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Since [A| = 4 # 0, a unique solution exists for x;, x,, and x3. This solution is provided by
Cramer’s rule [Eq. (B.31)] as f2llows:
31 1
1 8
xi=—17 3 —-1|=-=-=2
Al | 4
I
Xy = — —_— = - =
Al g | 4
2 13
1 -8
Xx3=-—11 3 T|l=-—=-2
Al | 4

B.5 PARTIAL FRACTION EXPANSION

In the analysis of linear time-invariant systems, we encounter functions that are ratios of two
polynomials in a certain variable, say x. Such functions are known as rational functions. A
rational function F(x) can be expressed as

by, x™ + bm‘_l.?Cm.-l Ao+ bix + by

Fo) =22 P B (B.32)
P(x) ‘

- B.33

o0r) (B.33)

The function F(x) is improper if m > n and proper if m < n. An improper function can always
be separated into the sum of a polynomial in x and a proper function. Consider, for example,
the function

253 4 9x2 4+ 11x +2
F(x)= 5
x> +4x +3

(B.34a)

Because this is an improper function, we divide the numerator by the denominator until the
remainder has a lower degree than the denominator.

2x +1

X2+ 4x +3)2x% 4 9x2 4 11x + 2
2x% 4 8x?% + 6x

x245x+2

x244x +3

x—1
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Therefore, F(x) can be expressed as

263492+ 11x +2 x—1
= - 2 1 —_— B.34b
x2+4x+3 \i\j_—/ +x2+4x+3 ( )
Ny e

polynomial in x

F(x)
proper function

A proper function can be further expanded into partial fractions. The remaining discussion in
this section is concerned with various ways of doing this.

B.5-1 Method of Clearing Fractions

A rational function can be written as a sum of appropriate partial fractions with unknown
coefficients, which are determined by clearing fractions and equating the coefficients of similar
powers on the two sides. This procedure is demonstrated by the following example.

Expand the following rational function F(x) into partial fractions:

_ X432 +4x +6
T (4 D& +2)(x + 3)2

F(x)

This function can be expressed as a sum of partial fractions with denominators (x + 1),
(x +2), (x +3), and (x + 3)?, as follows:

X435+ 4x+6 ok k, ks ka
T+ D&+ 2)(x + 3)2

F -
*) i+l x42  x43 T Gy

To determine the unknowns k;, k,, k3, and k, we clear fractions by multiplying both sides by
(x + 1)(x + 2)(x + 3)? to obtain

2% 4327 4 4x 4+ 6 = ki (x° + 8x% 4 21x + 18) + ky(x® + Tx® + 15x +9)
+ks(x3 4+ 6x% + 11x + 6) + ky(x* +3x +2)
= x> (k1 + ky + ks) + x*(8k + Tky + 6ks + ky)
+x(21ky + 15k + 11ks + 3ky) + (18k; + 9k, + 6ks + 2ky)
Equating coefficients of similar powers on both sides yields

ki+ky+k;=1
8ki + Thky + 6ks + ks =3
21k; 4 15ky + 11ks + 3k = 4
18k + Ok + 6ks +2ks = 6
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Solution of these four simultaneous equations yields
kl =1, k2=——2, k3'—’—-‘2, k4=‘—-—3
Therefore,

1 2 2 3

F - — —
@ = 127353 (x +3)?

Although this method is straightforward and applicable to all situations, it is not necessarily
the most efficient. We now discuss other methods that can reduce numerical work considerably.

B.5-2 The Heaviside “Cover-Up’”” Method
DISTINCT FACTORS OF Q(x)

We shall first consider the partial fraction expansion of F (x) = P(x)/Q(x), in which all the
factors of Q(x) are distinct (not repeated). Consider the proper function

bmxm + bm—l-xm—.1 +--+ blx + bO

F(x) = m<n
X't x4 ax +oag

P .
= () (B.35a)

=2 = A2) - (x — Ap)

We can show that F(x) in Eq. (B.35a) can be expressed as the sum of partial fractions
kl k2 kn
F(x) = e AL B.35b

*) x—)»l+x—-)»2+ +x—k,, ( )

To determine the coefficient ky, we multiply both sides of Eq. (B.35b) by x — A, and then let
x = A;. This yields

_ ka(x — A1) | ka(x — Ay) k=)
X = A)F(xX)ep, = Ky + 7 o= T—n) -

On the right-hand side, all the terms except k; vanish. Therefore,

, ky = (x - ADF(x)cop, (B.36)

Similarly, we can show that

k= (= A)FO),,,  r=1,2,....n (B.37)

This procedure also goes under the name method of residues.




