Digital Circuit Design Using Xilinx | SE Tools

Poras T. Balsara and Prashant Vallur

Table of Contents

1. Introduction
2. Programmable logic devices. FPGA and CPLD
3. Creating a new project in Xilinx Foundation Series Tools
3.1 Opening a project
3.2 Creating an ABEL HDL input file for a combinational logic design
3.3 Editing the ABEL HDL source file
4. Compilation and Implementation of the Design
5. Functional Simulation of Combinational Designs
5.1 Adding the test vectors
5.2 Simulating and viewing the simulation result waveforms
5.2.1 Equation Simulation Report
5.2.2 Equation Simulation Waveform
5.3 Saving the simulation results
Preparing bitstream for the XC95108 CPLD chip
7. Downloading a Design to the prototyping board
7.1 Downloading through GXSTOOLS
7.2 Downloading through XSTOOL S
8. Testing a Digital logic circuit
8.1 Observing the outputs using the on-board LEDs
8.2 Applying inputs using XSPORT/GXSPORT
9. Design and Simulation of sequential circuits using ABEL HDL
9.1 Specification using a state transition table
9.2 Specification using a state machine program
9.3 Simulation of sequential designs
10. Hierarchical circuit design using Modules (or Macros)

ISH

Acknowledgements

We thank the Xilinx Corporation for providing the Xilinx Foundation Software and FPGA prototyping
boards for educational purposes. We aso thank Prof. Jan Van der Spiegel for alowing us to use parts of
his Xilinx tutorials developed for his course in the Electrical Engineering Department at the University of
Pennsylvania.

1. Introduction

Xilinx Foundation Series Tools is a suite of software tools used for the design of digital
circuits implemented using Xilinx Field Programmable Gate Array (FPGA) or Complex
Programmable Logic Device (CPLD). The design procedure consists of (a) design entry, (b)
compilation and implementation of the design, (c) functional simulation and (d) testing and
verification. Digital designs can be entered in various ways using the above CAD tools: using a
schematic entry tool, using a hardware description language (HDL), ABEL or VHDL or a
combination of both. In thislab we will only use the design flow that involves the use of ABEL
HDL.

The Foundation Series tools enable you to design combinational and sequential circuits starting
with ABEL HDL design specifications. The steps of this design procedure are listed below:

1. Create ABEL design inpuit file(s) using template driven editor.

2. Compile and implement the ABEL design fileg(s).

3. Create the test-vectors and simulate the design (functional ssimulation) without using a
PLD (FPGA or CPLD).

4. Assign input/output pins to implement the design on atarget device.

5. Download bitstream to an FPGA or CPLD device.

6. Test design on FPGA/CPLD device

An ABEL input file in the Xilinx Foundation software environment consists of the following
segments:

Header: module name, options and title.

Declarations: pin, constant, sets, states, library.

Logic Descriptions: equations, truth tables, state diagram.
End:

All your designs for this lab must be specified in the above ABEL input format. Note that the
state diagram segment does not exist for combinational logic designs.

2. Programmable L ogic Devices. FPGA and CPLD

In this lab digital designs will be implemented using two types PLDs. FPGA and CPLD. For the
FPGA implementations we will mainly use the XC4010XL part which belongs to the XC4000
family of FPGAs. CPLD implementations will be done using the XC95108 which is part of the
XC9000 CPLD family. These devices come in avariety of packages. We will be using devices
that are packaged in 84 pin PLCC with the following part numbers: X C4010XL, PC84CMN9817
and XC95108, PC84ASJ19749. XC4010XL FPGA is adevice with about 10K gates, whereas,
XC95108 CPLD has about 2400 usable gates. Detailed information on these devicesis available
at the Xilinx website.

3. Creating a New Project in Xilinx Foundation Series Tools

Xilinx Foundation Series Tools can be started by clicking on the Project Navigator Icon on the
Windows desktop. This should open up the Project Navigator window on your screen. This

window shows (see Figure 1) the last accessed project.

Xilinx - Project Navigator - C:hXilin®',bin'itry' kry.npl - [try.abl]

|)® File Edt Wiew Project Source Process Macro Window Help

=&l x|
=&l x|

|peed #ZE|EERE|[ERE (2R ||t e@|oe & C|s%%%[9

]

I MODULE try

Sources in Project
BTN TITIE 'main file'

E Uniitled
[E-£3 XC95108 PCA4 - SBEL ST

Leclarations

SRGI] 1 (1.2t a PIN 46;
b PIN 47;
c PIN 45;
d PIN 50;
£ PIN 17 istype 'con';

tryl Interface (il, 12 -> g):

T B vomie v [B Fie Wiew | o Srapsho... | E] Library... |

tryZ, tryd, tryd Functional Block tryl;

| »

2l]
Pracesses for Current Source: EQUATIONS _—
Desian Ertry Utilities
Compile Design try2.il = a;
Implement Dezign try2.iz = b;
Create Programming File
try3.il = ¢}
tryd. iz = d:
tryd. il = tryi.gr
tryd.i2 = tryd.gr -
4|| 3
B2 Process Yiew I try. abl
% |
/| Starting: 'CivEilinx‘\binint\ahdlzblf.exe try.abl -ojhd only -def XC9000_ -err ahdlablf.err'
AHDLZBLF ABEL-HDL 7.20 Compiler, Build D.27
13E Release 3.011 Copyright (o) 2000 Xilinx, Inc. All rights reserved.
Done: completed successfully.
-
4 3
[4[AT > [NConsoled Findin Fies
Higrarchy is up to dake, tn 1, Cal 1 [=

Figure1: Xilinx Project Navigator window (snapshot from Xilinx | SE software)

3.1 Opening a project

Select File->New Project to create a new project. This will bring up a new project window
(Figure 2) onthe desktop. Fill up the necessary entries as follows:

