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the output of the system when a = % and

Assuming that this relationship is satisfied, find
xm) = (§) u®

cribed by this difference equation is

The frequency response of the LSI system des!

+e

HE) = T
S 1 —aqge®

The squared magnitude is
(b+e )b+ ey 1+ p* + 2bcosw

joyi2 = =
\HE)W = g "ge o)1 - 2oy 1+a?—2acos®

Therefore, it follows that |H (/> =1 if and only if b = —¢-
With a = § and p=—1.if xn) = Gy u, ¥ (e'®) is given by

Yie®) = HE@)X(E" _‘li+e’j“’ 1 _ S+
)= (/)X (e )"1 ‘e‘f“"l——l =

2

Using the DTFT pair
" DTFT 1
(n+ Va u(n) &= ————/“(1 — ey

delay properties of the DTFT, we have

given in Table 2-1, and using the linearity and
n n—1
)= —3+ (L) e +a(3) #o - 1)
What we observe from this example is that although |H (@) =1 the nonlinear phase has a significant effect on
the values of the input sequence.
ar shift-invariant system with a frequency response H (¢i®) may be

2.18 Show that the group delay of a line
expressed as
Hr(e?®)Gr(e) H;(e®)G1(e’)
rh(a)) = . )
|H (e/)

al and imaginary parts of H(e
s of the DTFT of nh(n)-

joy, respectively, and G 2(e®) and

where Hg(e/®) and H;(el®) are the e
G j(e'®) are the real and imaginary part

and phase, the frequency response is

in terms of magnitude

H(ej‘”) — \H(ejw)\ejdm(w)

of H{e/®), we havean explicit expression for the phase

Note that if we take the logarithm
InH(*) = n|H (/) + jon(@)

Differentiating with Tespect to @, W€ have
4 \wHE) = L d H(e!) = d n|HE@N+ ] d on(®)
dw = H(ei®)do T do T o™

Equating the imaginary parts of both sides of this equation yields

2 g = Im‘—’l—"iﬂ( f‘”)\
dw M H(e/®) dw ¢
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2.19

If we define
d 17 ’ jw syt jw
Z;H(ej )= Hgp(e’®) + jH[(e'*)

where Hp(e/?) is the derivative of the real part of H(e/*) and H,(e/*) is the derivative of the imaginary part, the
group delay may be written as

Hp(e!®) + jH,’(e"“)}

d
h(w) = —Ziz)‘¢h(w) = —Im{ H(ei?)

Multiplying the numerator and denominator by H*(e/“) = Hg(e/*) — jH;(e/*) yields

B [Hi(e™) + jH]()]|[Ha(e?) ~ jH (e)]
) = _Im{ |Hei)P
_ Hi(&"*)Hy(e!®) — Hp(e?)H)(e®)

[H (e/2)|?

Finally, recall that if H(e/®) is the DTFT of h(n), the DTFT of g(n) = nh(n) is
. Y S e e e
G(e’®) = Ggr(e’*) + jG (/) = J@H(ef‘") = —H(e'*) + jHy(e!”)

where G g(e/“)is the real part of the DTFT of n/(n), and G, (e/*) is the imaginary part. Therefore, Hp(e/?) = G,(e/®)
and H;(e’*) = —Gr(e/*). Expressed in terms of G z(e’“) and G, (e/*), the group delay becomes

Hg(e!*)Gr(e/®) + H;(e!)G (1)
[H (e/2))?

Tw) =

Note that this expression for the group delay is convenient for digital evaluation, because it only requires computing
the DTFT of h(rn) and nA(n), and no derivatives.

Find the group delay for each of the following systems, where « is a real number:
(@ Hi(e®y=1—qei®
A 1
(b) Hy(e!*) = ——x
I —aejo
1

Hi(ed®) = - -
© Hi(e'®) 1 —2acosfe /o 4 gle—i2w

(a) For the first system, the frequency response is
Hi(e’)=1—-wacosw+ jasinw

Therefore, the phase is

_; oasinw
¢1(w) =tan™' ——————
1l —acosw
1 du
B —tan gy = —— 2%
ecause tanu —
the group delay is
@ = -Lp@) : d(“smw)
Tiw) = — —— W) = — I
e AT
Therefore, (@) = — 1 (1 — c cos w)a cos w — (a sin w)?

1+({“&)2 (1 — o cos w)?