B.5 Partial Fraction Expansion

Expand the following rational function F(x) into partial fractions:

. 2x2+9x— 11 _ kl " k2 + k3
T x+DE—-2D(x+3) x+1 x—2 x+3

F(x)

To determine k;, we let x = —1in (x + 1) F (x). Note that (x + 1) F(x) is obtained from F(x)
by omitting the term (x + 1) from its denominator. Therefore, to compute k; corresponding
to the factor (x + 1), we cover up the term (x + 1) in the denominator of F (x) and then
substitute x = —1 in the remaining expression. [Mentally conceal the term (x + 1) in F(x)
with a finger and then let x = —1 in the remaining expression.] The steps in covering up the
function

_ 2x% +9x — 11
T x4+ D —2)(x +3)

F(x)
are as follows.

Step 1. Cover up (conceal) the factor (x + 1) from F x):

262 +9x — 11
x —2)(x +3)

Step 2. Substitute x = —1 in the remaining expression to obtain %

__2-9-u -8,
T (-1=2)(=1+3) -6

1
Similarly, to compute k,, we cover up the factor (x —2) in F (x) and let x = 2 in the remaining
function, as follows:

o 24011 _ 8+18-11 15
2T+ 1) x+3)m QC+DR+3) 15

_ 24911 . 18-27-11 20
T x4+ D=2 ey (S341D(=3-2) 10

=2

ks

Therefore,

2x2 4+ 9x — 11 3 1 2
F(x): x A+ ox = -+ _
x+DEx-2)x+3) x+1 x-2 x43
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COMPLEX FACTORS OF Q(x)

The procedure just given works regardless of whether the factors of Q(x) are real or complex.
Consider, for example,

4x% 4 2x + 18
F(x) =
x+D@E2+4x+13)
_ 4x% 4+ 2x + 18
T+ D +2- 3 2+ j3)
k k, ks
= B.38
x+1+x+2—j3+x+2+j3 ( )
where
4x% 4+ 2x + 18
k] = = 2
(x2 +4x +13) et
Similarly,
242 1 ‘62 470
k2_ 4x + 2x + 8 =1+j2=\/§ej63'43
_ 4x? 4 2?c 18 = 1 — j2 = f5ei6ew
(x+1)(x+2—.]3 =—2-73
x==2—j
Therefore,
2 5,/6343° 5 o—i63.43°
F(x) = Ve V3e (B.39)

x+1 x+2——j3+x+2+j3

The coefficients k, and k3 corresponding to the complex conjugate factors are also conjugates
of each other. This is generally true when the coefficients of a rational function are real. In such
a case, we need to compute only one of the coefficients.

QUADRATIC FACTORS

Often we are required to combine the two terms arising from complex conjugate factors into
one quadratic factor. For example, F(x) in Eq. (B.38) can be expressed as

_ 4x2+2x+ 18 _ kl + CiX + ¢y
S+ D2 +4x+13) x+1 0 2 +4x+13
The coefficient k, is found by the Heaviside method to be 2. Therefore,

F(x)

4x? +2x + 18 2 cx + ¢
x+DO2+4x+13)  x+1  x2+4x+ 13

The values of ¢ and c, are determined by clearing fractions and equating the coefficients of
similar powers of x on both sides of the resulting equation. Clearing fractions on both sides of

(B.40)

e




B.5 Partial Fraction Expansion
Eq. (B.40) yields

4x* +-2x + 18 = 2(x? + 4x + 13) + (cix +e)(x + 1)
=Q+c)x’ + B +c +c)x + (26 + ¢,) (B.41)

Equating terms of similar powers yields ¢; = 2, ¢, = —8, and

4x% 4+ 2x + 18 2 + 2x — 8
F+DE?+4x+13)  x+1 ' x2+4x+ 13

(B.42)

SHORTCUTS

The values of ¢, and ¢, in Eq. (B.40) can also be determined by using shortcuts. After computing
k; = 2 by the Heaviside method as before, we let x = 0 on both sides of Eq. (B.40) to eliminate
c;. This gives us

18 Ca

13 13
Therefore,

Cy = —8

To determine c,, we multiply both sides of Eg. (B.40) by x and then let x — co. Remember
that when x — oo, only the terms of the highest power are significant. Therefore,

4=2+C1

C1=2

In the procedure discussed here, we let x = ( to determine c, and then multiply both sides
by x and let x — co to determine c1- However, nothing is sacred about these values (x=0o0r
x = 00). We use them because they reduce the number of computations involved. We could just
as well use other convenient values for x, such as x = 1. Consider the case

22+ 4x +5
x(x2 4 2x +5)
k X+
x  x242x+45
We find k = 1 by the Heaviside method in the usual manner. As a result,

F(x) =

2x24+4x +5 1 ax+c,
—_— =gt B.43
x(x2 4 2x +5) x+x2+2x+5 ( )

To determine ¢, and ¢, if we try letting x = 0 in Eq. (B.43), we obtain 0o on both sides. So let
us choose x = 1. This yields