MNew Project ' x|
Froject name: Froject Location:
newproject_name c:\uilingbinhnewproject_name |
Project Device Options:
Property Hame Value
Device Farmily Hilimz 9500 CPLDs
Device HCA5108 PCad
Synthesiz Tool ABEL H=T
] | Cancel |

Figure2: New Project I nitiation window (snapshot from Xilinx | SE software)

Project Name: Write the name of your new project
Project L ocation: The directory where you want to store the new project
For each of the properties given below, click on the ‘value’ area and select from the list of
values that appear.
o0 Device Family: Family of the FPGA/CPLD used. In this laboratory we will
mostly use the Xilinx 9500 CPL Ds.
0 Device: The number of the actual device. For this lab you may enter XC95108
PC84 (this can be found on the attached prototyping board)
0 SynthesisTool: ABEL XST
o0 Thenclick on OK to save the entries.

All project files such as schematics, netlists, ABEL files, nodules etc., will be stored in a
subdirectory with the project name. A project can only have one top level HDL source file (or
schematic). Modules can be added to the project to create a modular, hierarchical design (see
Section 10).

In order to open an existing project in Xilinx Foundation Series Tools select File->Open to show
the list of projects on the machine. Choose the project you want and click OK.

3.2 Creating an ABEL HDL input file for a combinational logic design

In this lab we will enter a design using a structural or RTL description using the ABEL HDL.
You can create an ABEL HDL input file (.abl file) using the HDL Editor available in the Xilinx
ISE Tools (or any text editor).

If adding an already existing source file (.abl file) to he project, in the project Navigator
window, select Project -> Add Copy Sour ce and browse through the disk for the source file.

If creating a new source file, in the Project Navigator window, select Project -> New Sour ce.
A window pops up as shown in Figure 3. (Note: “Add to project” option is selected by default. If
you do not select it then you will have to add the new source file to the project manually.)

dzer Docurnent
Schematic
ABEL-HDL Madule
ABEL TestVectors

hdl Library File M arne:
e Inewpru:uieu:t_name.abl
LagiBlax Maodule

Location:

Iu::'\:-:ilin:-:'xl:uin'\newpru:uie-:t_name |

v Add to project

< Back I Mext » I Cancel | Help I

Figure3: Creating ABEL-HDL sourcefile (snapshot from Xilinx | SE software)

Select ABEL-HDL Module and in the “File Name:” area, enter the name of the ABEL source
file you are going to create. Make sure that the top-level ABEL file name matches with the name
of the project. Also make sure thet the option Add to project is selected so that the source need
not be added to the project again. Then click on Next> to accept the entries. This pops up the
following window (Figure 4).

Define ABEL-HDL Source

Module Mame |newproject_narme

Pin Hame MSE LSE =~

inputpint _name
inputping_name
outputpin__name

< Back I M et > I Cancel | Help |

Figure4: Define ABEL-HDL Sourcewindow (snapshot from Xilinx | SE software)

In the Pin Name column, enter the names of al input and output pins. A Vector/Bus can be
defined by entering appropriate bit numbers in the M SB/L SB columns. Then click on Next> to
get a window showing all the new source information (Figure 5). If any changes are to be made,
just click on <Back to go back and make changes. If everything is acceptable, click on Finish to

continue.

Mew Source Information

Froject Mavigator will create a new skeleton source with the
following specifications:

Source Directary: chsilingibintnewpraject_name

< Back I Finizh I Cancel | Help |

Figure 5: New Sour ce | nfor mation window(snapshot from Xilinx | SE software)

Once you click on Finish, the source file will be displayed in the sources window in the Project
Navigator (Figure 1).

If a source has to be removed, just right click on the source file in the Sources in Project
window in the Project Navigator and select Remove in that. Then sdlect Project -> Delete
I mplementation Data fromthe Project Navigator menu bar to remove any related files.

3.3 Editing the ABEL-HDL sourcefile

The source file will now be displayed inthe Project Navigator window (Figure 6). The source
file window can be used as a text editor to make any necessary changes to the source file. All the
input/output pins will be displayed. Make sure you enter the pintype for all output pins have to
(combinational or sequential). For combinational, an output pin F can be declared as F PIN
istype ‘com’ and if it's sequential, F PIN istype ‘reg’. Enter the logic descriptions using:
Equations or Truth Tables or Sate Diagram (for sequential circuits). Save your ABEL program
periodicaly by selecting the File->Save from the menu. You can also edit ABEL programs in
any text editor and add them to the project directory using “Add Copy Source’.

xilinx - Project Navigator - c:\kilink',bin\newproject_name'\newproject_name.npl - [newproject_name.abl] = 5[
|»§ File Edit Vew Project Source Process Macro Window Help =& 5[

[peegprE|EERE @kt e|[s=ajoe @ 4% %[0|
Al

MODULE newproject_name ﬂ

Sources in Project
L | inputpinl_name PIN;

E Uniitled inputpinZ name PIN;
S8 E,',E #CY5108 PCB4 - ABEL x5 T . outputpin_neme FIN;
newproje [newproject_name. abl]
EQUATIONS
END

BLYTRETD i...| o snapsh... | E] Lirar.. |
=]

Processes for Cument Source:
Design Entry Utilities
Compile Design
Implement Design
Create Programming File

-
kil »
B Process Yiew @ newprmect_...l

=

Starting: 'C:\Eilinkibininthahdlzblf.exe newproject name.abl -ojhd only -def EC9000_ -err shdlZblf.err'

AHDLZELF ABEL-HDL 7.2Z0 Compiler, Build D.27
i3E Release 3.01i Copyright (o) 2000 ¥ilinx, Inc, A1l rights reserved.
Done: completed successfully.
b
4

