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SUMMARY

Epigenetic mechanisms have been proposed to
play crucial roles in mammalian development, but
their precise functions are only partially understood.
To investigate epigenetic regulation of embryonic
development, we differentiated human embryonic
stem cells into mesendoderm, neural progenitor
cells, trophoblast-like cells, and mesenchymal stem
cells and systematically characterized DNA
methylation, chromatin modifications, and the tran-
scriptome in each lineage. We found that promoters
that are active in early developmental stages tend to
be CG rich and mainly engage H3K27me3 upon
silencing in nonexpressing lineages. By contrast,
promoters for genes expressed preferentially at later
stages are often CG poor and primarily employ DNA
methylation upon repression. Interestingly, the early
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developmental regulatory genes are often located
in large genomic domains that are generally devoid
of DNA methylation in most lineages, which we
termed DNA methylation valleys (DMVs). Our results
suggest that distinct epigenetic mechanisms regu-
late early and late stages of ES cell differentiation.
INTRODUCTION

Embryonic development is a complex process that remains to be

understood despite knowledge of the complete genome se-

quences of many species and rapid advances in genomic tech-

nologies. A fundamental question is how the unique gene

expression pattern in each cell type is established and main-

tained during embryogenesis. It is well accepted that the gene

expression program encoded in the genome is executed by tran-

scription factors that bind to cis-regulatory sequences and

modulate gene expression in response to environmental cues
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(Young, 2011). Growing evidence now shows that maintenance

of such cellular memory depends on epigenetic marks such as

DNA methylation and chromatin modifications (Bird, 2002; Kou-

zarides, 2007).

DNA methylation at promoters has been shown to silence

gene expression and thus has been proposed to be necessary

for lineage-specific expression of developmental regulatory

genes, genomic imprinting, and X chromosome inactivation

(Bird, 2002). Indeed, the DNA methyltransferases DNMT1 or

DNMT3a/3b double-knockout mice exhibit severe defects in

embryogenesis and die before midgestation, supporting an

essential role for DNA methylation in embryonic development

(Li et al., 1992; Okano et al., 1999). On the other hand, mouse

embryonic stem cells (mESCs) lacking all three DNMTs can sur-

vive and self-renew and can even begin to differentiate to some

germ layers (Jackson et al., 2004; Tsumura et al., 2006), raising

the possibility that DNA methylation is dispensable for at least

initial lineage specification in early embryos. Thus, the role of

DNA methylation in animal development needs to be more pre-

cisely defined. Like DNA methylation, chromatin modifications

have also been shown to play a key role in animal development.

Enzymes responsible for methylation of histone H3 at lysine 4, 9,

and 27, in particular, are essential for embryogenesis (Kouzar-

ides, 2007; Vastenhouw and Schier, 2012). Additionally, deple-

tion of the histone acetyltransferase p300 or CBP also leads to

early embryonic lethality (Yao et al., 1998). Although both DNA

methylation and chromatinmodifications are critical for mamma-

lian development, the exact role of each epigenetic mark in the

maintenance of lineage-specific gene expression patterns re-

mains to be defined.

In humans, studying the epigenetic mechanisms regulating

early embryonic development often requires access to embry-

onic cell types that are currently difficult or impractical to obtain.

Human embryonic stem cells (hESCs) (Thomson et al., 1998) can

be differentiated into a variety of precursor cell types, providing

an in vitromodel system for studying early human developmental

decisions. We have established protocols for differentiation of

hESCs to various cell states, including trophoblast-like cells

(TBL) (Xu et al., 2002), mesendoderm (ME) (Yu et al., 2011), neu-

ral progenitor cells (NPCs) (Chambers et al., 2009; Chen et al.,

2011), and mesenchymal stem cells (MSCs) (Vodyanik et al.,

2010). The first three states represent developmental events

that mirror critical developmental decisions in the embryo (the

decision to become embryonic or extraembryonic, the decision

to become mesendoderm or ectoderm, and the decision to

become surface ectoderm or neuroectoderm, respectively).

MSCs are fibroblastoid cells that are capable of expansion and

multilineage differentiation to bone, cartilage, adipose, muscle,

and connective tissues (Vodyanik et al., 2010). The specific

hESC derivatives chosen thus reflect key lineages in the human

embryo and also represent those lineages that currently can be

produced in sufficient quantity and purity for epigenomic

studies. These lineages will complement other cells from more

mature sources, many of which have had their epigenomes

well characterized (Hawkins et al., 2010; Lister et al., 2009; Zhu

et al., 2013). Importantly, epigenomic analysis of these cell types

allows for investigation of chromatin and transcriptional changes

that drive the initial developmental fate decisions.
Here, we used high-throughput approaches to examine

the differentiation of hESCs into four cell types by generating

in-depth maps of transcriptomes, a large panel of histone mod-

ifications, and base-resolution maps of DNA methylation for

each cell type. Our study provided a full view of the dynamic epi-

genomic changes accompanying cellular differentiation and line-

age specification. As outlined below, an integrative analysis of

these data sets provided us with substantial insights into the

role of DNA methylation and chromatin modifications in animal

development.

RESULTS

Generation of Comprehensive Epigenome Reference
Maps for hESCs and Four hESC-Derived Lineages
Wedifferentiated the hESC line H1 toME, TBL, NPCs, andMSCs

(Figure 1A) (Extended Experimental Procedures). ME, TBL, and

NPC differentiation occurred quickly (2 days, 5 days, and

7 days, respectively) compared to that of MSC (19–22 days).

The expression of various marker genes in these cells was

confirmed using immunofluorescence and fluorescence-acti-

vated cell sorting (FACS), and the purity of each cell population

ranged from 93% to 99% (Figures S1A–S1C available online).

ME, NPCs, and MSCs possess further differentiation potentials

as shown in Figures S1D and S1E (for ME and NPCs) and our

previous study (for MSCs) (Vodyanik et al., 2010). On the other

hand, the nature of TBL is still currently under debate (Bernardo

et al., 2011; Xu et al., 2002). As a control for terminally differenti-

ated cells, we also cultured and analyzed IMR90, a primary hu-

man fetal lung fibroblast cell line. For each cell type, we mapped

DNA methylation at base resolution using MethylC-seq (Lister

et al., 2009) (20–353 total genome coverage or 10–17.53

coverage per strand). We also mapped the genomic locations

of 13–24 chromatin modifications by chromatin immunoprecipi-

tation sequencing (ChIP-seq). Additionally, we performed

paired-end (100 bp 3 2) RNA-seq experiments, generating

more than 150 million uniquely mapped reads for every cell

type (Figures 1A and 1B). At least two biological replicates

were carried out for each analysis, and the data were publicly

released as part of the NIH Roadmap Epigenome Project

(http://www.epigenomebrowser.org/). Selected data are also

available at http://epigenome.ucsd.edu/differentiation.

Identification of Differentially Expressed Genes in
hESC-Derived Cells
We first asked how the genome is differentially transcribed when

hESCs are differentiated into each cell type. To do so, we exam-

ined the expression of 19,056 RefSeq coding genes (33,797 iso-

forms), among which 76.6% (14,595) were expressed in at least

one cell type (Figure S2A). Using an entropy-basedmethod (Bar-

rera et al., 2008; Schug et al., 2005) (Figure S2B), we identified

2,408 genes that showed cell-type-specific expression (Figures

2A and S2A). For convenience, we use ‘‘lineage-restricted

genes’’ to reflect both H1-specific and differentiated cell-spe-

cific genes. As expected, known lineagemarkers were highly ex-

pressed in the corresponding cell types (Figure 2A). It is worth

noting that, in line with a previous report (Yu et al., 2011), the

ME cells also express high levels of the hESC regulators
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Figure 1. Generation of Comprehensive

Epigenome Reference Maps for hESCs and

Four hESC-Derived Lineages

(A) Schematic of hESC differentiation procedures

and a summary of the epigenomic data sets pro-

duced in this study.

(B) A snapshot of the UCSC genome browser

shows the DNAmethylation level (mCG/CG), RNA-

seq reads (+, Watson strand; �, Crick strand),

and ChIP-seq reads (RPKM) of 24 chromatin

marks in H1.

See also Figure S1.
NANOG, POU5F1, and a reduced but significant level of SOX2.

We then investigated a cohort of long noncoding RNA (lncRNA)

genes and detected significant levels of transcripts for 2,175

known and 281 unannotated lncRNA genes in at least one cell

type (Figures 2A and S2A). Using the same entropy-based

approach, we found 930 lncRNA genes defined as lineage

restricted (Figure S2C), which constitute 37.9% of total ex-

pressed lncRNA genes. By contrast, only 16.5% of expressed

coding genes are characterized as lineage restricted (Fig-

ure S2D). The above analysis defined a large number of coding

and noncoding genes that are differentially expressed in H1

and its derived cells. The lists of all lineage-restricted genes

are included in Table S1.

Intriguingly, the promoters of several lncRNA genes highly

expressed in H1 overlap with the long terminal repeat (LTR)-

containing retrotransposons (Figure 2B). This appears to be a

general phenomenon as we observed that significant percent-

ages of transcription start sites (TSSs) of lncRNA genes directly

fall into LTRs (Figure 2C). The percentages are notably higher for

H1- and ME-enriched lncRNA genes (30% and 31%, respec-

tively), which are in contrast to those of coding genes (<2%).

