

Digital Circuit Design Using Xilinx ISE Tools

Poras T. Balsara and Prashant Vallur

Table of Contents

1. Introduction
2. Programmable logic devices: FPGA and CPLD
3. Creating a new project in Xilinx Foundation Series Tools
 3.1 Opening a project
 3.2 Creating an ABEL HDL input file for a combinational logic design
 3.3 Editing the ABEL HDL source file
4. Compilation and Implementation of the Design
5. Functional Simulation of Combinational Designs
 5.1 Adding the test vectors
 5.2 Simulating and viewing the simulation result waveforms
 5.2.1 Equation Simulation Report
 5.2.2 Equation Simulation Waveform
 5.3 Saving the simulation results
6. Preparing bitstream for the XC95108 CPLD chip
7. Downloading a Design to the prototyping board
 7.1 Downloading through GXSTOOLS
 7.2 Downloading through XSTOOLS
8. Testing a Digital logic circuit
 8.1 Observing the outputs using the on-board LEDs
 8.2 Applying inputs using XSPORT/GXSPORT
9. Design and Simulation of sequential circuits using ABEL HDL
 9.1 Specification using a state transition table
 9.2 Specification using a state machine program
 9.3 Simulation of sequential designs
10. Hierarchical circuit design using Modules (or Macros)

Acknowledgements

We thank the Xilinx Corporation for providing the Xilinx Foundation Software and FPGA prototyping
boards for educational purposes. We also thank Prof. Jan Van der Spiegel for allowing us to use parts of
his Xilinx tutorials developed for his course in the Electrical Engineering Department at the University of
Pennsylvania .

1. Introduction

Xilinx Foundation Series Tools is a suite of software tools used for the design of digital
circuits implemented using Xilinx Field Programmable Gate Array (FPGA) or Complex
Programmable Logic Device (CPLD). The design procedure consists of (a) design entry, (b)
compilation and implementation of the design, (c) functional simulation and (d) testing and
verification. Digital designs can be entered in various ways using the above CAD tools: using a
schematic entry tool, using a hardware description language (HDL), ABEL or VHDL or a
combination of both. In this lab we will only use the design flow that involves the use of ABEL
HDL.

The Foundation Series tools enable you to design combinational and sequential circuits starting
with ABEL HDL design specifications. The steps of this design procedure are listed below:

1. Create ABEL design input file(s) using template driven editor.
2. Compile and implement the ABEL design file(s).
3. Create the test-vectors and simulate the design (functional simulation) without using a

PLD (FPGA or CPLD).
4. Assign input/output pins to implement the design on a target device.
5. Download bitstream to an FPGA or CPLD device.
6. Test design on FPGA/CPLD device

An ABEL input file in the Xilinx Foundation software environment consists of the following
segments:

• Header: module name, options and title.
• Declarations: pin, constant, sets, states, library.
• Logic Descriptions: equations, truth tables, state diagram.
• End:

All your designs for this lab must be specified in the above ABEL input format. Note that the
state diagram segment does not exist for combinational logic designs.

2. Programmable Logic Devices: FPGA and CPLD

In this lab digital designs will be implemented using two types PLDs: FPGA and CPLD. For the
FPGA implementations we will mainly use the XC4010XL part which belongs to the XC4000
family of FPGAs. CPLD implementations will be done using the XC95108 which is part of the
XC9000 CPLD family. These devices come in a variety of packages. We will be using devices
that are packaged in 84 pin PLCC with the following part numbers: XC4010XL, PC84CMN9817
and XC95108, PC84ASJ9749. XC4010XL FPGA is a device with about 10K gates, whereas,
XC95108 CPLD has about 2400 usable gates. Detailed information on these devices is available
at the Xilinx website.

3. Creating a New Project in Xilinx Foundation Series Tools

Xilinx Foundation Series Tools can be started by clicking on the Project Navigator Icon on the
Windows desktop. This should open up the Project Navigator window on your screen. This
window shows (see Figure 1) the last accessed project.