[
[4[A [P hConsaleh Findin Files /

For Help, press F1 |Ln 9, Cal4

;;!start| | & & |J allCAwITISyste... | £EE 3320 Home .. |||Jt§§ siling - Project ... %Juntited-Pant | Eipigtdl Ciraut .., | B amem

Figure 6: ABEL editor window in the Project Navigator (from Xilinx | SE software)

Adding Logic Equationsto ABEL designs:

Logic equations can be easily added to the Logic Description section of an ABEL
program. For example, an output Z can be described as,

Z=(a&'b)#c
Remember that the names are case sensitive.
Logical, arithmetic and relational operators available in ABEL are described in Table 1.
Details of the relational operators are discussed in the section on sequential design.

| L ogical | Arithmetic | Relational

| & |AND | - |2sComplement | == |Equa

| # |OR | A-B | Subtraction | = |Not Equal

! |[NOT ' A+B | Addition | < |LessThen

| $ |XOR | << [Shift Left | <= |LessThan/ Equa

| | | >> | Shift Right | > | Greater Than

‘ ‘ ‘ ’ ‘ - ‘GreaterThan/
Equal

Table1l Operationin ABEL HDL

Adding Truth Tablesto ABEL designs:

Truth tables can also be included in a design by using the syntax shown given below. A
table starts with a header with al the input and output names followed by rows of truth
table entries. Combinational transitions are specified with a- > and registered transitions
(in sequential circuits, Section 9) are specified witha: >

TRUTH_TABLE

([inputl, input2, ... inputn] -> [outputl, output2, ... outputni)
[0, O, ... O] ->1[1, O, ... 1];
[0, O, ... 1] ->1[0O, 1, ... O]
[1, 1, ... 1 ->[0, 1, ... 1]

Suppose we want to describe an AND gate. It can be done using the logic equation as shown in
Figure 7 or using the Truth Table as shown in Figure 8. We can use of either of them or both of
them to define various output functions in the design.

MODTLE newproject_hane ;l
TITLE 'AND Gate'

Declarations

inputpinl name PIN;

inputping name PIN;

outputpin name PIN istype 'cow';

EQUATIONS

outputpin hame = inputpinl_name & inputping name ;

END

4] _>l_I
@ newpn:uiect_...l

Figure 7: AND gate description using Equations (snapshot from Xilinx | SE software)

MODULE newproject name d
TITLE 'AND gate'

Declarations

inputpinl_name PIN:

inputping name PIN:

outputpin name PIN istype 'cow';

TEUTH TAELE

[[inputpinl name, inputping name] -> outputpin name):

[0,0] -> O
[0,171 == 0
[1,01 -» 0O
[1,1] -> 1;

END

kil _>I_I
[A] newpn:uiect_...l

Figure 8: AND gate description using Truth Table (from Xilinx | SE software)

4. Compilation and Implementation of the Design

The design has to be compiled and implemented before it can be checked for correctness by
running functional simulation or downloaded anto the prototyping board. With the top-level
ABEL file opened (can be done by double-clicking that file) in the HDL editor window n the
right half of the Project Navigator, and the view of the project being in the Moduleview , the
compile design and implement design options can be seen in the process view. Design entry
utilities and Create Programming File options can also be seen in the process view. The former
can be used to include user congtraints, if any and the latter will be discussed later.

To compile the design, double-click on the option Compile Design in the Processes window. It
will go through steps like Check Syntax, Compile Logic, Interpret Feedbacks, Reformat
Logic and Optimize Hierarchy. If any of these steps could not be done or done with errors, it
will place a X mark in front of that, otherwise a tick mark will be placed after each of them to
indicate the successful completion. If everything is done successfully, a tick mark will be placed
before the Compile Design option. If there are warnings, one can see ¥ mark in front of the
option indicating that there are some warnings. One can look at the warnings or errors in the
Console window present at the bottom of the Navigator window. Every time the design fileis
saved; all these marks disappear asking for a fresh compilation.

To implement the design, double-click on the Implement Design option. It has many steps in it
e.g., Trandation, Fitter, Timing Analysis and Launch Tools. One can use the timing analyzer
and post fit chipviewer from the Launch Tools section once the implementation is completed
successfully. If the implementation is done successfully, atick mark will be placed in front of the
Implement Design option.

The above two steps can be done in a single step by just double-clicking on the Implement
Design option straightaway. This will do the compilation first and then the implementation In
our example, when we compile the design, it shows warning and it indicates the warning in the
Console as shown in the Figure 9.

Xilinu - Project Navigator - c:yilingbin',newproject_name',newproject_name.npl - [newproject_name.abl] - |5 |ﬂ

|.® File Edit View Project Source Process Macro ‘Window Help Jil ﬂ
PeedgE B2RE[ERE|(2W || Ba[o = k] H 4% % %|Q
2% 5
- - MODULE newproject hame =
Sources in Project: | | T
- @ United TITLE 'AND gate
B E,‘E XC95108 PCE4 - ABEL WST

Declarations

------ EWRIDE name.abl]
inputpinl name FIN;
inputpinZ_name PIN;
outputpin name PIN istype 'com';

TRUTH_TAELE

LT view | E] il view | 0 napstot view | E] Liery View |

[[inputpinl name, inputping name] - outputpin name j;

2l [0,0] - 0:
Processes for Current Source: | [0,11 -» 0;
[1,0] - 0;
[1,1] - 1;
END
w
4] '

B Process View I @ newproiect_...l

(SR

LHDLZELF ABEL-HDL 7.20 Compiler, Euild D.27
i3E Release 3.011 Copyright (c) 2000 Xilinx, Ine. A1l rights reserved.

L =]

0001 |MODULE newproject name

A

ng module name

Done: cowpleted successfully.