By quantifying the transcription levels of all major classes of

mappable repetitive elements, we found that the ERV1 (class I

endogenous retrovirus) elements are preferentially expressed

in H1 and ME, but not in other cell types (Figure 2D, top). Strik-

ingly, such lineage-specific expression occurs almost exclu-
1136 Cell 153, 1134–1148, May 23, 2013 ª2013 Elsevier Inc.
sively at the ERV1 subfamily HERV-H

and its flanking LTR elements LTR7 (Fig-

ure 2D, bottom). Together, HERV-H and

LTR7 account for more than 43% of

LTRs that are present at H1- andME-spe-

cific lncRNA gene promoters. A gene

ontology analysis of coding genes near

H1-specific HERV-H/LTR7 sites revealed

an enrichment of POU5F1-targeted

genes (p value = 4 3 10�15), which is

consistent with a previous study showing

that NANOG and POU5F1 preferentially

bind to repetitive elements (Kunarso

et al., 2010). We did not find significant

enrichment of LTR subclasses for other

lineage-restricted lncRNA genes. Repeti-

tive elements are known to be regulated

by DNA methylation and H3K9me3 in
ESCs (Leung and Lorincz, 2012). We do not find significant

enrichment of H3K9me3 around most HERV-H elements (data

not shown). By contrast, a subset of the H1-specific HERV-H

elements (n = 70) show hypomethylation in H1 and ME but

gain DNA methylation in other H1-derived cells (Figures 2B and

2E). Notably, the overall low level of DNA methylation in IMR90

reflects its globally hypomethylated genome, likely due to the

presence of partially methylated domains (PMDs) (Figures S2E

and S2F) (Lister et al., 2009). Additionally, by examining pub-

lished methylomes (Lister et al., 2011), we found that DNA

methylation at these regions was depleted upon reprogramming

of IMR90 or foreskin fibroblasts to iPSCs and was then reestab-

lished when the fibroblast-derived iPSCs were differentiated to

trophoblast-like lineage (Figure 2B). Together, these data sug-

gest that many noncoding RNA genes may be transcriptionally

regulated by endogenous retroviral sequences. Of particular in-

terest, the expression of HERV-H/LTR7 is closely correlated with

the state of pluripotency and may be regulated by DNA

methylation.

Dynamic DNA Methylation and Chromatin Modifications
at Promoters of Lineage-Restricted Transcripts
Previous studies have shown that the promoters for somatic-tis-

sue-specific genes are often CG poor and lack CpG islands

(CGIs), in contrast to those for housekeeping genes, which

are CG rich and predominantly contain CGIs (Barrera et al.,
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Figure 2. Identification of Lineage-Restricted Transcripts in H1 and H1-Derived Cells

(A) Heatmaps showing the expression levels of lineage-restricted coding genes (left) and lncRNA genes (right). Genes are organized by the lineage in which their

expression is enriched. Note that certain genes (such as SOX2) can be expressed in more than one cell type.

(B) The levels of DNA methylation and RNA, as well as the binding of NANOG, SOX2, and POU5F1, are shown around an annotated lincRNA gene with the

promoter overlapping a HERV-H element.

(C) The percentages of TSSs that overlap with LTRs are shown for coding genes (yellow) and lncRNA genes (blue) for all genes (total) or lineage-restricted genes.

(D) The numbers of expressed (FPKM R 1), mappable repetitive elements are shown in each cell type for various repeat classes (top) or subclasses of ERV1

(bottom). Data are represented as mean ± SD based on two replicates of RNA-seq.

(E) The average DNA methylation level in each cell type is shown for a subset of H1-specific HERV-H elements.

See also Figure S2.
2008; Schug et al., 2005). Therefore, we asked whether early

lineage-restricted promoters also demonstrate similar features

as tissue-specific promoters. We first identified promoters for

each lineage-restricted gene and excluded those with ambig-

uous active promoters (Extended Experimental Procedures).

Next, we divided the promoters into three groups based on CG

density (high, medium, and low) (Figure S3A). Surprisingly, genes

preferentially expressed in early embryonic lineages H1,ME, and
NPC tend to be CG rich and contain CGIs (Figure 3A). The per-

centages of CGI-containing promoters decreased for genes en-

riched in MSCs and IMR90, which are at relatively late develop-

ment stages. By contrast, a much lower percentage of

promoters (23%) contain CGIs for somatic-tissue-specific genes

identified from 18 human tissues (Zhu et al., 2008) (Figure 3A).

We further verified this using an independent set of somatic-tis-

sue-specific genes (35%) (Chang et al., 2011). These data
Cell 153, 1134–1148, May 23, 2013 ª2013 Elsevier Inc. 1137



A

C

D E

F G

B

Figure 3. Epigenetic Regulation of Promoters for Lineage-Restricted Genes

(A) Bar graphs showing the percentages of promoters in the high, medium, and low CG classes for genes that are enriched in each cell type, all RefSeq genes,

housekeeping genes, and somatic-tissue-specific genes identified in Zhu et al. (2008). The percentages of promoters that contain CGIs are also shown (blue line).

(B) Heatmaps showing the average levels of RNA, H3K27ac, H3K4me3, H3K27me3, and DNA methylation for promoters of lineage-restricted genes. Histone

modifications, TSS ± 2 kb; DNA methylation, TSS ± 200 bp; promoter CG density, TSS ± 500 bp.

(C) Bar graphs showing the percentages of promoters that are marked by DNA methylation or K27me3 in at least one cell type.

(D–F) The levels of RNA, DNA methylation, and K27me3 are shown for the locus containing T (D), POU5F1 (E), or PIPOX (F). PIPOX (black arrow) is a low CG-

promoter-containing gene located in a K27me3 domain in MSCs and IMR90, where it is also repressed.

(G) The distribution of Pearson correlation coefficients between gene expression level and the levels of various histone modifications or DNA methylation at

promoters.

See also Figure S3.
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suggest that the promoters used for lineage specification in early

stages of cell differentiation have distinct sequence features

compared to those in more mature cell types.

DNA methylation machinery has been shown to be a mecha-

nism of gene silencing during cell differentiation (Bird, 2002). In

addition, the Polycomb protein complex, which deposits

H3K27me3 at target genes, can also repress developmental

genes (Boyer et al., 2006; Lee et al., 2006). We set to determine

which promoters are subject to regulation by DNA methylation,

H3K27me3, or both. A detailed analysis showed that promoters

with high CG density tend to be enriched for H3K27me3,

whereas those with low CG density are preferentially marked

by DNA methylation (Figures 3B and 3C). This is exemplified

by the promoters of the ME marker T (high CG, with a CGI) and

the hESC marker POU5F1 (medium CG, no CGIs) (Figures 3D

and 3E). Notably, whereas both H3K27me3 and DNA methyl-

ation are largely anticorrelated with gene expression, high CG

promoters are often marked by reduced but significant enrich-

ment of H3K27me3 even when they are active (Figures 3B and

3D). It has been shown that the PRC2 complex can be directly

recruited by CG-rich sequences (Mendenhall et al., 2010).

Consistent with this model, our data indicate that the sequence

of a promoter could contribute to the epigenetic mechanisms

that affect its regulation.

Notably, the majority of developmental regulatory genes,

including SOX2, NODAL, EOMES, T, SOX17, and SOX1, belong

to the high CG group and are marked by H3K27me3 (Figure 3B).

DNA methylation, on the other hand, marks a relatively small

number of lineage-restricted genes, including NANOG and

POU5F1. A gene ontology analysis also showed that lineage-

restricted genes with high CG promoters are enriched for

developmental genes, embryonic morphogenesis, and pattern

specification, whereas those with low CG promoters contain

genes that function in plasma membrane, disulfite bond, and

protein kinase cascade. As controls, somatic-tissue-specific

promoters are largely CG poor, often showing high level of

DNA methylation; housekeeping gene promoters are predomi-

nantly CG rich, showing neither DNA methylation nor

H3K27me3 in these cells (Figure S3B). Interestingly, some CG-

poor promoters are also marked by low levels of H3K27me3.

These promoters are largely observed in the expanded

H3K27me3 domains (Figures 3B and 3F, black arrow), a broad

pattern of enrichment for H3K27me3 (Hawkins et al., 2010; Zhu

et al., 2013) that frequently occurs in MSCs and IMR90, but

less so in H1 and other H1-derived cells (Figure S3C and data

not shown). These observations suggest that the expansion of

H3K27me3 may be a mechanism to lock low CG promoters in

a repressed state in later development stages. Consistently,

H3K27me3 shows similar negative correlations with gene

expression in all three classes (Figure 3G). By contrast, DNA

methylation shows the strongest negative correlation with gene

expression for low CG genes (see Figure S3D for the analysis

of additional histone modifications). Together, our data suggest

that, although H3K27me3 may play a widespread role in regu-

lating key factors of cellular differentiation, DNA methylation is

involved in modulation of many somatic-tissue-specific genes

and a limited number of—albeit critical—developmental

regulators.
Dynamic DNA Methylation and Chromatin Modifications
at Enhancers Reflect Lineage-Restricted Gene
Expression
Enhancers are distal regulatory elements that mediate tissue and

developmental-stage-specific gene expression (Ong and Cor-

ces, 2011). To examine the potential role of DNA methylation

and chromatin modifications at enhancers, we first identified a

total of 103,982 putative enhancer sites in the six cell types

(Table S2) by using an enhancer prediction method described

recently (Rajagopal et al., 2013) (Extended Experimental Proce-

dures). By examining the level of H3K27ac, a marker for active

enhancers (Creyghton et al., 2010; Rada-Iglesias et al., 2011),

we classified 32,423 enhancers as lineage restricted using the

entropy-based analysis (Figure S4A, Table S2, and Extended

Experimental Procedures). We validated these enhancers using

several approaches by showing that they extensively overlap

with the binding sites of transcriptional regulators or DNase I

hypersensitive sites (J.A. Stamatoyannopoulos, personal

communication) (Figure S4B); they show evolutional conserva-

tion in sequences (Figure S4C); they are enriched for motifs of

transcription factors known to function in each lineage (Fig-

ure S4D and Table S3); and their neighboring genes demonstrate

functional enrichment that is related to their lineage identities

(Figure S4E). Finally, we constructed eight GFP reporters con-

taining various lineage-specific enhancers and injected them in

zebrafish embryos. A high percentage of these enhancers

(50%) demonstrated activity in vivo in specific lineages regard-

less of their positions relative to the reporter gene (Figure S4F).