Figure 1: Xilinx Project Navigator window (snapshot from Xilinx ISE software)

3.1 Opening a project

Select File->New Project to create a new project. This will bring up a new project window
(Figure 2) on the desktop. Fill up the necessary entries as follows:

Figure 2: New Project Initiation window (snapshot from Xilinx ISE software)

• Project Name : Write the name of your new project
• Project Location: The directory where you want to store the new project
• For each of the properties given below, click on the ‘value ’ area and select from the list of

values that appear.
o Device Family: Family of the FPGA/CPLD used. In this laboratory we will

mostly use the Xilinx 9500 CPLDs.
o Device : The number of the actual device. For this lab you may enter XC95108

PC84 (this can be found on the attached prototyping board)
o Synthesis Tool: ABEL XST
o Then click on OK to save the entries.

All project files such as schematics, netlists, ABEL files, modules, etc., will be stored in a
subdirectory with the project name. A project can only have one top level HDL source file (or
schematic). Modules can be added to the project to create a modular, hierarchical design (see
Section 10).

In order to open an existing project in Xilinx Foundation Series Tools select File->Open to show
the list of projects on the machine. Choose the project you want and click OK.

 3.2 Creating an ABEL HDL input file for a combinational logic design

In this lab we will enter a design using a structural or RTL description using the ABEL HDL.
You can create an ABEL HDL input file (.abl file) using the HDL Editor available in the Xilinx
ISE Tools (or any text editor).

If adding an already existing source file (.abl file) to the project, in the project Navigator
window, select Project -> Add Copy Source and browse through the disk for the source file.

 If creating a new source file, in the Project Navigator window, select Project -> New Source.
A window pops up as shown in Figure 3. (Note: “Add to project” option is selected by default. If
you do not select it then you will have to add the new source file to the project manually.)

 Figure 3: Creating ABEL-HDL source file (snapshot from Xilinx ISE software)

Select ABEL-HDL Module and in the “File Name:” area, enter the name of the ABEL source
file you are going to create. Make sure that the top-level ABEL file name matches with the name
of the project. Also make sure that the option Add to project is selected so that the source need
not be added to the project again. Then click on Next> to accept the entries. This pops up the
following window (Figure 4).

 Figure 4: Define ABEL-HDL Source window (snapshot from Xilinx ISE software)

In the Pin Name column, enter the names of all input and output pins. A Vector/Bus can be
defined by entering appropriate bit numbers in the MSB/LSB columns. Then click on Next> to
get a window showing all the new source information (Figure 5). If any changes are to be made,
just click on <Back to go back and make changes. If everything is acceptable, click on Finish to
continue.

Figure 5: New Source Information window(snapshot from Xilinx ISE software)

Once you click on Finish, the source file will be displayed in the sources window in the Project
Navigator (Figure 1).

If a source has to be removed, just right click on the source file in the Sources in Project
window in the Project Navigator and select Remove in that. Then select Project -> Delete
Implementation Data from the Project Navigator menu bar to remove any related files.

3.3 Editing the ABEL-HDL source file

The source file will now be displayed in the Project Navigator window (Figure 6). The source
file window can be used as a text editor to make any necessary changes to the source file. All the
input/output pins will be displayed. Make sure you enter the pintype for all output pins have to
(combinational or sequential). For combinational, an output pin F can be declared as F PIN
istype ‘com’ and if it’s sequential, F PIN istype ‘reg’. Enter the logic descriptions using:
Equations or Truth Tables or State Diagram (for sequential circuits). Save your ABEL program
periodically by selecting the File->Save from the menu. You can also edit ABEL programs in
any text editor and add them to the project directory using “Add Copy Source”.

Figure 6: ABEL editor window in the Project Navigator (from Xilinx ISE software)

• Adding Logic Equations to ABEL designs:

Logic equations can be easily added to the Logic Description section of an ABEL
program. For example, an output Z can be described as,
 Z = (a & !b) # c;
Remember that the names are case sensitive.
Logical, arithmetic and relational operators available in ABEL are described in Table 1.
Details of the relational operators are discussed in the section on sequential design.