Starting: 'C:iEilimx\bin\nthdiofft.exe newproje.blD -o nevproje.hbll -idev epld -dev CPLD DTsynd -err diofft.err’

4 o
4[4 ¥ [MPConsoled Find n Files

Process "Compile Design is up to date, In7, col20 | H

;aStart| |) @ &5 H EDC:'I,WINNT'I,Syste...|||;®Xilinu-Pruject . € JEE 3320 Home ... | & untitled - Paint | | igical Circuit De...l @YY v

Figure 9 : Compiling the Design (snapshot from Xilinx | SE software)

After that, when the design is implemented, it ignores the warnings and completes the
implementation successfully (shown in Figure 10).

Xilinx - Project Navigator - ¢\ xilins',bin',newproject_name'newproject_name.npl - [newproject_name.abl] |8 |ﬂ

|.® Flle Edi ‘View Project Source Process Macro ‘Window Help -8
IDEZ:EAEEA N2 Sl YR A R AR — 5 % 2 L
2|z =
- — MODTULE newproject_hame =
Sources in F’ru|ecl. | TITIE 'MND gate'
[Unitled
[~ 3 95108 PCA4 - ABELKST Declarations
o BWPID nject_name. abl)
inputpinl_name PIN;
inputpinZ_name PIN;
outputpin naue PIN istype 'com':
TRUTH_TABLE
R e view | E] il view | o snepshat view |] Lirary view |
| [inputpinl naue, inputping name] -> outputpin name):
EE [0,0] == 0:
Processes for Cunent Source: | [0,1] == 0;
W Design Entry Utilities [1,0] > 0;
O/ Compile Design [1,1] == 1:
END
-
kil b
B Process ifiew I A newproiect_...l

Lol
L3

Conzsidering device XC95103-PCS4.
Flattening design..
Timing optimization
Timing driven global resource optimization General global resource optimization........
Fe-checking device resources ...
Mapping a total of 1 equations into 6 function blocks....
Design newproje has been optimized and fit into dewvice XC55108-7-PCS84.
EXEWRLP detected that prograw 'hitop' completed successfully.

Done: completed successfully.
-
1 +
4] 4] F M Consalef Findn Fies [
For Help, press F1 \Ln 7, Col20 | H

;astart”J) @& 3 |J slciwmnmisyste...|[[4 ik - Project .. &1€E 3220 Home P... | #]urtied - et | Bpigtal Circut ... | G e

Figure 10 : Implementing the Design (snapshot from Xilinx | SE software)

5. Functional Simulation of Combinational Designs
5.1 Adding the test vectors

To check the functionality of a design, we have to apply test vectors and simulate the circuit.
We can add test vectorsin the top-level ABEL file as shown in the Figure 11.

xilinx - Project Navigator - c:xilink'binynewproject_name'\newproject_name.npl - [newproject_name.abl] - ﬁ'lﬂ
|1® File Edit Yiew Project Source Process Macro Window Help - ﬁ'lﬂ
[peaozyEBE[ERE|eR]||see|oc m F|l4%%%|Q]
ST
I MODULE newproject name d

Sources in Project:
B Untitled
- £ ¥C35108 PCS4 - ABEL ®ST

..... newproje-vectors

TITLE 'AND gate'

Declarations

..... e [oject_name.abl inputpinl_name PIN:
inputping name PIN;
outputpin name PIN istype 'com':

Equations

] B odule Yiew File iew J N Snapshat Visw I Library Wiew I

outputpin name = inputpinl name & inputping name ;

FE| test_vectors ([inputpinl name, inputpinZ name] -> outputpin name);
Processes for Curment Source: |
W Deesign Entry Utilities [0,0] -= 0 :
O Compile Design [0,1] -> 0 :
O Implement Design [1,0] ->0 ;
-3 Create Programming File [1,1]1 == 1:

END -
Kl »
B Process Visw I @ newpmiect_...l

2| iSF Auto-Mske Log File =]

Starting: 'C:iEilinx\bindntiahdl2blf.exe newproject nsme.sbl -ojhd only -def HC9000 -err ahdlZblf.err'

AHDLZELF ABEL-HDL 7.zZ0 Compiler, EBuild D.Z7
i%E Release 3.01i Copyright (o) 2000 Eilinx, Inc. All rights reserved.

Done: completed successfully.

Jl L|J
4] 4[> [P sconsolef Findin Fies [

Higrarchy is up ko date, lLr 13, Col 28 [el

iflistart| | 1] & 3 |J ‘gDC:'I,WINNT'I,Syste...lh@ ilins - Project .. &12E 3320 Home P . | &untitled - paint | Efpigtal circuit De. . | R@d vs7em

Figure 11 : Adding test vectorsto the design (snapshot from Xilinx | SE software)

One can see the test vectors file (newprojec-vectors) added to the Sour cesin Project window on
the left-hand side of the Project Navigator window. Next, compile and implement the design as
before. Alternatively, you may add the test_vectors at the same time you create the rest of the
ABEL file.