Together, these data suggest that we have identified a set of line-

age-restricted enhancers of high quality in hESCs and hESC-

derived cells.

We subsequently examined the dynamic epigenetic modifica-

tions at lineage-restricted enhancers. As these modifications at

intragenic enhancers can be confounded by the activity of their

hosting genes, we focused on intergenic lineage-restricted en-

hancers (n = 6,819) for this analysis (enhancers present in

PMDs in IMR90 were also excluded). Most enhancers are CG

poor (94%) and appear to be depleted of H3K27me3 (Figure 4A).

However, weak enrichment of H3K27me3 is observed at a sub-

set of enhancers in MSCs and IMR90. These enhancers are

largely active in H1, ME, NPCs, and TBL, but not in MSCs and

IMR90, as indicated by the levels of H3K27ac. A closer examina-

tion revealed that these enhancers are preferentially present in

the H3K27me3 domains specific to MSCs and IMR90 (see Fig-

ure 4B for an example). In IMR90 and MSCs, repressed en-

hancers are marked by a higher level of H3K27me3 compared

to active enhancers (Figure 4C). By contrast, this is less evident

for enhancers in H1 and other H1-derived cells. These results are

consistent with the mode that the H3K27me3 domains that arise

in differentiated cells may function to repress enhancers that are

active in other lineages (Hawkins et al., 2010; Zhu et al., 2013).

Our data also showed that the presence of DNA methylation

negatively correlates with the activity of enhancers (Figure 4C).

Interestingly, although some H1-specific enhancers acquire

DNA methylation in MSCs and IMR90, this is less evident in

ME, NPCs, and TBL (Figures 4A and 4D). These data are in line

with a recent study showing that inactive regulatory elements

tend to progressively gain DNA methylation over time during
Cell 153, 1134–1148, May 23, 2013 ª2013 Elsevier Inc. 1139
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Figure 4. Epigenetic Regulation of Lineage-Restricted Enhancers
(A) Heatmaps showing the average levels of H3K27ac, H3K4me1, H3K4me3, H3K27me3, and DNA methylation around the centers of lineage-restricted

enhancers. Histone modifications, enhancer center ± 2 kb; DNA methylation, enhancer center ± 500 bp; CG density, enhancer center ± 500 bp.

(B) The epigenetic landscape at an intergenic locus showing a low level of H3K27me3 and absence of H3K27ac in MSC and IMR90.

(C) Box plots showing the levels of H3K27ac (top), H3K27me3 (middle), and DNA methylation (bottom) at active and repressed enhancers in each cell type.

(D) Scatterplots showing the levels of DNA methylation in each cell type at H1-specific enhancers (blue) and differentiated cell-specific enhancers (green). In the

last two panels, colon- and blood-specific enhancer information (green dots) is not available in Berman et al. (2012) and Li et al. (2010).

(E) Box plots showing the distribution of Pearson correlation coefficients between the levels of various histonemodifications or DNAmethylation at enhancers and

the expression level of their potential target genes.

See also Figure S4.
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cell differentiation (Bock et al., 2012). By contrast, differentiated

cell-specific enhancers appear highly methylated in lineages

where they are inactive. We do not observe significant differ-

ences between H1-specific and differentiated cell-specific en-

hancers in their proximity to the nearest TSSs (data not shown).

Notably, some H1-specific enhancers remain hypomethylated

even in MSCs, IMR90, and two human tissues: peripheral blood

mononuclear cells (Li et al., 2010) and the colon (mucosa) (Ber-

man et al., 2012) (Figure 4D). The functions of these hypomethy-

lated enhancers remain to be explored. Together, these data

indicate that H3K27me3 is preferentially enriched at a subset

of enhancers in a later stage of cellular differentiation. By

contrast, DNA methylation is widely present at enhancers of all

stages and negatively correlates with their activity.

We further examined whether the presence of DNA methyl-

ation or H3K27me3 may correlate with the expression of genes

that are potentially regulated by enhancers. To do so, we identi-

fied candidate target genes of lineage-restricted enhancers us-

ing correlative analyses (Ernst et al., 2011) (Table S4 and

Extended Experimental Procedures). At enhancers, histone

acetylation is generally positively correlated with the expression

of enhancer-targeted genes (Figures 4E and S4G). H3K27me3

and DNA methylation, by contrast, show an inverse relationship

with gene expression of their potential target genes. The analysis

results for expanded histone marks are included in Figure S4G.

Identification of DNA Methylation Valleys
Previously, low methylation regions (LMRs) and unmethylated

regions (UMRs) have been suggested to function as cis elements

(Stadler et al., 2011). Applying the same approach as Stadler

et al. (2011), we defined 5,323 to 31,158 UMRs and 32,744 to

74,541 LMRs in H1 and its derived lineages (Table S5). Indeed,

more than 85% of UMRs and 42% of LMRs are present in either

enhancers or promoters. Surprisingly, although LMR and UMRs

are generally short (median lengths 252 bp and 532 bp, respec-

tively), a number of loci show a much wider depletion of DNA

methylation. Interestingly, they often appear near genes for tran-

scription factors and developmental regulators. For example, a

9.3 kb hypomethylated region is observed at GSC, a transcrip-

tion factor specifically expressed in ME (Figure 5A). This unme-

thylated region covers the entire gene body and regions beyond,

which is in contrast to a typical UMR (CLMN, Figure 5A). We

sought to investigate whether such broad DNA methylation

depletion around developmental genes is a general phenome-

non. By examining all continuous hypomethylated regions in

H1 and the H1-derived cells (Figures S5A and 5B), we identified

those that are at least 5 kb long, which constitute less than 3.2%

of all hypomethylated regions in any cell type. We named these

regions DNA methylation valleys (DMVs). IMR90 was excluded

from this part of our study due to the presence of PMDs in these

cells (Lister et al., 2009) (Figure S2F), which would confound the

analyses. Genome wide, we identified 639, 1,004, 933, 944, and

962 DMVs in H1, ME, NPC, TBL, and MSC, respectively, among

which 461 are shared by all cell types (Figure 5C; see Table S6 for

the full lists). Together, these regions occupy 1,220 distinct

genomic loci. Strikingly, nearly every DMV (99.7%) contains at

least one known (89.9%) or putative promoter (9.8%, as indi-

cated by the presence of H3K4me3). The majority of DMVs
(93.8%, n = 1,144) contain at least one CGI. Interestingly,

whereas 51.8% DMVs contain one or less CGI, 23.7% (289)

DMVs contain at least three CGIs (Figure S5B). These DMVs

range in size from 5 kb to 68 kb and are much larger than the

CGIs in these regions (Figure 5D). About 67% of DMVs contain

at least half non-CGI sequences even when we used a much

larger CGI list (n = 63,956) (Irizarry et al., 2009) instead of the

UCSC CGI list (n = 27,639). We then asked whether DMVs are

conserved across species. Indeed, DMVs show high level of

sequence conservation (Figure 5E). Additionally, we searched

for DMVs in mice using a brain methylome that we recently ob-

tained (Xie et al., 2012). Strikingly, a large number of genes

with DMVs in humans (638, or 59%, p value < 1 3 10�100) are

also present in DMVs in mice (Figure 5F). Finally, many DMVs

(>40%) found in H1 and its derivatives were also observed to

be such in adult tissues (Berman et al., 2012; Li et al., 2010) (Fig-

ure S5C), suggesting that DMVs are not artifacts of cell culture.

The different numbers of DMVs in various cell types may be in

part attributed to variations in sequencing depth and methylome

coverage of promoters (Figure S5D).

Intriguingly, DMVs contain a unique set of genes. In total,

1,086 coding genes are found in the 1,220 DMVs (Table S7).

The majority (91.5%) of their promoters are CG rich (Figure S5E).

No significant differences in gene sizes are found for DMV genes

with CGIs compared to non-DMV genes with CGIs (data not

shown). Strikingly, a gene ontology analysis showed that these

genes are strongly enriched for functional groups in transcription

factors, homeobox family, developmental protein, and embry-

onic morphogenesis (Figure 5G). In fact, 38.4% (415) of coding

genes in DMVs encode DNA-binding proteins (Figure 5H). These

genes include hESC and lineage markers such as SOX2,

POU5F1, ZIC3 (hESC); EOMES, T, GSC (ME); GLI3, SIX3,

LHX3, PAX6 (NPC); GATA2, GATA6 (TBL); and RUNX1 (MSC).