 Logical Arithmetic Relational

 & AND - 2's Complement == Equal
 # OR A-B Subtraction != Not Equal
 ! NOT A+B Addition < Less Than

 $ XOR << Shift Left <= Less Than / Equal
 >> Shift Right > Greater Than

 <= Greater Than /
Equal

Table 1 Operation in ABEL HDL

• Adding Truth Tables to ABEL designs:

Truth tables can also be included in a design by using the syntax shown given below. A
table starts with a header with all the input and output names followed by rows of truth
table entries. Combinational transitions are specified with a -> and registered transitions
(in sequential circuits, Section 9) are specified with a :>

 TRUTH_TABLE
 ([input1, input2, ... inputn] -> [output1, output2, ... outputm])
 [0, 0, ... 0] -> [1, 0, ... 1];
 [0, 0, ... 1] -> [0, 1, ... 0]
 ...
 [1, 1, ... 1] -> [0, 1, ... 1];

Suppose we want to describe an AND gate. It can be done using the logic equation as shown in
Figure 7 or using the Truth Table as shown in Figure 8. We can use of either of them or both of
them to define various output functions in the design.

 Figure 7: AND gate description using Equations (snapshot from Xilinx ISE software)

 Figure 8: AND gate description using Truth Table (from Xilinx ISE software)

4. Compilation and Implementation of the Design

The design has to be compiled and implemented before it can be checked for correctness by
running functional simulation or downloaded onto the prototyping board. With the top- level
ABEL file opened (can be done by double-clicking that file) in the HDL editor window in the
right half of the Project Navigator, and the view of the project being in the Module view , the
compile design and implement design options can be seen in the process view. Design entry
utilities and Create Programming File options can also be seen in the process view. The former
can be used to include user constraints, if any and the latter will be discussed later.

To compile the design, double-click on the option Compile Design in the Processes window. It
will go through steps like Check Syntax, Compile Logic, Interpret Feedbacks, Reformat
Logic and Optimize Hierarchy. If any of these steps could not be done or done with errors, it
will place a X mark in front of that, otherwise a tick mark will be placed after each of them to
indicate the successful completion. If everything is done successfully, a tick mark will be placed
before the Compile Design option. If there are warnings, one can see mark in front of the
option indicating that there are some warnings. One can look at the warnings or errors in the
Console window present at the bottom of the Navigator window. Every time the design file is
saved; all these marks disappear asking for a fresh compilation.

To implement the design, double-click on the Implement Design option. It has many steps in it
e.g., Translation, Fitter, Timing Analysis and Launch Tools. One can use the timing analyzer
and post fit chipviewer from the Launch Tools section once the implementation is completed
successfully. If the implementation is done successfully, a tick mark will be placed in front of the
Implement Design option.

The above two steps can be done in a single step by just double-clicking on the Implement
Design option straightaway. This will do the compilation first and then the implementation. In
our example, when we compile the design, it shows warning and it indicates the warning in the
Console as shown in the Figure 9.

Figure 9 : Compiling the Design (snapshot from Xilinx ISE software)

After that, when the design is implemented, it ignores the warnings and completes the
implementation successfully (shown in Figure 10).

Figure 10 : Implementing the Design (snapshot from Xilinx ISE software)

5. Functional Simulation of Combinational Designs

 5.1 Adding the test vectors

 To check the functionality of a design, we have to apply test vectors and simulate the circuit.
We can add test vectors in the top- level ABEL file as shown in the Figure 11.

Figure 11 : Adding test vectors to the design (snapshot from Xilinx ISE software)

One can see the test vectors file (newprojec-vectors) added to the Sources in Project window on
the left-hand side of the Project Navigator window. Next, compile and implement the design as
before. Alternatively, you may add the test_vectors at the same time you create the rest of the
ABEL file.

5.2 Simulating and Viewing the Output Waveforms

Click on the File View in the Sources in Project window. Then double-click on the test vectors
file (newproje-vectors in our example). That file will be displayed on the right-hand side. Then
in the Processes View window (left-bottom), double-click on the Compile Test Vectors option.
Then double-click on the Simulate Equations option. When both are done successfully, a tick
mark will be placed before each of them. Then click on the + mark in front of the Simulate
Equations option to get the options: Equation Simulation Report and Equation Simulation
Waveform as shown in Figure 12.

Figure 12 : Simulating the design (snapshot from Xilinx ISE software)

 5.2.1 Equation Simulation Report

When this reporting option under the Simulate Equations option is double-clicked, a report
window pops up and it shows which test vectors have passed and which test vectors have failed
as shown in Figure 13.