5.2 Simulating and Viewing the Output Waveforms

Click on the File View inthe Sourcesin Project window. Then double-click on the test vectors
file (newproje-vectors in our example). That file will be displayed on the right-hand side. Then
in the Processes View window (left-bottom), double-click on the Compile Test Vectors option.
Then double-click on the Smulate Equations option. When both are done successfully, a tick
mark will be placed before each of them. Then click on the + mark in front of the Simulate
Equations option to get the options: Equation Smulation Report and Equation Simulation
Waveform as shown in Figure 12.

xilinx - Project Navigator - ctsilink'bin'\newproject_name'newproject_name.npl - [newproject_name.abl] - |ﬁ'|1|
|)® File Edt Wiew Project Source Process Macro Window Help _|ﬁ||l|
B e E R T CEE B L —— Y

21 x|

HMODULE newproject nane ﬂ

Sources in Project: I TITLE 'AND gate'

{1 Documents
-2 Module Files
newproject_name. abl

Declarations

inputpinl_name PIN;
inputpinZ_name PIN;
outputpin name PIN istype 'com':

Emquations

G nocte view | [E] Fie iew | 1w znapshot view | E] Library view |

outputpin name = inputpinl name & inputping name ;

EE test_wectora ([inputpinl_neme, inputpini name] -> outputhin name);
Processes for Cument Source: |
----- T Compils Test Vectors [0,0] -= 0 :
= n/ Simulate Equations [0,1] == 0 :
N El Equation Simulation Report [1,0] == 0 :
E quation Simulation 'w avefarm [1,1] == 1 :

END -
Kl »
B Process View I @ newproiect_...l

ﬂ iSE Auto-Make Log File =l
¥

Updating: Egquation Simulation Waveform

Launching: 'C:iIilinx\bini\nthexewrap -batch -env @Bxc.env -command waves.bat '

eh, Fi _IJ
14 num Consoled Find In Files
H

For Help, press F1 |Ln 19, Col 26 |

;astart| | & <3 |J gDC:'I,WINNT'I,Syste...l . £ 3320 Home P... | #]untitied - paint | B|igial ircuit De... | R zoiem

|)® Xilinx - Project ..

Figure 12 : Simulating the design (snapshot from Xilinx | SE software)

5.2.1 Equation Simulation Report

When this reporting option under the Simulate Equations option is double-clicked, a report
window pops up and it shows which test vectors have passed and which test vectors have failed
as shown in Figure 13.

¥ iSE Report Yiewer - [newproject_name.smil] 3 x|
File Edit “iew Options ‘Window -8 x|

EEREE

Sinulate 1SE 3 .01 Date: Wed Sep 12 13:49:53 2001

| »

Fuze file: 'newproject_name . bll' Vector file: 'newproject_name.tmw' Part: 'PLAY
AND gate e
i1 o
nn u
rp t
uu ju}
tt u
pp t
11 =}
nn i
12 n
nn n
a2 a a
n m m
== =}
¥yoool o0 0 L
voooz 01 L
yvoooi 10 L
voood 11 H
4 out of 4 vectors passed.

4 —'lll

[Ln 1 Cal BEEG Rec O [No'wiap [DOS [INS [

Figure 13 : Equation Simulation Report (snapshot from Xilinx | SE software)

As we have given correct values of output for all the test vectors, al of them have passed. This
can be seen in the above figure. If there is an error (i.e. a mismatch between the actual and
expected values), it will be indicated in this report window (Figure 13). In case of an error, first
check if the test_vectors were typed in correctly and then debug the circuit.

5.2.2 Equation Simulation Waveform

When this option under Simulate Equations option is double-clicked, a window pops up with
no waveform in it. Then select Edit -> Show. A form appears as shown in Figure 14. In that
form, we can select al the signals to be displayed.

=10l

'-'ﬁ Waveform Yiewer - History - pla R
File Edit “iew ©Object Tools Options Jump Help
0 100 200 300 400

I‘IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII|

13

| »

i Show Waveforms | -

Met Mame: |4l Selected Mets
Show | Bus »> |

Ingtances: Mets:

inputpind_name

inputping_name
outputpin. hame

Fush | | Path:

-
1 [][4] | »

Time =10

Figure 14 : Selecting thesignals to be displayed (snapshot from Xilinx | SE software)

Press the Ctrl button on the keyboard and click on al the signals to be displayed, release the
Ctrl button and click on Show in the form. Then a waveform appears on that waveform viewer
window as shown in Figure 15. You can use the Bus>> button to collectively display a bunch

of signalsasabus.

;.g‘i' Waveform Yiewer - History - pla | 5]
File Edit Wiew Object Tools Options Jump Help
0 1} 100 200 300 400
Y b b Lo |

inputpinl_name ‘ =

inputpin2_name

outputpin_name|
« 3K _’lJ
Time = 0

Figure 15 : Simulation results waveform (snapshot from Xilinx | SE software)

Various options like displaying some signals as a bus, placing some markers, setting some
triggers, etc. are present in the waveform viewer. Explore these options for future use.

NOTE: The smulation waveform always gives the actual output for the test_vectors specified
and not the expected values. The simulation report is the only place wherein
mismatches between expected and actual values are indicated.

5.3 Saving the ssimulation results

To save the simulation results, select File -> Save as in the waveform viewer window and save

the waveform. Then select File -> Exit to exit the waveform viewer and return to the Project
Navigator.

6. Preparing bitstream for the XC95108 CPLD chip

A bitstream needs to be prepared for the design to be downloaded onto the prototyping board.

Thisis done as follows:

Assign pin numbers to the input and output pins in the ABEL — HDL design file. The pin
numbers can be assigned by looking at section 8 of this tutorial. Then save the design file and
implement the design again. Note that you can assign pin numbers only to top-level ABEL
file. Let’ sassign some valid pin numbers for our example and implement it. Then the Project
Navigator window looks as shown in Figure 16.