This list also includes transcription factor families that are

located in clusters (such as HOX), as well as those that reside

in different locations (such as FOX, ZIC, GATA, KLF, SIX, TBX,

LHX, and DLX). In addition, genes in DMVs are strongly enriched

for those encoding components of development signaling path-

ways, including WNT, receptor tyrosine kinase (RTK), BMP, and

Hedgehog (Figure 5H). Furthermore, there are 319 lncRNA genes

with promoters that overlap with DMVs, including 22 lncRNA

genes newly identified in this study (Figure 5H and Table S7).

Finally, we found 40 microRNA genes in DMVs (Figure 5H and

Table S7), 12 (30%) of which are known to be hESC specific

(such as mir-302/367) (Suh et al., 2004) or within 10 kb of line-

age-restricted genes that we identified (data not shown). Taken

together, our data have revealed a unique class of genomic re-

gions that show wide depletion of DNA methylation and are

strongly associated with transcription factor genes and develop-

mental genes.

The Majority of DMVs Remain Largely Unmethylated
upon Cell Differentiation
Previously, bivalent genes marked by H3K4me3 and H3K27me3

were shown to be highly enriched for developmental genes

(Bernstein et al., 2006). Interestingly, DMV genes appear to be

more enriched for transcription factors and developmental

genes compared to bivalent genes in hESCs as defined in this
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Figure 5. Genes within DMVs Are Strongly Enriched for Transcription Factors and Developmental Genes

(A) DNA methylation levels for a DMV (GSC) and a nearby typical UMR (CLMN) are shown.

(B) Histograms showing the distribution of the lengths of hypomethylated regions in various cell types.

(C) The numbers of DMVs found in various cell types. The horizontal line indicates the number of DMVs shared by all cell types.

(D) The distribution of lengths of various genomic elements as indicated.

(E) The average conservation level (PhastCons scores) around DMVs.

(F) A Venn diagram showing the overlap of genes with DMVs in humans (H1 and its derived cells) and in mice (frontal cortex).

(G) Gene ontology analysis results for DMV genes in H1 and the H1-derived cells.

(H) A breakdown of the types of DMV genes in H1 and the H1-derived cells, with examples shown in the tables.

See also Figure S5.
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study or previous studies (Pan et al., 2007; Zhao et al., 2007) (Fig-

ures 6A and S6A). Additionally, genes in DMVs are not simply

genes with long CGIs, high promoter CG density, or CGI clusters

(Extended Experimental Procedures) (Figures 6A and S6B). We

then asked whether DMVs undergo dynamic epigenetic regula-

tion upon H1 differentiation. We examined the DNA methylation

levels in H1, the H1-derived cells, and a panel of publishedmeth-

ylomes (see Figure 6D and its legend for the list) (Berman et al.,

2012; Li et al., 2010; Lister et al., 2011). Interestingly, most of the

promoters in DMVs (89.5%, n = 968) remain hypomethylated in

all cell types (Figures 6B and S6C). The other 113 promoters

demonstrate methylation level at or above 0.4 in at least one

cell type (Figures 6B and S6C), including those at several HOX

genes as shown previously (Bock et al., 2012; Laurent et al.,

2010), and genes that have low CG promoters include POU5F1

(Figure 3E), DPPA4 (data not shown), and the hESC-specific mi-

croRNA gene cluster mir-302/367 (Figure 6C). Notably, the

expression of the mir-302/367 cluster can reprogram somatic

cells to pluripotent cells (Anokye-Danso et al., 2011). The activity

of mir-302/367 may be regulated by DNA methylation as indi-

cated by the hypermethylation of the associated DMV upon dif-

ferentiation (Figure 6C). Therefore, a small subset of DMVs,

including those at the HOX genes and a number of CG-poor pro-

moters, shows dynamic DNA methylation during cell

differentiation.

Next, we examined DMVs that remain hypomethylated upon

cell differentiation. Among all 968 coding genes that are located

in these DMVs, 259 are defined as aforementioned lineage-

restricted genes. Most promoters of these genes are CG rich

and are marked differentially by H3K27me3 in various lineages,

while lacking DNA methylation in general (Figure 6D). Addition-

ally, 134 genes are repressed in all six cell types and are also pre-

dominantly marked by H3K27me3, including HOXC5/C12/D3/

D4, FOXB2/D2/D4/E1, andPAX3/5/7 (Figure 6D).We then exam-

ined genes with DMVs that are expressed in most lineages (R4)

in the current study, including those that are marked by

H3K27me3 in at least one of the six cell types, and those that

are not marked by H3K27me3 in any cell types (Figure 6D).

The first group shows somewhat weak lineage-restricted

expression. The second group is active in all six cell types.

Gene ontology analysis shows that this group is not enriched

for housekeeping genes but instead is still strongly enriched for

transcription regulators, such as MYC, MLL, SRF, and CBX3,

and several histone demethylase genes, KDM2A/2B, JARID2,

and JMJD1C. Together, DMV genes appear to be largelymarked

by H3K4me3 and/or H3K27me3 (Figures 6D and 6E). Interest-

ingly, this is also true in sperm as we examined data sets from

published studies (Hammoud et al., 2009; Molaro et al., 2011)

(Figures 6D and 6E). Consistent with the notion that many biva-

lent developmental genes become monovalent upon cell differ-

entiation (Bernstein et al., 2006), a larger portion of DMVs bear

only either H3K4me3 or H3K27me3 in differentiated cells

compared to that in sperm or H1 (Figure 6E). Interestingly, the

sperm genome contains more DMVs than those in other cell

types (n = 4,167), and most DMVs in H1 and the H1-derived cells

(82.9%) are also present in sperm (Figure 6F). These observa-

tions are exemplified at two loci near HAND1 (Figure 6G) and

MYC (Figure 6H). Therefore, we conclude that the majority of
genes in DMVs remain hypomethylated upon H1 differentiation

and are premarked by H3K27me3 and/or H3K4me3 in sperm.

Genes with DMVs Are Hypermethylated in Cancer
As promoters with DMVs are preferentially hypomethylated in

most cells that we examined, we sought to examine whether

this is also true in cancer. Notably, DMV genes are enriched for

genes involved in cancer pathways (Figure 5H), tumor suppres-

sor genes (n = 120, p value = 23 10�20) and oncogenes (n = 72,

p value = 5 3 10�14) (Cancer Gene Database, Memorial Sloan-

Kettering Cancer Center) (Table S7). Interestingly, by examining

base-resolution methylomes for normal and tumor colon tissues

(Berman et al., 2012), we found that promoters in DMVs gain sig-

nificant levels of DNAmethylation in the tumor tissue (Figure 7A).

Genome wide, 54.0% of DMVs (n = 659) overlap with the

‘‘methylation-prone elements’’ in colon cancer (Berman et al.,

2012). Conversely, 28.9% of methylation-prone elements (n =

1,493) overlap with DMVs. Because the majority of methyl-

ation-prone elements (71%) are in nonpromoter regions (Berman

et al., 2012), but DMVs are present almost exclusively at pro-

moters, we focused on the promoter regions for the following

analysis. Strikingly, promoters that gain most DNA methylation

in the tumor sample (DmCG/CG R 0.4) strongly overlap with

DMVs identified in H1 and the H1-derived cells (Figures 7B and

7C). This is true for promoters of both coding genes and lncRNA

genes. Similar results were obtained using two additional hyper-

methylated gene lists in breast cancer and colorectal cancer

(Figure S7A). As a control, promoters with DMVs remain hypo-

methylated in blood cells (Figure 7B). Importantly, most hyper-

methylated tumor suppressor genes in colon cancer are also

DMV genes (16/22, p value = 1 3 10�17). Unexpectedly, 12 on-

cogenes are also hypermethylated in colon cancer, among

which 9 are DMV genes (p value = 2 3 10�11). Previously, it

was shown that many hypermethylated genes in cancer are Pol-

ycomb targets (Bracken and Helin, 2009). Consistently, 87.2%

(575/659) of hypermethylated DMVs, compared to 42% (236/

561) of nonhypermethylated DMVs, are marked by K27me3 in

H1. Taken together, these data suggest that, although DMV pro-

moters are preferentially devoid of DNA methylation in normal

cells, they are prone to hypermethylation in cancer.

DISCUSSION

It has long been recognized that epigenetic mechanisms play a

critical role in mammalian development, but precisely how DNA

methylation and chromatin modifications contribute to develop-

ment has not yet been clearly elucidated. In this study, we

focused on hESCs as a model and generated by far the most

comprehensive reference epigenome maps of a multilineage

differentiation system in humans. Importantly, we demon-

strated that the majority of genes differentially expressed in

early progenitors are CG rich and appear to employ

H3K27me3-mediated repression in nonexpressing cells.