 Figure 13 : Equation Simulation Report (snapshot from Xilinx ISE software)

As we have given correct values of output for all the test vectors, all of them have passed. This
can be seen in the above figure. If there is an error (i.e. a mismatch between the actual and
expected values), it will be indicated in this report window (Figure 13). In case of an error, first
check if the test_vectors were typed in correctly and then debug the circuit.

 5.2.2 Equation Simulation Waveform

When this option under Simulate Equations option is double-clicked, a window pops up with
no waveform in it. Then select Edit -> Show. A form appears as shown in Figure 14. In that
form, we can select all the signals to be displayed.

Figure 14 : Selecting the signals to be displayed (snapshot from Xilinx ISE software)

Press the Ctrl button on the keyboard and click on all the signals to be displayed, release the
Ctrl button and click on Show in the form. Then a waveform appears on that waveform viewer
window as shown in Figure 15. You can use the Bus>> button to collectively display a bunch
of signals as a bus.

Figure 15 : Simulation results waveform (snapshot from Xilinx ISE software)

Various options like displaying some signals as a bus, placing some markers, setting some
triggers, etc. are present in the waveform viewer. Explore these options for future use.

NOTE: The simulation waveform always gives the actual output for the test_vectors specified
and not the expected values. The simulation report is the only place wherein
mismatches between expected and actual values are indicated.

5.3 Saving the simulation results

To save the simulation results, select File -> Save as in the waveform viewer window and save
the waveform. Then select File -> Exit to exit the waveform viewer and return to the Project
Navigator.

6. Preparing bitstream for the XC95108 CPLD chip

A bitstream needs to be prepared for the design to be downloaded onto the prototyping board.
This is done as follows:

• Assign pin numbers to the input and output pins in the ABEL – HDL design file. The pin
numbers can be assigned by looking at section 8 of this tutorial. Then save the design file and
implement the design again. Note that you can assign pin numbers only to top-level ABEL
file. Let’s assign some valid pin numbers for our example and implement it. Then the Project
Navigator window looks as shown in Figure 16.

Figure 16 : Assigning I/O pin numbers (snapshot from Xilinx ISE software)

• Click on the Module View in the Sources in Project window. Then, in the Process View
window (left-bottom), double-click on the Create Programming File option. Once it is done
successfully, click on the + mark on its left to get Launch JTAG Programmer option.
Double-click on it. That brings up the Xilinx JTAG Programmer window as shown in
Figure 17.

Figure 17 : JTAG Programmer window (snapshot from Xilinx ISE software)

• Select Output->Create SVF File menu item in the JTAG Programmer window. An SVF
options window pops up, click on OK to accept the default settings. A pop-up window lets
you specify the name and directory of the SVF file. (It is recommended that you place this
file in the top level directory of your project so that it can be easily found later.) Click Save
after choosing the file.

• Next, select Operations ->Program from the menu. Click OK in the pop-up window that
appears (don't change any of the other parameters). Then select File -> Exit to exit the JTAG
programmer and return to the Project Navigator.

7. Downloading a Design to the Prototyping Board

After successfully creating the bitstream file (.svf file), configure the CPLD. This can be done in
either of the following two ways:

7.1 Downloading through GXSTOOLS

• Select Start -> Programs -> XSTOOLs -> GXSLOAD from the Windows desktop or
simply double-click on GXSLOAD icon on the Window desktop.

The following window pops up.

 Figure 18 : GXSLOAD (snapshot from GXSTOOLS software)

• Select Start -> Search-> For Files or Folders…from the Windows desktop and search for
the .svf file created in the above steps. Once that file is found, simply drag and drop that file
onto the GXSLOAD window. Then the downloading starts and once it is done successfully, a
message window appears indicating that the board is programmed.

7.2 Downloading through XSTOOLS

• Select Start -> Run -> command from the Windows desktop to open a DOS window. Then
go to xstools directory in the C: drive. Then at the prompt, type

 C:\XSTOOLS> xsload <.svf file file name with entire path>

For our example, it is xsload c:\xilinx\bin\newproject_name\newproje.svf

8. Testing a Digital Logic Circuit

Testing a downloaded design requires connecting the inputs of the design to switches or ports
and the outputs of the design to LEDs or 7-segment displays. In case of sequential circuits, the
clock input(s) must also be connected to clock sources. These inputs and outputs can be
connected to appropriately on the Digital Lab workbench. Alternatively, the inputs can also be
applied from the PC as described later in this section.