Kilinx - Project MNavigator - c:xilinxbin',newproject_name'\newproject_name.npl - [newproject_name.abl]

_18]x]
|r$ File Edit ‘iew Project Source Process Macro Window Help -|ﬂ ll
[oeeezvEpEREeRe e ||t ee|oc|@ [+%3A[0|
= C
- N MODILE newproject name -
5 Project: -
OLICES |n.ro|ec | TITIE 'AND gare'
E Untited
EE,',E ACH5108 PCA4 - ABELXST Declarations
newproje-vectors
PR r=vnnoje [newproject_name. abl] inputpinl name PIN 46;
inputpinZ_nawe PIN 47:
outputpin name PIN 17 istype 'com';
Equations
B Mogule View | E] it View | (8 Snapsht iew | [E] Library View |
outputpin nawe = inputpinl nawe & inputpinZ nawe ;
212 test wvectors ([inputpinl name, inputpinZ name] -» outputpin name);
Processes for Cument 5 owce: I
@ Design Entry Utiliies [0,01 ->0:
- 3g# Compie Design [0,11 -» 10 ;
R @174 Iplement Design [1,0] >0
G Create Programming File [11] == 1
END -
K1l b
B Brocess tien I @ newproject_. |

x|
E] Considering device ZCS51053-PCG4.
Flattening design..
Timing optimization
Timing driven global resource optimization
Fe-checking deviee resources ...
Mapping & total of 1 eguations into 6 function blocks

Done: completed suceessfully.

General global resource optimization........

Design newproje has been optimized and fit into device XC95105-7-PCS54.
EXEWERLP detected that program 'hitop' completed successfully.

4
[4[4] [Econsoled FindIn Fies

Process "Implement Design" is up to date.

gl start

|1 @ 153 || aileawmnmisyste.. | slink - Project .. &1E€ 3320 Home .. | §Junied - pan: | @pigtalcrcui: De.. |

ﬁ
3
[lng, colza [)

B wosem

Figure 16 : Assigning |/O pin numbers (snapshot from Xilinx | SE software)

Click on the Module Viewin the Sources in Project window. Then, in the Process View
window (left-bottom), double-click on the Create Programming File option. Once it is done
successfully, click on the + mark on its left to get Launch JTAG Programmer option.
Double-click on it. That brings up the Xilinx JTAG Programmer window as shown in
Figure 17.

newproje - Xilink JTAG Programmer — 10l xl
File Edit Cperations Cutpuk View Help

D[=[E| #|m|@[2]c| s2i5¢| 22[s5] LHE| S

HCa5108

newproje. jed

TDO

For Help, press F1 [TE 2

Figure 17 : JTAG Programmer window (snapshot from Xilinx | SE software)

Select Output->Create SVF File menu item in the JTAG Programmer window. An SVF
options window pops up, click on OK to accept the default settings. A pop-up window lets
you specify the name and directory of the SVF file. (It is recommended that you place this
file in the top level directory of your project so that it can be easily found later.) Click Save
after choosing the file.

Next, select Operations->Program from the menu. Click OK in the pop-up window that
appears (don't change any of the other parameters). Then select File -> Exit to exit the JTAG
programmer and return to the Project Navigator.

7. Downloading a Design to the Prototyping Board

After successfully creating the bitstream file (.svf file), configure the CPLD. This can be done in
either of the following two ways:

7.1 Downloading through GXSTOOLS

Select Start -> Programs -> XSTOOLs -> GXSLOAD from the Windows desktop or
simply double-click on GXSLOAD icon on the Window desktop.

The following window pops up.

1]
Dirop .BIT, .5%F. .HE®, and .EX0 Exit |

files here to dovwnload ta the
#5 or ®5% Board.

Recent Files:

Feload | [~ EEPROM Part ILF'T1 vI

Figure 18 : GXSL OAD (snapshot from GXSTOOLS software)

Select Start -> Search-> For Files or Folders...from the Windows desktop and search for
the .svf file created in the above steps. Once that file is found, smply drag and drop that file
onto the GXSLOAD window. Then the downloading starts and once it is done successfully, a
message window appears indicating that the board is programmed.

7.2 Downloading through XSTOOLS

Sdect Start -> Run -> command from the Windows desktop to open a DOS window. Then
go to xstools directory in the C: drive. Then at the pronpt, type

C\XSTOOLS> xdoad <.svf file file name with entire path>

For our example, it is xsload c\xilinx\bin\newproject_name\newproje.svf

8. Testing a Digital Logic Circuit

Testing a downloaded design requires connecting the inputs of the design to switches or ports
and the outputs of the design to LEDs or 7-segment displays. In case of sequential circuits, the
clock input(s) must also be connected to clock sources. These inputs and outputs can be
connected to appropriately on the Digital Lab workbench. Alternatively, the inputs can also be
applied from the PC as described later in this section.

The next step in testing is to apply a sequence of test vectors to the inputs in the design and
check the outputs of the design against what is expected. A test vector is a set of input values for
the inputs of a design. The XS40 and X S95 prototyping boards have some built-in features that
enable you to test your designs quickly and easily.

8.1 Observing outputs using the on-board LEDs

The XS40 and XS95 boards have one onboard 7-segment display (see Figure 19) that is
connected to the corresponding on-board FPGA/CPLD chip. This display can be used to observe
the outputs of your design without using any additional wires if the design conforms to the pin
assignments for the on-board 7-segment display. If your design has more than 7 outputs, you
will have to use other LEDsavailable on the Digital Lab workbench. The figure below shows the
7-segment display withthe conventional labeling of individual segments.

=
= == = =

]I 0o o
{1 LForC 120 1

? L — - —]

Figure 19: 7-segment display

For each prototyping board, Table 2 shows the FPGA/CPLD pin assignments for the LED
segments of the on-board 7-segment display.

LED XC4010XL XC95108
Segment | (XS40 Board) | (XS95 Board)

| SO(seg.d) | pr# 25 | pin# 21
| Sl(seg.C) | pi# 26 | pin# 23
| S2(seg.€) | pin# 24 | pin# 19
| S3(seg.g) | pM# 20 | pin# 17

|

|

|

| SA(seg.b) | pin# 23 pin 18
| S5(seg.f) | pin# 18 ping 14
| S6(seg.@) | pin# 19 pint 15

Table2. Pin assgnmentsfor 7-segment L EDs

8.2 Applying inputs using XSPORT/GXSPORT

Each board aso has afew pins connected to the host PC through the parallel port. These pins
can be used to apply input stimuli from the PC (DOS window) to test your design. The pins are
also used for downloading design bitstreams. Input test vector can be applied to your design by
using GXSPORT or XSPORT

GXSPORT: Select Start -> Programs-> XSTOOLs-> GXSPORT from Windows
desktop or smply double-click on the GXSPORT icon on the Windows desktop. The
following window pops up.