Conversely, genes differentially expressed in later stages are

largely CG poor and preferentially show DNA methylation-medi-

ated gene silencing (Figure 7D). Surprisingly, we found more

than 1,200 loci, termed DNA methylation valleys, that largely

remain unmethylated in most cell types that we examined.
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Figure 6. DMVs Largely Remain Hypomethylated in Sperm and Many Terminally Differentiated Cell Types

(A) Percentages of genes that belong to various gene ontology groups are shown as bar graphs for coding genes in DMVs (n = 1,081), genes with longest CGIs

(n = 1,081), genes with the highest promoter CG densities (n = 1,081), genes with CGI clusters (n = 1,019), hESC bivalent genes as defined in this study (n = 2,401)

or in previous studies (Zhao et al., 2007, n = 1,797 after gene symbol conversion; Pan et al., 2007, n = 3,301 after gene symbol conversion), all RefSeq genes,

housekeeping genes (n = 3,140), and somatic-tissue-specific genes (n = 885) as defined in Zhu et al. (2008).

(B) A bar graph showing the percentages of promoters in DMVs that demonstrate dynamic DNA methylation (mCG/CGR 0.4 in any cell types) or constant DNA

methylation (mCG/CG < 0.4 in any cell types).

(C) The levels of DNA methylation and RNA are shown near mir-302A/302B/302C/302D/367. A transcript, likely the hosting transcript for this microRNA gene

cluster, is observed mainly in H1 and ME (only � strand RNA reads are shown for simplicity).

(legend continued on next page)
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A

C

D

B Figure 7. DMVs Are Preferentially Methyl-

ated in Cancer

(A) Box plots showing the distribution of the DNA

methylation levels at promoters in DMVs for

various cell types.

(B)Scatterplots showing theDNAmethylation levels

at promoters between colon and blood (left) and

normal and tumor colon (right). Red, promoterswith

DMVs; black, all other promoters in the genome.

(C) Venn diagrams showing the overlaps between

genes of which the promoters are hyper-

methylated in colon cancer (DmCGR 0.4, at least

10 CGs covered) and genes with DMVs for coding

genes (left) and lncRNA genes (right).

(D) A model for three classes of promoters with

distinct sequence features and epigenetic regu-

lation mechanisms in cell differentiation.

See the Discussion for details and also Figure S7.
These regions are uniquely enriched for transcription factor and

developmental regulatory genes. Interestingly, DMVs frequently

gain abnormal DNA methylation in cancer, suggesting that al-

terations in DNA methylation machinery might be an important

epigenetic mechanism aiding tumorigenesis. In accordance

with an independent study of human ES cells differentiating to

cells representative of three germ layers (Gifford et al., 2013

[this issue of Cell]), we observed cell-type-specific, dynamic

DNA methylation and H3K27me3 at enhancers during ES cell

differentiation. Our analysis further demonstrated that dynamic

changes of DNA methylation and chromatin marks at en-

hancers correlate with gene expression, suggesting a potential

role of epigenetic modulators in regulating enhancer activities.

Distinct Epigenetic Mechanisms at Lineage-Restricted
Genes Expressed at Early and Late Stages of ES Cell
Differentiation
Previous studies have shown that somatic-tissue-specific pro-

moters tend to be CG poor (Barrera et al., 2008; Schug et al.,

2005). However, we found that a large number of CG-rich pro-
(D) Heatmaps showing RNA, H3K27ac, H3K4me3, H3K27me3, and DNA methylation levels for promoters o

levels of DNA methylation in additional 11 cell types and sperm, as well as the levels of H3K4me3 and H3K2

foreskin fibroblast (FF)-derived iPSC lines (19.11,6.9,19.7); 5, adipose-derived stem (ADS) cell iPSCs; 6, FF iP

derived adipocytes; 9, FF (Lister et al., 2011); 10, PMBC (blood) (Li et al., 2010); 11, colon tissue (Berman et

(E) The chromatin state (presence of H3K4me3 and/or H3K27me3) of DMVs is shown for various cell types.

(F) The overlap of DMVs is shown between those in H1 and its derived cells and those in sperm.

(G and H) The epigenetic landscape is shown for the DMV associated with the gene HAND1 (G) or MYC (H)

See also Figure S6.
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moters appear to drive lineage-specific

expression in hESC-derived early precur-

sor cells. In line with previous studies,

these CG-rich promoters tend to employ

Polycomb, but not DNA methylation, for

repression (Meissner et al., 2008; Men-

denhall et al., 2010; Mohn et al., 2008).

By contrast, dynamic DNA methylation

is frequently observed at the late-stage

lineage-restricted promoters, which are
characterized by CG-poor sequences. Similar results were ob-

tained when we analyzed two published time course data sets

for single lineage hESC differentiation to trophoblast (Xu et al.,

2002) (Figure S7B) or cardiovascular cells (Paige et al., 2012)

(Figure S7C). Together, these data add to the notion that low

and high CG promoters are regulated by distinct epigenetic reg-

ulatory mechanisms (Meissner et al., 2008) and further suggest a

temporal relationship of DNAmethylation and Polycomb in regu-

lating cell-type-specific genes.

DMVs Are a Special Class of Genomic Loci Subject to
Exquisite Epigenetic Control
Interestingly, many genes encoding for key regulators of embry-

onic development reside in hypomethylated domains, or DMVs.

Importantly, these DMVs are also preferentially hypomethylated

in sperm, raising the possibility that these DMVs may be estab-

lished even earlier. Why are developmental regulatory genes

preferentially located in DMVs? One possibility is that DNA

methylation at these regions may be incompatible with mainte-

nance of the pluripotency or multipotency of these cells. We
f genes with DMVs within various categories. The

7me3 in sperm, are also shown. 1, hESC H9; 2–4,

SC-derived trophoblast-like cells; 7, ADS; 8, ADS-

al., 2012).

.
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noticed that many DMV genes demonstrate a bivalent state

(H3K4me3 and H3K27me3), which is linked to poised transcrip-

tion that may enable developmental genes to be more flexibly

modulated (Bernstein et al., 2006). DNAmethylation, on the other

hand, may be required for more stable silencing of genes in

terminally differentiated cells. Another possibility is that the ge-

netic programs regulating embryonic development may actually

evolve separately from, or prior to, the evolution of DNA methyl-

ation machinery. Supporting this hypothesis, DNAmethylation is

either absent (such as in Drosophila and C. elegans) or varies

considerably in its pattern relative to gene activity in inverte-

brates (Feng et al., 2010; Zemach et al., 2010). On the other

hand, the Polycomb family of factors regulates key develop-

mental regulatory genes in both invertebrates and vertebrates

in amore conservedmanner. Several mechanisms of DNA hypo-

methylation at DMVs can be envisioned. DMVs may be recog-

nized by proteins, such as the Tet family, that actively remove

DNA methylation (Wu and Zhang, 2011). Alternatively, DMVs

may be associated with histone modifications or histone vari-

ants, such as H3K4me3 or H2A.Z, that are incompatible to

DNA methylation (Cedar and Bergman, 2009). Future experi-

ments are needed to determine which of the above mechanisms

could be responsible for DMV formation in the mammalian

genome.

EXPERIMENTAL PROCEDURES

hESC Differentiation

H1 cells were differentiated according to previously established protocols to

mesendoderm (Yu et al., 2011), trophoblast-like cells (Xu et al., 2002), neural

progenitor cells (Chambers et al., 2009; Chen et al., 2011), and mesenchymal

stem cells (Vodyanik et al., 2010). Details of the differentiation methods can be

found in Extended Experimental Procedures.

MethylC-Seq Library Generation and Sequencing

Genomic DNA from H1 and the H1-derived cells was extracted and sonicated.

Sequencing libraries were constructed using NEBNext DNA Sample Prep Re-

agent Set 1 (NEB). Methylated adapters were used in place of the standard

genomic DNA adapters from Illumina. Ligation products were purified, bisulfite

treated, PCR amplified, and sequenced using HiSeq2000 (Illumina).

ChIP-Seq Library Generation and Sequencing

H1 and the H1-derived cells were processed following a ChIP protocol as pre-

viously described (Hawkins et al., 2010). ChIP libraries were prepared and

sequenced using the Illumina instrument per manufacturer’s instructions.

RNA-Seq Library Generation and Sequencing

Total RNA from H1 and the H1-derived cells was extracted and sequencing

libraries were constructed using the TruSeq RNA Sample Prep Kit (Illumina)

(Poly(A) selected) according to manufacturer’s instructions with modifications

to confer strand specificity (seeExtendedExperimental Procedures for details).

ACCESSION NUMBERS

All data have been deposited to the Sequence Read Archive (SRA) under

accession number SRP000941.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures, seven

figures, and seven tables and can be found with this article online at http://dx.

doi.org/10.1016/j.cell.2013.04.022.
1146 Cell 153, 1134–1148, May 23, 2013 ª2013 Elsevier Inc.
ACKNOWLEDGMENTS

This work is supported by the NIH Epigenome Roadmap Project (U01

ES017166) and also in part by NSFC 91019016 and NIH R01 HG001696

(M.Q.Z.), NIH P01 GM081629 (J.A.T.), and CIRM RN2-00905-1 (B.R.). J.R.E.

is a Howard Hughes Medical Institute and Gordon and Betty Moore Investi-

gator. N.C.C. is funded by grants from the NIH/NHLBI. H.Y. is funded by grants

from the American Heart Association (12POST12050080). We thank Drs.