The next step in testing is to apply a sequence of test vectors to the inputs in the design and
check the outputs of the design against what is expected. A test vector is a set of input values for
the inputs of a design. The XS40 and XS95 prototyping boards have some built- in features that
enable you to test your designs quickly and easily.

8.1 Observing outputs using the on-board LEDs

The XS40 and XS95 boards have one on-board 7-segment display (see Figure 19) that is
connected to the corresponding on-board FPGA/CPLD chip. This display can be used to observe
the outputs of your design without using any additional wires if the design conforms to the pin
assignments for the on-board 7-segment display. If your design has more than 7 outputs, you
will have to use other LEDs available on the Digital Lab workbench. The figure below shows the
7-segment display with the conventional labeling of individual segments.

Figure 19: 7-segment display

For each prototyping board, Table 2 shows the FPGA/CPLD pin assignments for the LED
segments of the on-board 7-segment display.

LED
Segment

XC4010XL
(XS40 Board)

XC95108
(XS95 Board)

 S0 (seg. d) pin# 25 pin# 21
 S1 (seg. c) pin# 26 pin# 23
 S2 (seg. e) pin# 24 pin# 19

 S3 (seg. g) pin# 20 pin# 17
 S4 (seg. b) pin# 23 pin# 18

 S5 (seg. f) pin# 18 pin# 14
 S6 (seg. a) pin# 19 pin# 15

Table 2. Pin assignments for 7-segment LEDs

8.2 Applying inputs using XSPORT/GXSPORT

Each board also has a few pins connected to the host PC through the parallel port. These pins
can be used to apply input stimuli from the PC (DOS window) to test your design. The pins are
also used for downloading design bitstreams. Input test vector can be applied to your design by
using GXSPORT or XSPORT

• GXSPORT: Select Start -> Programs -> XSTOOLs -> GXSPORT from Windows

desktop or simply double-click on the GXSPORT icon on the Windows desktop. The
following window pops up.

Figure 20 : GXSPORT (snapshot from GXSTOOLS software)

In the above GXSPORT window, we apply inputs by clicking on the bits from D7 to D0 and
changing them as we need. D7….D0 correspond to B7….B0 of Table 3. When you click a 0, it
changes to 1 and vice-versa. Change the inputs as needed and then click on the Strobe button to
see the output on LED. When the Count option is selected, each click of the Strobe button
increments the 8-bit value (D7…D0) by 1.

• XSPORT : Select Start -> Run -> command from the windows desktop open a DOS
window. Change the directory to C:XSTOOLS. Then at the command prompt, type

 C:\XSTOOLS> xsport B7B6B5B4B3B2B1B0

For our example,as used only B1 and B0 pins by giving the pin numbers 47 and 46 (refer to
Table 3) , we can set the inputs as

 C:\XSTOOLS> xsport 00

 C:\XSTOOLS> xsport 01 , etc..

Note: If you apply less than 8 bits, XSPORT will set the remaining the most significant bits to
zero. If your design needs more than 8 input bits, you will have to apply them by using switches
on the Digital Lab workbench. Table 3 lists the pins on each board that are connected to the
parallel port (XSPORT).

XSPORT
Argument

XC4010XL
(XS40 Board)

XC95108
(XS95 Board)

 B0 pin# 44 pin# 46
 B1 pin# 45 pin# 47

 B2 pin# 46 pin# 48
 B3 pin# 47 pin# 50
 B4 pin# 48 pin# 51

 B5 pin# 49 pin# 52
 B6 pin# 32 pin# 81

B7 pin# 34 pin# 80

Table 3. Pin assignments for XSPORT parallel port

 So, for our example,

XSPORT Test Command LED segment S3 (pin 17)
 Xsport 00

Xsport 01

Xsport 10

Xsport 11

0

 0

0

1

9. Design and Simulation of Sequential Circuits using ABEL
HDL

The procedure to create ABEL HDL design files for sequential circuits is the same as that for
combinational circuits. The main differences between combinational and sequential designs are:
(i) definition of flip-flops (registered outputs or nodes in the Declaration section of a sequential
design), (ii) state assignment, and (iii) specification of state machine (Mealy or Moore) in the
Logic Description section. In an ABEL program, a sequential circuit can be specified by us ing a
state transition table or a state machine program.