=10] x|
o] of ol o] o] o o|[5] _ea |
0Dy DeE D5 D4 D3 D2 D1 DO
Strabe | [T Count F'Drtlm

X gxsport

Figure 20 : GXSPORT (snapshot from GXSTOOL S software)

In the above GXSPORT window, we apply inputs by clicking on the bits from D7 to DO and
changing them as we need. D7....DO correspond to B7....BO of Table 3. When you click a0, it
changes to 1 and vice-versa. Change the inputs as needed and then click on the Strobe button to
see the output on LED. When the Count option is selected, each click of the Strobe button
increments the 8-bit value (D7...DO0) by 1.

XSPORT : Seect Start -> Run -> command from the windows desktop open a DOS
window. Change the directory to C:XSTOOLS. Then at the command prompt, type

C:\XSTOOLS> xsport B7B6B5B4B3B2B1B0

For our example,as used only B1 and BO pins by giving the pin numbers 47 and 46 (refer to

Table 3) , we can set the inputs as

C:\XSTOOLS> xsport 00

C\XSTOOLS> xsport 01, etc..

Note: If you apply less than 8 bits, xsPORT will set the remaining the most significant bits to
zero. If your design needs more than 8 input bits, you will have to apply them by using switches
on the Digital Lab workbench. Table 3 lists the pins on each board that are connected to the

paralel port (XSPORT).

‘ XSPORT ‘ XC4010XL XC95108
Argument | (X400 Board) | (XS95 Board)
| BO | pn#44 | pin# 46
. Bl | pr# 45 | ping 47
| B2 | pr#46 | pin# 48
| B3 | pr#47 | pin# 50
. B4 | prn#48 | pin# 5l
| B5 | pr#49 | pin# 52
. B6 | p# 32 | pin 8l
. B7 | pm#34 | pm# 80

Table3. Pin assgnments for XSPORT parallel port

So, for our example,

XSPORT Test Command

LED segment S3 (pin 17)

Xsport 00
Xsport 01
Xsport 10

Xsport 11

0

0

0

9. Design and Simulation of Sequential Circuitsusing ABEL
HDL

The procedure to create ABEL HDL design files for sequential circuits is the same as that for
combinational circuits. The main differences between combinational and sequential designs are:
(i) definition of flip-flops (registered outputs or nodes in the Declaration section of a sequential
design), (ii) state assignment, and (iii) specification of state machine (Mealy or Moore) in the
Logic Description section. In an ABEL program, a sequential circuit can be specified by using a
state transition table or a state machine program.

9.1 Specification using a State Transition table

Simple sequentia circuits can be specified as state transition tables because they do not have a
large number of states and transitions. A state transition table entry is similar to a truth table
entry for combination circuits. The syntax for atransition table entry is.

[Present State, Inputs] :> [Next State] -> [CQutputs]

The example below shows the ABEL program for a sequence detector that detects the sequence
101 oniitsinput. It produces a1 on its output for one clock cycle when it detects the sequence. It
will keep checking for the proper bit sequence and does not reset to the initial state after it has
recognized the string. E.g., for input, I NP="...110110101...", will generate the output,
OUT="...000100101. . .". The detector initializes to a reset state when input, RESET is activated.

MODULE seq_det
TI TLE ' Detects sequence 101’

DECLARATI ONS

C PIN; "cl ock input

RESET PI'N; "reset input

I NP PI'N; "“input port for sequence
ot PIN | STYPE ' comi ; "Qut put port

Q.. PINISTYPE 'reg'; "2 Dflip-flops for state
EQUATI ONS

[QL..QQ].CLK = C; “Connect clock input to D-flip-flops

TRUTH_TABLE

([@1, Q0, RESET, INP] :> [Q1, Q0] -> QUT)

[0, O, O, O] :>1[0, O] -> O "State 0, Input O
[0, O, O, 1] :> [0, 1] -> O; "State 0, Input 1
[0, O, 1, O] :> [0, O] -> O "State 0, Reset
[0, O, 1, 1] :> [0, O] -> O;

[0, 1, O, O] :>[1, 0] -> O; "State 1, Input O
[0, 1, O, 1] :> [0, 1] -> O; "State 1, Input 1

[0, 1, 1, O] :> [0, O] -> O "State 1, Reset

[0, 1, 1, 1] :> [0, 0] -> O;

[1, O, O, O] :>[0, O] -> O; "State 2, Input O
[1, 0, O, 1] :> [0, 1] -> 1; "State 2, Input 1
[, O, 1, O] :> [0, O] -> O "State 2, Reset

[1, 0, 1, 1] :> [0, 0] -> O;

[1, 1, O, 0] :> [0, O] -> O; "Unreachabl e states
[1, 1, O, 1] :> [0, 0] -> O;

[1, 1, 1, 0] :> [0, 0] -> O;

[1, 1, 1, 1] :> [0, 0] -> O;

TEST_VECTORS ([C, QL, Q0, RESET, INP] -> [QLl, Q0, QUT] 0
o, 0, 00 0] ->1[0, O, OF;
1] ->1[1, 0, 0];
0] ->[0, 0, 0O];
0] ->1[0, 0, 0O];
1] -> [0, 0, 0];

