) is a finite-length window that is equal to zero outside the interval 0 < n < N and is symmetric about
its midpoint:

win) = w{N —n)

The effect of the window on the frequency response may be seen from the complex convolution theorem,

. 1 ‘ : 1] 4 , .
H(e") = o Hyle!*) x W) = o Hy(e! YW (e/ @) db

i - ~r

Thus, the ideal frequency response is smoothed by the discrete-time Fourier transform of the window, W(e/¥).
There are many different types of windows that may be used in the window design method, a few of which
are listed in Table 9-1.

How well the frequency response of a filter designed with the window design method approximates a desired
IESpOnse, H{e/®), is determined by two factors (see Fig. 9-2):

i. The width of the main lobe of W (e/%).
2. The peak side-lobe amplitude of W{e/*).
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Fig.9-2. The DTFT of a typical window, which is characterized by the width of its main lobe, A,
and the peak amplitude of its side lobes, A, relative to the amplitude of W(e/*) atw = 0.

=

Ideally, the main-lobe width should be narrow, and the side-lobe amplitude should be small. However, for a
fixed-length window, these cannot be minimized independently. Some general properties of windows are as
follows:

1. Asthelength N of the window increases, the width of the main lobe decreases, which results in adecrease
in the transition width between passbands and stopbands. This relationship is given approximately by

NAf =¢ (9.0

where Af is the transition width, and ¢ is a parameter that depends on the window.

2. The peak side-lobe amplitude of the window is determined by the shape of the window, and it is
essentially independent of the window length.

3. If the window shape is changed to decrease the side-lobe amplitude, the width of the main lobe will
generally increase.

Listed in Table 9 2 are the side-lobe amplitudes of several windows along with the approximate transition width
and stopband attenuation that results when the given window is used to design an N th-order low-pass filter.

Table 9-1 Some Common Windows

| 0<n=<N
Rectangular | w(n) =
0 else
2rn
5035 e 0 <
Hanning' wln) = 03 CGS( N ) snsW
0 else
Zirn
. 054 — 046 cosp — d<n<N
Hamming wn) = N
0 else
2ren darn
042 ~05 —_— 008cos| — 0<n=N
Blackman | w{n) = COS( N ) + wq( N ) =n=
0 else

n the liternture, this window is also catied s Hann window or 2 von Hann window.
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Table 9-2  The Peak Side-Lobe Amplitude of Some Common Windows and the Approximate
Transition Width and Stopband Attenuation of an Nth-Order Low-Pass Filter
Designed Using the Given Window.

Window Side-Lobe Ampliiude (dB) Transition Width (Af) Stopband Attenuation (dB)
Rectangular -13 09/N =21

Hanning -3 /N —44

Hamming RS 33/N ~53

Blackman w57 35/N ~74

EXAMPLE 9.3.1 Suppose that we would like to design an FIR linear phase low-pass filter according to the following
specifications:

099 < |H(e™)| < 10t 0<|wl <0197
|H (™) <001 021n <lwl <

For a stopband attenuation of 20 log(0.01) = —40dB, we may use a Hanning window. Although we could also use a Hamming
or a Blackman window, these windows would overdesign the filter and produce a larger stopband attenuation at the expense
of an increase in the transition width. Because the specification cails for a transition width of Aw = w, — w, = 0 027, or
Af =001, with

NAf =31

for a Hanning window {see Table 9 2), an estimate of the required filter order is

3.1
N == =310
af

The last step is to find the unit sample response of the ideal low-pass filter that is to be windowed. With a cutoff frequency
of w, = {ey +w,)/2 =027, and a delay of @ = N /2 = 155, the unit sampie response is

sin[0 2w (n —~ 135}]

i e
ratn) (n — 138y

In addition to the windows listed in Table 9-1, Kaiser developed a family of windows that are defined by

winy o oLBCL = [(n = o)/a)' )
- Io(B)

where @ = N/2, and J3() is a zeroth-order modified Bessel function of the first kind, which may be easily
generated using the power series expansion

o /2 k2
for) =143 [“i,) ]
k=2l '

The parameter 8 determines the shape of the window and thus controls the trade-off between main-lobe width
and side-lobe amplitude. A Kaiser window is nearly optimum in the sense of having the most energy in its main
lobe for a given side-lobe amplitude. Table 9-3 illustrates the effect of changing the parameter 8.

There are two empirically derived relationships for the Kaiser window that facilitate the use of these windows
to design FIR filters. The first relates the stopband ripple of a low-pass filter, v; = —20og(3;), to the parameter 8,

0<n=sN

0.1102(ct; ~ 8.7) a; > 50
B =1 05842a, — 21)°* + 0.07886(c; — 21) 2t <@, <30
0.0 o, < 21
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Table 9-3 Characteristics of the Kaiser Window as a Function of 3

Parameter Side Lobe Transition Width Stopband Attenuation
B (dB) (NAF) (dB)
20 ~19 1.5 -29
jo 24 20 —37
40 ~30 26 —45
5.0 ~37 32 —54
6.0 —44 38 —63
7.0 —5i 45 —72
80 —59 51 —81
96 —67 37 90

100 —74 64 ~99

The second relates N to the transition width Af and the stopband attenuation o,

o, —7.95

N==2_"
1436AF

o, > 21 92)

Note that if @, < 21 dB, a rectangular window may be used (8 = 0), and N = 09/Af.

EXAMPLE 8.3.2 Suppose that we would like to design a low-pass filter with a cutoff frequency w, = x /4, a transition
width Aer == 0 025, and a stopband ripple §; = 0 01. Because &, = —201log(0.01) == —40, the Kaiser window parameter is

B = 0.5842(40 — 21)%* -+ 0.07886(40 — 21) = 3.4

With Af == Aw/2r == (.01, we have

40 — 7.95
N=——""— =124
14.36 - (0.01)
Therefore, R(n) = hy(nhwin)
where ha(my = Snln — 274

(n— 112

is the unit sample response of the ideal low-pass filter.

Although it is simple to design a filter using the window design method, there are some limitations with
this method. First, it is necessary to find a closed-form expression for siz(n) (or it must be approximated using
a very long DFT). Second, for a frequency selective filter, the transition widths between frequency bands, and
the ripples within these bands, will be approximately the same. As a result, the window design method requires
that the filter be designed to the tightest tolerances in all of the bands by selecting the smallest transition width
and the smallest ripple. Finally, window design filters are not, in general, optimum in the sense that they do not
have the smallest possible ripple for a given filter order and a given set of cutoff frequencies.

9.3.2 Frequency Sampling Filter Design

Another method for FIR filter design is the frequency sampling approach. In this approach, the desired frequency
response, Hy(e/®), is first uniformly sampled at N equally spaced points between 0 and 27

H{k) = Hy(e™ ¥y k=0,1, ..,N—1