Tomek Swigut and Joanna Wysocka for sharing the zebrafish enhancer re-

porter vector. We thank Dr. John Stamatoyannopoulos for generating and

providing access to the DNase-seq data sets. We also thank members of

the Ren lab for helpful comments of the manuscript. B.R., J.A.T., J.R.E.,

W.W., and M.Q.Z. designed and supervised the research. Z.H., J.Z., P.Y.,

N.E.P., K.S., J.E.A.-B., and I.S. performed/supervised the H1 differentiation

experiments. W.X., R.D.H., D.L., A.Y.L., A.K., S. Kuan, C.Y., and S. Klugman

performedChIP-seq experiments. R.L. and J.R.N. performedMethylC-seq ex-

periments. M.A.U., Y.L., and Y.Z. performed RNA-seq experiments. H.Y. and

N.C.C. performed/supervised the enhancer-reporter assay in zebrafish. W.X.,

M.D.S., N.R., P.R., J.W.W., S.T., T.W., S.A.S., Y.Z., R.L., H.C., L.E.E., U.W.,

A.K., Z.X., W.Y.C., and R.S. analyzed data. W.X., B.R., and R.S. prepared

the manuscript. B.R., J.A.T., J.R.E., W.W., and M.Q.Z. are equally responsible

for the analysis results. M.D.S., R.L., Z.H., N.R., P.R., J.W.W., S.T., R.D.H., and

D.L. contributed equally to this work.

Received: September 29, 2012

Revised: January 7, 2013

Accepted: April 1, 2013

Published: May 9, 2013

REFERENCES

Anokye-Danso, F., Trivedi, C.M., Juhr, D., Gupta, M., Cui, Z., Tian, Y., Zhang,

Y., Yang, W., Gruber, P.J., Epstein, J.A., and Morrisey, E.E. (2011). Highly effi-

cient miRNA-mediated reprogramming of mouse and human somatic cells to

pluripotency. Cell Stem Cell 8, 376–388.

Barrera, L.O., Li, Z., Smith, A.D., Arden, K.C., Cavenee, W.K., Zhang, M.Q.,

Green, R.D., and Ren, B. (2008). Genome-widemapping and analysis of active

promoters in mouse embryonic stem cells and adult organs. Genome Res. 18,

46–59.

Berman, B.P., Weisenberger, D.J., Aman, J.F., Hinoue, T., Ramjan, Z., Liu, Y.,

Noushmehr, H., Lange, C.P., van Dijk, C.M., Tollenaar, R.A., et al. (2012). Re-

gions of focal DNA hypermethylation and long-range hypomethylation in colo-

rectal cancer coincide with nuclear lamina-associated domains. Nat. Genet.

44, 40–46.

Bernardo, A.S., Faial, T., Gardner, L., Niakan, K.K., Ortmann, D., Senner, C.E.,

Callery, E.M., Trotter, M.W., Hemberger, M., Smith, J.C., et al. (2011).

BRACHYURY and CDX2 mediate BMP-induced differentiation of human and

mouse pluripotent stem cells into embryonic and extraembryonic lineages.

Cell Stem Cell 9, 144–155.

Bernstein, B.E., Mikkelsen, T.S., Xie, X., Kamal, M., Huebert, D.J., Cuff, J., Fry,

B., Meissner, A., Wernig, M., Plath, K., et al. (2006). A bivalent chromatin struc-

ture marks key developmental genes in embryonic stem cells. Cell 125,

315–326.

Bird, A. (2002). DNAmethylation patterns and epigenetic memory. Genes Dev.

16, 6–21.

Bock, C., Beerman, I., Lien, W.H., Smith, Z.D., Gu, H., Boyle, P., Gnirke, A.,

Fuchs, E., Rossi, D.J., and Meissner, A. (2012). DNA methylation dynamics

during in vivo differentiation of blood and skin stem cells. Mol. Cell 47,

633–647.

Boyer, L.A., Plath, K., Zeitlinger, J., Brambrink, T., Medeiros, L.A., Lee, T.I.,

Levine, S.S., Wernig, M., Tajonar, A., Ray, M.K., et al. (2006). Polycomb com-

plexes repress developmental regulators in murine embryonic stem cells.

Nature 441, 349–353.

Bracken, A.P., and Helin, K. (2009). Polycomb group proteins: navigators of

lineage pathways led astray in cancer. Nat. Rev. Cancer 9, 773–784.

http://dx.doi.org/10.1016/j.cell.2013.04.022
http://dx.doi.org/10.1016/j.cell.2013.04.022


Cedar, H., and Bergman, Y. (2009). Linking DNA methylation and histone

modification: patterns and paradigms. Nat. Rev. Genet. 10, 295–304.

Chambers, S.M., Fasano, C.A., Papapetrou, E.P., Tomishima, M., Sadelain,

M., and Studer, L. (2009). Highly efficient neural conversion of human ES

and iPS cells by dual inhibition of SMAD signaling. Nat. Biotechnol. 27,

275–280.

Chang, C.W., Cheng, W.C., Chen, C.R., Shu, W.Y., Tsai, M.L., Huang, C.L.,

and Hsu, I.C. (2011). Identification of human housekeeping genes and tis-

sue-selective genes by microarray meta-analysis. PLoS ONE 6, e22859.

Chen, G., Gulbranson, D.R., Hou, Z., Bolin, J.M., Ruotti, V., Probasco, M.D.,

Smuga-Otto, K., Howden, S.E., Diol, N.R., Propson, N.E., et al. (2011). Chem-

ically defined conditions for human iPSC derivation and culture. Nat. Methods

8, 424–429.

Creyghton, M.P., Cheng, A.W., Welstead, G.G., Kooistra, T., Carey, B.W.,

Steine, E.J., Hanna, J., Lodato, M.A., Frampton, G.M., Sharp, P.A., et al.

(2010). Histone H3K27ac separates active from poised enhancers and pre-

dicts developmental state. Proc. Natl. Acad. Sci. USA 107, 21931–21936.

Ernst, J., Kheradpour, P., Mikkelsen, T.S., Shoresh, N., Ward, L.D., Epstein,

C.B., Zhang, X., Wang, L., Issner, R., Coyne, M., et al. (2011). Mapping and

analysis of chromatin state dynamics in nine human cell types. Nature 473,

43–49.

Feng, S., Cokus, S.J., Zhang, X., Chen, P.Y., Bostick, M., Goll, M.G., Hetzel, J.,

Jain, J., Strauss, S.H., Halpern, M.E., et al. (2010). Conservation and diver-

gence of methylation patterning in plants and animals. Proc. Natl. Acad. Sci.

USA 107, 8689–8694.

Gifford, C.A., Ziller, M.J., Gu, H., Trapnell, C., Donaghey, J., Tsankov, A.,

Shalek, A.K., Kelley, D.R., Shishkin, A.A., Issner, R., et al. (2013). Transcrip-

tional and epigenetic dynamics during specification of human embryonic

stem cells. Cell 153. Published online May 9, 2013. http://dx.doi.org/

10.1016/j.cell.2013.04.037.

Hammoud, S.S., Nix, D.A., Zhang, H., Purwar, J., Carrell, D.T., and Cairns, B.R.

(2009). Distinctive chromatin in human sperm packages genes for embryo

development. Nature 460, 473–478.

Hawkins, R.D., Hon, G.C., Lee, L.K., Ngo, Q., Lister, R., Pelizzola, M., Edsall,

L.E., Kuan, S., Luu, Y., Klugman, S., et al. (2010). Distinct epigenomic land-

scapes of pluripotent and lineage-committed human cells. Cell Stem Cell 6,

479–491.

Irizarry, R.A., Wu, H., and Feinberg, A.P. (2009). A species-generalized proba-

bilistic model-based definition of CpG islands. Mamm. Genome 20, 674–680.

Jackson, M., Krassowska, A., Gilbert, N., Chevassut, T., Forrester, L., Ansell,

J., and Ramsahoye, B. (2004). Severe global DNA hypomethylation blocks dif-

ferentiation and induces histone hyperacetylation in embryonic stem cells.

Mol. Cell. Biol. 24, 8862–8871.

Kouzarides, T. (2007). Chromatin modifications and their function. Cell 128,

693–705.

Kunarso, G., Chia, N.Y., Jeyakani, J., Hwang, C., Lu, X., Chan, Y.S., Ng, H.H.,

and Bourque, G. (2010). Transposable elements have rewired the core regula-

tory network of human embryonic stem cells. Nat. Genet. 42, 631–634.

Laurent, L., Wong, E., Li, G., Huynh, T., Tsirigos, A., Ong, C.T., Low, H.M., Kin

Sung, K.W., Rigoutsos, I., Loring, J., andWei, C.L. (2010). Dynamic changes in

the human methylome during differentiation. Genome Res. 20, 320–331.

Lee, T.I., Jenner, R.G., Boyer, L.A., Guenther, M.G., Levine, S.S., Kumar, R.M.,

Chevalier, B., Johnstone, S.E., Cole, M.F., Isono, K., et al. (2006). Control of

developmental regulators by Polycomb in human embryonic stem cells. Cell

125, 301–313.

Leung, D.C., and Lorincz, M.C. (2012). Silencing of endogenous retroviruses:

when and why do histone marks predominate? Trends Biochem. Sci. 37,

127–133.

Li, E., Bestor, T.H., and Jaenisch, R. (1992). Targeted mutation of the DNA

methyltransferase gene results in embryonic lethality. Cell 69, 915–926.