11 i+
—_— =1
3 +
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or
ctec=3

We can now choose some other value for x, such as x = 2, to obtain one more relationship to
use in determining c; and c,. In this case, however, a simple method is to multiply both sides of
Eq. (B.43) by x and then let x — oo. This yields

2=1 + ¢
so that
=1 and =2
Therefore,
1 x+2
F(x)=—-+

x  x24+2x+5

B.5-3 Repeated Factors of Q(x)

If a function F(x) has a repeated factor in its denominator, it has the form

P(x)
Fir) — B.44
O = G- —a) - —a) B4

Its partial fraction expansion is given by

Ay a a1
F —_ [P T
W=y e T e
k k k;
— 24— (B.45)°
X — o X — 0y X —o;
The coefficients ki, ks, ..., k; corresponding to the unrepeated factors in this equation are

determined by the Heaviside method, as before [Eq. (B.37)]. To find the coefficients ag, a;,
day, ..., a,_1, we multiply both sides of Eq. (B.45) by (x — A)". This gives us
=N F@x) =ap+a(x =) +ax—2+ - +a.x—-1"
x — A) x—A) x — i)
+k1( ) —I—k2( ) +---+kn(————)~ (B.46)
X — o X — 0 X = Oy

If we let x = X on both sides of Eq. (B.46), we obtain

(x = AN F(x)|=n = a0 (B.47a)

Therefore, ag is obtained by concealing the factor (x — A)" in F(x) and letting x = A in the
remaining expression (the Heaviside “cover-up” method). If we take the derivative (with respect
to x) of both sides of Eq. (B.46), the right-hand side is a,+ terms containing a factor (x — A)in
their numerators. Letting x = A on both sides of this equation, we obtain

d
r [x =D FX)] =a
x

x=A
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Thus, a; is obtained by concealing the factor (x — A)" in F(x), taking the derivative of the
remaining expression, and then letting x = A. Continuing in this manner, we find
-] i A)'F B.47b
aj—ﬁd—;[(x— ) F(x)] (B.47b)
Observe that (x —A)" F (x) is obtained from F (x) by omitting the factor (x — A)" from its denom-
inator. Therefore, the coefficient a; is obtained by concealing the factor (x — A)" in F(x), taking
the jth derivative of the remaining expression, and then letting x = A (while dividing by j!).

x=A

Expand F(x) into partial fractions if

4x3 + 16x2 +23x + 13
x+1D3x+2)

Fx) =

The partial fractions are
g a a; k.
i T er Tiri i
The coefficient k is obtained by concealing the factor (x + 2) in F(x) and then substituting
x = —2 in the remaining expression:

F(x) =

_ 4x3 4+ 16x% +23x + 13
RS

x=-2

To find ay, we conceal the factor (x +1)* in F(x) andletx = —1 in the remaining expression:

_ 4x?+16x%+23x + 13
(x+2)

=2

x=—1

A

To find a;, we conceal the factor (x + 1)* in F(x), take the derivative of the remaining
expression, and then let x = —1:

_d |4’ +16x7 +23x + 13

T dx

a

Similarly,

_1 d* |4x® 4+ 16x2+23x +13
T 21dx?

a

Therefore,

2 1
_(x+1)3+(x+1)2+x+1+x+2

F(x)
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B.5-4 Mixture of the Heaviside “Cover-Up””
and Clearing Fractions

For multiple roots, especially of higher order, the Heaviside expansion method, which requires
repeated differentiation, can become cumbersome. For a function that contains several repeated
and unrepeated roots, a hybrid of the two procedures proves to be the best. The simpler coef-
ficients are determined by the Heaviside method, and the remaining coefficients are found by
clearing fractions or shortcuts, thus incorporating the best of the two methods. We demonstrate
this procedure by solving Example B.10 once again by this method.

In Example B.10, coefficients k and aq are relatively simple to determine by the Heaviside
expansion method. These values were found to be k; = 1 and ay = 2. Therefore,

4x® 4+ 16x* +23x + 13 2 + a + a + 1
x+1D3x+2)  @+DP @+D? x4+l x+2
We now multiply both sides of this equation by (x + 1)*(x -+ 2) to clear the fractions. This yields

4% + 16x* +23x + 13
=200+ +a(x + Dx +2) +ar(x + 1D’ +2) + (x + 1)
= (1 +a)x’ + (a1 +4a, + 3)x* + (5 + 3a; + Sax)x + 4+ 2a, +2a, + 1)
Equating coefficients of the third and second powers of x on both sides, we obtain
1 + ay = 4 a; = 1
-
a1+4a2+3=16 l12=3

We may siop here if we wish because the two desired coefficients, ; and a,, are now determined.
However, equating the coefficients of the two remaining powers of x yields a convenient check
on the answer. Equating the coefficients of the x! and x° terms, we obtain

23=5+3a|—|-5a2
13=4+42a,+4+2a,+1

These equations are satisfied by the values @, = 1 and a, = 3, found earlier, providing an
additional check for our answers. Therefore,
1 3 1
(x+1)3 +(x+1)2 +x+1+x+2
which agrees with the earlier result.