9.1 Specification using a State Transition table

Simple sequential circuits can be specified as state transition tables because they do not have a
large number of states and transitions. A state transition table entry is similar to a truth table
entry for combination circuits. The syntax for a transition table entry is:

[Present State, Inputs] :> [Next State] -> [Outputs]

The example below shows the ABEL program for a sequence detector that detects the sequence
101 on its input. It produces a 1 on its output for one clock cycle when it detects the sequence. It
will keep checking for the proper bit sequence and does not reset to the initial state after it has
recognized the string. E.g., for input, INP="...110110101...", will generate the output,
OUT="...000100101...". The detector initializes to a reset state when input, RESET is activated.

 MODULE seq_det
 TITLE 'Detects sequence 101'

 DECLARATIONS
 C PIN; "clock input
 RESET PIN; "reset input
 INP PIN; "input port for sequence
 OUT PIN ISTYPE 'com'; "Output port
 Q1..Q0 PIN ISTYPE 'reg'; "2 D flip-flops for state

 EQUATIONS
 [Q1..Q0].CLK = C; “Connect clock input to D-flip-flops

 TRUTH_TABLE
 ([Q1,Q0,RESET,INP] :> [Q1,Q0] -> OUT)
 [0, 0, 0, 0] :> [0, 0] -> 0; "State 0, Input 0
 [0, 0, 0, 1] :> [0, 1] -> 0; "State 0, Input 1
 [0, 0, 1, 0] :> [0, 0] -> 0; "State 0, Reset
 [0, 0, 1, 1] :> [0, 0] -> 0;
 [0, 1, 0, 0] :> [1, 0] -> 0; "State 1, Input 0
 [0, 1, 0, 1] :> [0, 1] -> 0; "State 1, Input 1

 [0, 1, 1, 0] :> [0, 0] -> 0; "State 1, Reset
 [0, 1, 1, 1] :> [0, 0] -> 0;
 [1, 0, 0, 0] :> [0, 0] -> 0; "State 2, Input 0
 [1, 0, 0, 1] :> [0, 1] -> 1; "State 2, Input 1
 [1, 0, 1, 0] :> [0, 0] -> 0; "State 2, Reset
 [1, 0, 1, 1] :> [0, 0] -> 0;
 [1, 1, 0, 0] :> [0, 0] -> 0; "Unreachable states
 [1, 1, 0, 1] :> [0, 0] -> 0;
 [1, 1, 1, 0] :> [0, 0] -> 0;
 [1, 1, 1, 1] :> [0, 0] -> 0;

 TEST_VECTORS ([C,Q1,Q0,RESET,INP] -> [Q1,Q0,OUT]0
 [.C., 0, 0, 0, 0] -> [0, 0, 0];
 [.C., 0, 0, 0, 1] -> [1, 0, 0];
 [.C., 1, 0, 0, 0] -> [0, 0, 0];
 [.C., 0, 0, 1, 0] -> [0, 0, 0];
 [.C., 0, 0, 1, 1] -> [0, 0, 0];

 END seq_det

9.2 Specification using a State Machine program

For large, complex state machines it is easier to specify them as programs. This requires an
enumeration of states in the Declaration section and the state machine program description in the
Logic Description section. Like any programming language, the state machine program uses
relational operators to test for equality, less than or greater than (as shown in the example
below). The example below shows the ABEL program for the sequence detector described in
section 9.1

 MODULE seq_det1
 TITLE 'Detects sequence 101'

 DECLARATIONS
 C PIN; "clock input
 RESET PIN; "reset input
 INP PIN; "input port for sequence
 OUT PIN ISTYPE 'com'; "output port
 Q1..Q0 PIN ISTYPE 'reg'; "2 D flip-flops for state

 "State Assignment Table
 "---- Q1, Q0
 ST0 = [0, 0];
 ST1 = [0, 1];
 ST2 = [1, 0];