Li, Y., Zhu, J., Tian, G., Li, N., Li, Q., Ye, M., Zheng, H., Yu, J., Wu, H., Sun, J.,

et al. (2010). The DNA methylome of human peripheral blood mononuclear

cells. PLoS Biol. 8, e1000533.
Lister, R., Pelizzola, M., Dowen, R.H., Hawkins, R.D., Hon, G., Tonti-Filippini,

J., Nery, J.R., Lee, L., Ye, Z., Ngo, Q.M., et al. (2009). Human DNAmethylomes

at base resolution show widespread epigenomic differences. Nature 462,

315–322.

Lister, R., Pelizzola, M., Kida, Y.S., Hawkins, R.D., Nery, J.R., Hon, G., Antosie-

wicz-Bourget, J., O’Malley, R., Castanon, R., Klugman, S., et al. (2011). Hot-

spots of aberrant epigenomic reprogramming in human induced pluripotent

stem cells. Nature 471, 68–73.

Meissner, A., Mikkelsen, T.S., Gu, H., Wernig, M., Hanna, J., Sivachenko, A.,

Zhang, X., Bernstein, B.E., Nusbaum, C., Jaffe, D.B., et al. (2008). Genome-

scale DNA methylation maps of pluripotent and differentiated cells. Nature

454, 766–770.

Mendenhall, E.M., Koche, R.P., Truong, T., Zhou, V.W., Issac, B., Chi, A.S., Ku,

M., and Bernstein, B.E. (2010). GC-rich sequence elements recruit PRC2 in

mammalian ES cells. PLoS Genet. 6, e1001244.

Mohn, F., Weber, M., Rebhan, M., Roloff, T.C., Richter, J., Stadler, M.B., Bibel,
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Supplemental Information

EXTENDED EXPERIMENTAL PROCEDURES

Cell Culture
All differentiation media is based on the E8 medium (Chen et al., 2011). For mesendoderm differentiation, a protocol derived from Yu

et al. (2011) was used. Briefly, undifferentiated H1 cells were maintained in E8 medium (which contains FGF2) on Matrigel coated

plates. For differentiation, H1 cells were individualized with TrypLE (Life Technology) and washed once with E8 medium. H1 cells

were then seeded onto fresh Matrigel plates at a density of around 1x104 cells/cm2 and cultured in differentiation medium (E8

with 5ng/ml BMP4 and 25ng/ml Activin A). Media was changed every day. Cells were harvested at the end of day 2. For further dif-

ferentiation into definitive endoderm cells, mesendoderm cells were further treated with E8 medium supplemented with 100 ng/ml

Activin for 2 days.

For trophoblast-like cell differentiation, a protocol modified from Xu et al. (2002) was used. Briefly, undifferentiated H1 cells were

maintained in E8 medium on Matrigel coated plates. For differentiation, H1 cells were treated with 0.5mM EDTA in PBS for 3 to 5 min

and resuspended in differentiation medium. Resuspended H1 cells were then seeded onto fresh matrigel plates at densities around

4x104 cells/cm2. Media was changed every day and cells were harvested at the end of day 5. Differentiation medium consists of

E8 minus FGF2 with 50ng/ml BMP4.

For neural progenitor differentiation, a modified protocol from Chambers et al. (2009) was employed. Briefly, undifferentiated H1

cells were maintained in E8medium onMatrigel coated plates. For differentiation, H1 cells were treated with 0.5mM EDTA in PBS for

3 to 5 min and resuspended in NPC differentiation medium. Resuspended H1 cells were then seeded onto fresh matrigel plates at

densities around 1-2x104 cells/cm2. Media was changed every day. Cells were harvested at the end of day 7. The NPC differentiation

medium consists of E8 minus FGF2, minus TGFb1, with only 5 mg/ml insulin, with 10 mMSB431542 and 100ng/ml Noggin. For further

differentiation into neurons, NPCs were cultured in DMEM/F12 medium supplemented with 1x N2, 1x B27, 64 mg/ml vitamin C,

14ng/ml sodium selenite and 5ng/ml FGF2 for additional 25 days.

For mesenchymal stem cell differentiation, a previously described protocol was used without modifications (Vodyanik et al., 2010).

For immunostaining of definitive endoderm cells, cells were fixed in 2% paraformaldehyde in PBS for 15 min at room temperature

followed by a wash with PBS. Cells were permeabilized and blocked with 1%BSA in PBS/0.25% Triton X-100 for 1 hr and incubated

with primary antibodies overnight at 4�C. For all other stainings, cells were fixed and permeabilized with ice cold 90% methanol in

PBS and blocked with 2% FBS in PBS. Cells were then incubated with primary antibody in blocking buffer at 4�C overnight. Cells

were then incubated with secondary antibodies for 1 hr at room temperature in the dark. Nuclei were visualized by DAPI (Vector

laboratories).

For the FACS analysis, cells were individualized with Accutase (Life Technologies), fixed in 2% paraformaldehyde, and permea-

bilized with ice cold 90% methanol in PBS. Cells were then incubated with primary antibodies in the FACS buffer (2% FBS in

1xPBS) for 4 hr at RT or 4�C overnight followed by secondary antibody incubation at RT for 1 hr. Stained cells were analyzed using

FACS CANTO-II (BD).

Primary antibodies used are as follows: GATA3 (558686, BD Biosciences), EOMES (50-4877-42, eBiosciences), TH (P40101-0,

Pel-Freez Biologicals), POU5F1(sc-5279, Santa Cruz). Additionally, NANOG (4903), SOX2 (3579), KRT7 (4465), MAP2 (4542) are

from Cell Signaling. T (AF2085), FOXA2(AF2400), CXCR4(MAB172), LHX1(MAB2725), GATA2 (AF2046), bIII-Tubulin (MAB1195)

are from R&D Systems. TBR1 (AB10554) and PLZF(OP128) are from Millipore. PAX6 is from Developmental Studies Hybridoma

Bank at the University of Iowa.

ChIP-Seq
ChIPwas carried out as previously described with 20 mg chromatin and 5 mg antibody with the following antibodies: H3K4me3 (Active

Motif, 39159), H3K4me1 (Abcam, ab8895), H3K27Ac (Active Motif, 39133), H3K36me3 (Abcam, ab9050), H3K27me3 (Active Motif,

39155), H3K9me3 (Abcam, ab8898), H3K79me1 (Abcam, ab2886), H2AK5ac (Abcam, ab45152), H2BK120ac (Active Motif, 39119),

H2BK5ac (Active Motif, 39123), H3K18ac (Abcam, ab1191), H3K4ac (Millipore, 07-539) and H3K9ac (Active Motif, 39137). ChIP and

input library preparation and sequencing procedures were carried out as described previously (Hawkins et al., 2010) according to

Illumina protocols with minor modifications (Illumina, San Diego, CA).

MethylC-Seq
Unmethylated Lambda DNA was added to genomic DNA at 1:200 (w/w). Approximately two micrograms of genomic DNA was son-

icated to �100 bp using the Covaris S2 System with the following parameters: cycle number = 6, duty cycle = 20%, intensity = 5,

cycles/burst = 200 and time = 60 s. Sonicated DNA was purified using QIAGEN DNeasy minielute columns (QIAGEN). Each

sequencing library was constructed using the NEBNext DNA Sample Prep Reagent Set 1 (New England Biolabs, Ipswich, MA)

according to the manufacturer’s instructions with the following slight modifications. Methylated adapters were used in place of

the standard genomic DNA adapters from Illumina (Illumina, San Diego, CA). Ligation products were purified with AMPure XP beads

(Beckman, Brea, CA). Adaptor-ligated DNA (450 ng) was bisulfite treated using the MethylCode Kit (Invitrogen, Carlsbad, CA)

following the manufacturer’s guidelines and then PCR amplified using PfuTurboCx hotstart DNA polymerase (Agilent, Santa Clara,

CA) with the following PCR conditions (2 min at 95þC, 4 cycles of 15 s at 98þC, 30 s at 60þC, 4 min at 72þC, then 10 min at 72C).

MethylC-Seq libraries were sequenced using the Illumina HiSeq 2000 (Illumina) instrument as per manufacturer’s instructions.
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Sequencing of libraries was performed up to 101 cycles. Image analysis and base calling were performed with the standard Illumina

pipeline version RTA 2.8.0.

RNA-Seq
Approximately four micrograms of total RNA was used as input. Each sequencing library was constructed using the TruSeq RNA

Sample Prep Kit (Illumina, San Diego, CA) (Poly(A) selected) according tomanufacturer’s instructions with the followingmodifications

to confer strand-specificity. The RNA was incubated in the Elute, Prime, Fragment Mix at 94þC for 4 min. After first strand synthesis

the cDNA:RNA hybrid was purified using RNAClean XP beads (Beckman, Brea, CA). The second strand synthesis was performed

using a dNTP mix containing dUTPs (10mM dATPs, 10mM dGTPs, 10mM dCTPs, and 20mM dUTPs) and DNA Polymerase I

(E. coli) (New England Biolabs, Ipswich, MA). The purified ligation products were incubated with Uracil DNA Glycosylase (Fermentas)

before PCR amplification. The completed library was then gel size selected to approximately 350-450 bp using the QIAquick Gel

Extraction Kit (QIAGEN). RNA-seq libraries were sequenced using the Illumina HiSeq 2000 (Illumina) instrument as per manufac-

turer’s instructions. Sequencing of libraries was performed up to 2 3 101 cycles. Image analysis and base calling were performed

with the standard Illumina pipeline version RTA 2.8.0.