00000
O_OI—‘O
cooo

END seq_det

9.2 Specification using a State Machine program

For large, complex state machinesit is easier to specify them as programs. Thisrequires an
enumeration of states in the Declaration section and the state machine program description in the
Logic Description section. Like any programming language, the state machine program uses
relational operators to test for equality, less than or greater than (as shown in the example
below). The example below shows the ABEL program for the sequence detector described in
section 9.1

MODULE seq_det 1
TI TLE ' Detects sequence 101’

DECLARATI ONS

C PI'N; "clock input

RESET PIN; "reset input

I NP PIN; "input port for sequence
outr PIN | STYPE 'comi ; "out put port

QL..Q0 PINISTYPE 'reg'; "2 Dflip-flops for state

"State Assignnment Table

oo QL Q
STO = [0, O];

ST1 = [0, 1];

ST2 = [1, 0];

EQUATI ONS

[QL.. QQ].CLK = C "Connect clock input to D FFs
[QL.. QO] . ACLR = RESET; "Asynchronous clear FFs with Reset

STATE_DI AGRAM [QL, QO]
STATE STO:
IF (INP == 1) THEN ST1
ELSE STO;

STATE ST1:
IF (INP == 0) THEN ST2

ELSE ST1;
STATE ST2:
IF (INP == 1) THEN ST1 WTH OUT = 1
ELSE STO;
TEST_VECTORS ([C, Ql, Q0, RESET, INP] -> [Ql, Q0, OUT] 0
[.C., 0, 0, 0, 0] ->[0, O, 0];
[.C., 0, 0, 0, 1] ->[1, O, O]:
[.C., 1, 0, 0, 0] -> [0, 0, O]:
[.C., 0,0 1, 0] ->[0, 0, 0];
[.C., 0,0 1, 1] ->[0, 0, 0]:

END seq_det 1
9.3 Simulation of sequential designs

Except for the additional clock signal, ssimulation of sequential designs can be done using
test_vectors in the same way it was done for combinational. Look at the example shown in
Figure 21. For each set of inputs, a clock pulse is applied and the resulting simulation waveform
is as shown in Figure 22. In the test_vectors, the expected output value to be given is the one
corresponding to the rising edge of the clock (Note: All the flip-flops defined by “ istype ‘reg’”
in the ABEL file are rising-edge triggered)

MODULE segq =]
TITLE 'sowme secquential circuit!

ck PIN 46:

d PIN 47;

reset PIN 45;

q PIN 17 istype 'reqg';
EQUATIONS

q.clk = ck;
g.aclr = reszet;

qi=d;

test vectors ([reset,d,ck] -> d)

[0,0,.c.] == 0
[0,1,.c.1 == 1
[1,0,.c.] == 0
[1,1,.c.1 == 0

END

ks o

Figure21: A ssimple D-Flipflop example (snapshot from Xilinx | SE software)

¥ Waveform Yiewer - History - pla -0l x|

File Edit Wiew ©Object Tools Options Jump Help

356 0 1I|]I] 2I|]I] 3I|]I] 4I|]I]
reset | =
i I "
Wl 1 1 L
1 |

-
1 [el{a] | 3

Time = 0 Low, input - ABEL

Figure 22: Simulation results of the above example (snapshot from Xilinx | SEsoftware)

10. Hierarchical Circuit Design Using Modules

It is always a good practice to keep a design modular and hierarchical. This is important for
designs of moderate to high complexity. Often, you will use a circuit (module) over and over
again. Instead of creating these modules every time you need them, it would be more efficient to
make a cell or module out of them. You can then use this module every time to need it by
instantiating the module in your circuit. ABEL HDL supports hierarchical design by creating
modules of circuit components that can be used in another design. A module is specified like
other designs with an additional | NTERFACE specification in the Header section. In the example
depicted in Figure 21, a 4bit equivalence circuit is designed using Lbit equivalence circuit

modules.

al b3 aZ b2 al bF aft bf
P q P q P q P q P q
; egiti edqisir eqgiiv oqiiy
equ 3 2 1 0
r r r r r
I I

Figure21: Hierarchical circuit design example: 4-bit equivalence cir cuit

Module Definition: A module (functional block) definition is specified in afile, separate

from the top- level design file using the module.

MODULE equi v
| NTERFACE (p,q -> r);

"interface spec:

TITLE '1-Bit Equi val ence Circuit'

p,q inputs:

r out put

DECLARATI ONS
p.q PIN;
r PIN I STYPE ' coni ;

EQUATI ONS
r=(p&aq # ('p &!'a);

END equi v

Module Usage: A design using a module includes a declaration of module interface and
instantiation of each module in the Declaration section. There should not be any

| NTERFACE specification in the top-level design. (NOTE: Thereisa limitation in Sudent
Version of ABEL based Xilinx software because of which it cannot handle more than four
functional _block statements at the top level.)

MODULE equi v4bi t
TITLE ' 4-bit Equival ence Circuit'

DECLARATI ONS

a3..al PIN; "4-bits of Inputl
b3.. b0 PIN; "4-bits of Input2
eq4 PIN I STYPE ' comi ; "Qut put bit

"decl are nmodul es to be used
equi v | NTERFACE (p,q -> r);

"instantiation of nodul es
equi v3, equiv2, equivl, equivO FUNCTI ONAL_BLOCK equi v;

EQUATI ONS

"top level interconnections

equi v0.p = a0; “"Modul e 0
equi v0.q = bO;
equi vl.p = al; "Modul e 1
equivl.q = bil;
equiv2.p = az, "Modul e 2
equi v2.q = b2;
equiv3.p = a3; “"Modul e 3
equi v3.q = b3;

eqd4 = equiv3.r & equiv2.r & equivl.r & equivO.r;

END equi v4bi t

NOTE : A moduleis created in the same way as the top-level ABEL file. We can either use the
design wizard provided by the Xilinx or create our own.