Fx)=

A MIXTURE OF THE HEAVISIDE ““COVER-UP”’
AND SHORTCUTS

In Example B.10, after determining the coefficients ay = 2 and k = 1 by the Heaviside method
as before, we have

4x>+16x*+23x +13 2 I L S 1
(x+D3x+2) T+ x+D?2 x+1 0 x+2
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There are only two unknown coefficients, a, and a,. If we multiply both sides of this equation
by x and then let x — oo, we can eliminate a,. This yields

4 = a+l = a, =3
Therefore,

4x +16x° +23x+13 2 PN 3 N 1
G+ +2) x4+ x+D? x+1 0 x+2

There is now only one unknown a,, which can be readily found by setting x equal to any
convenient value, say x = 0. This yields

13 1
?=2+611+3+-2* = a =1

which agrees with our earlier answer.

There are other possible shortcuts. For example, we can compute ay (coefficient of the
highest power of the repeated root), subtract this term from both sides, and then repeat the
procedure.

B.5-5 Improper F(x) withm=n

A general method of handling an improper function is indicated in the beginning of this section.
However, for a special case of the numerator and denominator polynomials of F(x) being of
the same degree (m = n), the procedure is the same as that for a proper function. We can show
that for

_ bux" + by x4 byx + by
X"+ a,x et agx + ag

F(x)

bty kL K
o x—)»l x—)\.z X — Ay

the coefficients ki, k,, ..., k, are computed as if F(x) were proper. Thus,
kr = (x - )\l')F(x),x=A,

For quadratic or repeated factors, the appropriate procedures discussed in Sections B.5-2 or
B.5-3 should be used as if F(x) were proper. In other words, when m =n, the only dif-
ference between the proper and improper case is the appearance of an extra constant b, in
the latter. Otherwise the procedure remains the same. The proof is left as an exercise for the
reader.




Expand F(x) into partial fractions if Thi
s
Fo) 3x24+9x - 20 _ 3x?+9x —20
VTR 6 T aooe13
R 306
Here m = n = 2 with b, = b, = 3. Therefore, Ane
Thus
3x2 +x —20 k ka
= =3 —_— b :
F@) C-2x+3) " tyx—2tii3 e 1el
in which
b — 3x2 +9x — 20 _12—}—18—20__10__2 or as
TGy T ey —5 =
and
_ 27—27—-20_ —-20 4
T (=3= -5
(=3-2) S
Therefore, Consi
3x%+9x — 20 2 4
= =3 E——
T = ey =3 5 i3
B.5-6 Modified Partial Fractions
In finding the inverse z-transforms (Chapter 5), we require partial fractions of the form I we ¢
kx/(x — ;)" rather than k/(x — A;)". This can be achieved by expanding F(x)/x into partial
fractions. Consider, for example,
5x2 4+ 20x + 18
F(x) = _ij__xﬁ—l__i
x4+2)(x +3)
Dividing both sides by x yields then E
F(x)  5x%4+20x + 18 into ve
X x(x+2)(x +3)° all]ilneaJ
Thi
Expansion of the right-hand side into partial fractions as usual yields sat

F(x)  5x%+20x +18 _a 4@ L4
X x(x+2)(x 432 x  x42 x
Using the procedure discussed earlier, we find g, =

A

+3) * (x + 3)2
La=1,a3=~2,anda, = 1. Therefore,
F(x) 1 1 2 1

x x—I—x-!-Z——x+3+(x+3)2
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Now multiplying both sides by x yields
X 2x X
x+2 x+3 + (x +3)2
This expresses F(x) as the sum of partial fractions having the form kx /(x = A,

F(x) =1+

B.6 VECTORS AND MATRICES

An entity specified by n numbers in a certain order (ordered n-tuple) is an n-dimensional vector-.
Thus, an ordered n-tuple (xy, x,, ..., x,) Tepresents an n-dimensional vector x. A vector may
be represented as a row (row vector):

=[x x - x,]
or as a column (column vector):

X1
X3

Xn

Simultaneous linear equations can be viewed as the transformation of one vector into another.
Consider, for example, the n simultaneous linear equations

Yi=auxi +apx; + - +a,x,

Yo =Xy +agppxy F - - - + azx,

Ym = Q1 X1 + Qpoxy + - -« - DXy

If we define two column vectors X and y as

(B.50)

Ams

A matrix with m rows and »n columns is called a matrix of the order (m, n) or an (m x n) matrix.
For the special case of m = n, the matrix is called a square matrix of order n.