 EQUATIONS
 [Q1..Q0].CLK = C; "Connect clock input to D-FFs
 [Q1..Q0].ACLR = RESET; "Asynchronous clear FFs with Reset

 STATE_DIAGRAM [Q1, Q0]
 STATE ST0:
 IF (INP == 1) THEN ST1
 ELSE ST0;

 STATE ST1:
 IF (INP == 0) THEN ST2
 ELSE ST1;
 STATE ST2:
 IF (INP == 1) THEN ST1 WITH OUT = 1
 ELSE ST0;

 TEST_VECTORS ([C,Q1,Q0,RESET,INP] -> [Q1,Q0,OUT]0
 [.C., 0, 0, 0, 0] -> [0, 0, 0];
 [.C., 0, 0, 0, 1] -> [1, 0, 0];
 [.C., 1, 0, 0, 0] -> [0, 0, 0];
 [.C., 0, 0, 1, 0] -> [0, 0, 0];
 [.C., 0, 0, 1, 1] -> [0, 0, 0];

 END seq_det1

9.3 Simulation of sequential designs

Except for the additional clock signal, simulation of sequential designs can be done using
test_vectors in the same way it was done for combinational. Look at the example shown in
Figure 21. For each set of inputs, a clock pulse is applied and the resulting simulation waveform
is as shown in Figure 22. In the test_vectors, the expected output value to be given is the one
corresponding to the rising edge of the clock (Note: All the flip-flops defined by “ istype ‘reg’”
in the ABEL file are rising-edge triggered)

Figure 21 : A simple D-Flipflop example (snapshot from Xilinx ISE software)

Figure 22: Simulation results of the above example (snapshot from Xilinx ISEsoftware)

 10. Hierarchical Circuit Design Using Modules

It is always a good practice to keep a design modular and hierarchical. This is important for
designs of moderate to high complexity. Often, you will use a circuit (module) over and over
again. Instead of creating these modules every time you need them, it would be more efficient to
make a cell or module out of them. You can then use this module every time to need it by
instantiating the module in your circuit. ABEL HDL supports hierarchical design by creating
modules of circuit components that can be used in another design. A module is specified like
other designs with an additional INTERFACE specification in the Header section. In the example
depicted in Figure 21, a 4-bit equivalence circuit is designed using 1-bit equivalence circuit
modules.

Figure 21: Hierarchical circuit design example: 4-bit equivalence circuit

• Module Definition: A module (functional block) definition is specified in a file, separate
from the top- level design file using the module.

 MODULE equiv
 INTERFACE (p,q -> r); "interface spec: p,q inputs: r output

 TITLE '1-Bit Equivalence Circuit'

 DECLARATIONS
 p,q PIN;
 r PIN ISTYPE 'com';

 EQUATIONS
 r = (p & q) # (!p & !q);

 END equiv

• Module Usage: A design using a module includes a declaration of module interface and
instantiation of each module in the Declaration section. There should not be any
INTERFACE specification in the top- level design. (NOTE: There is a limitation in Student
Version of ABEL based Xilinx software because of which it cannot handle more than four
functional_block statements at the top level.)

 MODULE equiv4bit
 TITLE '4-bit Equivalence Circuit'

 DECLARATIONS
 a3..a0 PIN; "4-bits of Input1
 b3..b0 PIN; "4-bits of Input2
 eq4 PIN ISTYPE 'com'; "Output bit

 "declare modules to be used
 equiv INTERFACE (p,q -> r);

 "instantiation of modules
 equiv3, equiv2, equiv1, equiv0 FUNCTIONAL_BLOCK equiv;

 EQUATIONS

 "top level interconnections
 equiv0.p = a0; "Module 0
 equiv0.q = b0;

 equiv1.p = a1; "Module 1
 equiv1.q = b1;

 equiv2.p = a2; "Module 2
 equiv2.q = b2;

 equiv3.p = a3; "Module 3
 equiv3.q = b3;

 eq4 = equiv3.r & equiv2.r & equiv1.r & equiv0.r;

 END equiv4bit

NOTE : A module is created in the same way as the top-level ABEL file. We can either use the
design wizard provided by the Xilinx or create our own.