—& COS
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which, after simplification, becomes

(1 — & cos w)a cos @ — (& sinw)? @? — acosw

(1 — o cos w)? + (o sinw)? T 1+ a?-2acosw

T{w) = ~
Another way o solve this problem is to use the expression for the group delay derived in Prob. 2.18. With
Hie')=1—cacosw+ jasinw

we see that
Hgp(e™)=1—acosw Hi(e'®) = asinw

Because the unit sample response is
h(n) = 8(n) — ad(n — 1)

then g(n) = nh(n) = —ad(n — 1)
and G(e!¥) = —ae™ 7 = —acosw + jasinw

Therefore, the group delay is

Hg(e/®)G p(e?®) + H;(e*)G (/)

nl@) = [HE
_ —acosw(l —acosw) + (asinw)? a? — acosw
(1 — a cos w)? + (o sinw)? T 1402 —-20cosw

which is the same as before.

Having found the group delay for H (/%) = 1 — ae™/®, we may easily derive the group delay for H,(e/?),
which is the inverse of H,(e/®):

: 1 1
Hy(e?®) = _
1 —ae /e H(e/?)
Specifically, because
Ho(e!?) = ——
2(e’*) o)
$o{w) = —¢1(w) and, therefore,
o — @ cosw
Tz(a)) = - Tl(w) =

"1+ a?~2acosw

For the last system, H3(e/*) may be factored as follows:

1 1 1
I — 2acosfe—Jo +ale—i2@ 1 —aqelfeio 1 — ae—ife—iv

Hi(e!*) =

The group delay of Hi(e’®) is thus the sum of the group delays of these two factors. Furthermore, the group
delay of each factor may be found straightforwardly by differentiating the phase. However, the group delay of
these terms may also be found from () in part (b) if we use the modulation property of the DTFT. Specifically,
recall that if X (/%) is the DTFT of x(n), the DTFT of e/ x(n)is

i DIFT jtw— (w— e~
e x(n) = X (e 0y = IX(eI(“’ 6))Iej¢(w )

Therefore, if the group delay of x (1) is T(w), the group delay of e/ x(n) will be t(w — 6). In part (b), we found
that the group delay of H(e/*) = 1/(1 ~ ae i) is
2
o — @ Cosw

@) = 14 al—2acosw

¢
;
|
!
j
i
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Thus, it follows from the modulation property that the group delay of H (¢/*) = 1 /(1 — e/ @-9) i

a? — o cos(w — 0)
1 +a? — 20 cos(w — 6)

T(w) = —

and that the group delay of H (e/“) = 1/(1 — w10y is

o -—acds(w+9)
I+ a? — 20 cos(w + 6)

T(w) = —

Therefore, the group delay of Hj(e/“) is the sum of these:

a? — a cos(w — 6) o? ~ acos(w + )
I+a?~2acos(w—6) 1 +a? — 2o cos(w + 6)

3(w) = —

2.20  Find the DTFT of each of the following sequences:

(@ xi(m) = (3)"u(n +3)
(b) x2(n) = o™ sin(nwg) u(n)

1\2
= n=20,2,4,...
© x3(n)= ) .
0 otherwise
(a) For the first sequence, the DTFT may be evaluated directly as follows:
. o0 o0
X = 3 (1= 3 (1)’
n=—3 n=-3
B n 8 e
= ()L () = 1

(b) The bestway to find the DTFT of x5(n) is to express the sinusoid as a sum of two complex exponentials as follows:

1 . )
Xo(n) = —27[01"6’"“"’ —ae /"0 y(n)

The DTFT of the first term is
i ianejnmge—jnw — i i (ae“‘j((u—wo))" - _1_ 1
2j 2j 2] 1 — qeilw—wp)
Similarly, for the second term we have
Zane—jnwoe—jnw — __1_ !
n=0 21 I— ag—j(w‘i’wo)
Therefore,
- . 1 i 1 in wo)e
| of Xo(e®) = o e Ty o ) .
0 2j| 1 —aejto-on) | _ yp—jwtwp) 1 — Qo cos wy)e /@ + q2e—2iw
ly,
(¢) Finally, for x3(n), we have
. o¢ . o " .
X3(€jm) = Z Xa(n)e-an — Z (%) e Jnw
n=-oc n=0,2.4.... )
nd

o0
s
joy 1" 2w 1 ,=2jwY" _
Therefore, X3(e’?) = E (2) e = E (4e ) ~———1~l€_2ﬂu
1