Data Analyses
Sequencing Data Mapping

For H1 and the H1 derived cells, to account for the genetic differences between the H1 genome and the hg18 reference genome, we

called SNPs using the Bioscope software package with data available from SRA (SRA049981) and incorporated the homozygous

variants into the hg18 reference (i.e., replaced the reference base with the called variant). This reference genome, which we refer

to as the H1-modified reference genome, was used for all mapping of the H1 and H1 derived cells. Data for IMR90 were obtained

from previous publications without modifications (Hawkins et al., 2010; Lister et al., 2009). To be consistent with the RNA-Seq

data for H1 and the H1-derived cells, we reproduced the IMR90 RNA-Seq data using the Illumina sequencing platform, which

were then mapped to the hg18 reference genome.

ChIP-Seq Data Processing

For H1 and the H1 derived cells, ChIP-seq reads were aligned to the H1-modified reference genome with Bowtie (version 0.12). We

used the first 25 bp for the alignment and only reads with less than twomismatches were accepted. To generate the ChIP-seq signals

for each histone modification shown in the UCSC genome browser, we normalized the read counts for both the ChIP and the input

samples by computing the number of reads per kilobase of bin per million reads sequenced (RPKM). The RPKM values for the ChIP

signal were then subtracted by those for the input signal as described previously (Hawkins et al., 2010) and were shown as the UCSC

genome browser tracks. For the downstream data analyses, RPKM values were averaged for each bin between replicates. To mini-

mize the batch and cell type variation, the RPKM values were further normalized through Z-score transformation, by subtracting the

mean of RPKM across the genome and divided by the standard deviation of RPKM across the genome.

MethylC-Seq Data Processing

For H1 and the H1 derived cells, MethylC-Seq reads were aligned to the H1-modified reference genome with a pipeline that was pre-

viously established (Lister et al., 2009).

RNA-Seq Data Processing

For H1 and the H1 derived cells, the RNA-Seq readsweremapped to the H1-modified referencewith TopHat (version 1.20). Themap-

ped reads were further analyzed by Cufflinks (Trapnell et al., 2012) and the expression levels for each transcript were quantified as

Fragments Per Kilobase of transcript per Million mapped reads (FPKM). For coding genes, we used the well-curated RefSeq data-

base (Pruitt et al., 2012) and selected those RefSeq IDs starting with ‘‘NM.’’ For long non-coding genes, we examined several data-

bases including RefSeq, a collected lincRNA database (Cabili et al., 2011), and the NONCODE database (Bu et al., 2012). As these

databases contain overlapping annotations, we examined the databases in the following order: RefSeq, lincRNA (Cabili et al., 2011)

and NONCODE. Genes that have 80% or more annotated regions overlapping with prior databases were removed. For RefSeq non-

coding genes, we first collected all genes starting with ‘‘NR’’ (n = 7445) and then curated a total of 2,868 lncRNA genes from all NR

genes, by removing small RNA genes and pseudogenes. For all potential lncRNA genes we required the minimal length to be 200bp.

For genes in the NONCODE database we also required genes to have more than one exon to increase the probability that they are

true lncRNA genes. For genes withmultiple isoforms, the FPKM values were summed across all isoforms as the expression values for

the genes.

Analysis of Repetitive Elements

The RepeatMasker annotation file was downloaded from the UCSC genome browser, and Cufflinks was used to measure the tran-

scription levels for each mappable repetitive element. To define expressed repetitive elements in each cell type, we used the

following criteria: 1) elements do not overlap with any of the RefSeq annotations; 2) FPKM > = 1; and 3) length > = 300 bp.

De Novo lncRNA Identification

To identify potential novel lncRNA genes, all mapped reads were analyzed and compared to a panel of expanded annotation data-

bases. For this purpose, we first combined the annotations from multiple databases using GFFRead (as part of the Cufflinks pack-

age). We used the following databases to create a combined reference transcriptome: RefSeq, NONCODE, Ensembl (Hubbard et al.,

2002), UCSC Known Gene database (Hsu et al., 2006), together consisting of a total of 134,377 known transcripts. We then
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assembled the transcripts with Cufflinks, Cuffmerge and Cuffdiff based on the standard protocol (Trapnell et al., 2012) against the

combined gene annotation. The resulting assembled transcripts were further compared to the latest released Gencode gene anno-

tation (Derrien et al., 2012). Transcripts that do not overlap with any existing annotations, or with less than 80% total length overlap-

ping with existing lncRNA genes, were selected as candidate novel lncRNA genes. We then employed a method similar to that used

by Cabili et al. (2011) to identify a stringent set of novel transcripts that have a greater potential of being functional lncRNAs. First, we

only selected multi-exonic transcripts to minimize the chances of including transcriptional ‘‘noise’’ (Guttman and Rinn, 2012). Sec-

ond, we selected those with the expression level of above FPKM 0.5 (and both replicates should be above 0.25) in at least one cell

type. Third, we calculated the coding potential score of each transcript as well as its list of BLAST hits in known and predicted

mammalian protein database. The coding potential score for each transcript is indicative of its chances of being part of a coding pro-

tein isoform, which takes into account factors such as the presence of Open Reading Frames (ORFs), presence of stop codon, evolu-

tionary statistics of codon usage, and homology with known proteins. We used Coding Potential Calculator which is robust also for

low quality transcripts (Kong et al., 2007). We removed those transcripts with coding potential scores greater than 0 and subjected

the rest to an additional BLAST search (Altschul et al., 1997) in the Uniref90 database (Apweiler et al., 2004) to eliminate ancient or

partial coding transcripts (Kong et al., 2007). Those without any BLAST hits were reported as the final novel lncRNA genes.

Identification of Lineage-Restricted Genes

To identify lineage restricted genes, we used a strategy described previously based on the Shannon entropy to compute a cell type-

specificity index to each gene (Barrera et al., 2008; Schug et al., 2005; Shen et al., 2012). Specifically, for each gene, we defined its

relative expression in a cell type i as Ri = Ei /S E, where Ei is the FPKM value for gene in the cell type i;S E is the sumof FPKM values in

all cell types; N is the total number of cell types. Then the entropy score for this gene across cell types can be defined as H =�1*SRi *

logRi(1 % i % N), where the value of H ranges between 0 to log2(N). An entropy score close to zero indicates the expression of this

gene is highly cell type-specific, while an entropy score close to log2(N) indicates that this gene is expressed ubiquitously. Based on

an examination of the entropy distribution (Figure S2B), genes with entropy less than 2 were selected as the candidate lineage

restricted genes. Among these genes, we selected candidates of lineage-restricted genes for each cell type based on the following

criteria: the gene is highly expressed in this lineage (FPKM > = 1, which doubles the threshold that we used for calling a gene to be

expressed), and such high expression cannot be observed in more than two additional cell types. These genes were then reported in

the final lineage restricted gene lists.

Lists of somatic tissue-specific genes and housekeeping genes were obtained from (Zhu et al., 2008) and were available from

http://www.wikicell.org/index.php/HK_Gene and http://www.wikicell.org/index.php/TS_Gene per the authors’ instruction. Indepen-

dent tissue-specific and housekeeping gene lists were downloaded from (Chang et al., 2011).

Identification of Active Promoter for Lineage-Restricted Genes

Our initial analysis of RNA-Seq data showed that many genes contain multiple promoters, including those that were not annotated

yet. Although Cufflinks allows quantification of transcription levels for each isoform with different promoters, a visual inspection indi-

cated that it may be difficult to accurately assign each sequencing read to different isoforms for each gene. To precisely identify pro-

moters for genes that are expressed in a lineage-restricted manner, we examined all possible promoters for each lineage-restricted

gene from the Cufflink output, which include all possible isoforms for each gene, with either annotated promoters or de novo assem-

bled promoters. To reliably identify the promoters that are actively utilized in each lineage, we only selected promoters that have a

transcription start site within 1kb of a DNase I hypersensitive site in the same cell type. To examine the epigenetic landscape at pro-

moters across H1 and the H1 differentiated cells, we only examined genes that have a single active promoter, or genes that contain

multiple active promoters but within 1kb of each other.

Identification of High CG, Medium CG, and Low CG Promoters

For the promoter of every RefSeq gene, we examined the sequence immediate around the TSS (+/� 500bp) and counted the number

of CG dinucleotides per 100bp. An examination of the distribution of the CG density for all promoters revealed two distinct promoter

populations (Figure S3A). Therefore, we empirically chose thresholds that separate the promoters into three classes: high CG class

(CG density > = 4CGs per 100bp), low CG class (CG density < 2CGs per 100bp), and medium CG class for those with CG density in

between.

For analyses of DNA methylation involving low CG promoters, we used a relatively smaller window (+/� 200bp) as we found that

many low-CG promoters show hypo-methylation only for very short regions around TSSs.

Identification of Enhancers

We recently developed a random-forest based algorithm, RFECS (Random Forest for Enhancer Identification using Chromatin

States), for the purpose of enhancer prediction (Rajagopal et al., 2013). Briefly, the enhancer identification procedure was as follows.

We used histone modification profiles at p300 binding sites in H1 to train a random-forest for enhancer prediction. We constructed

the forest using a selected set of histone modifications that provide largely non-redundant information, including H3K27ac,

H3K27me3, H3K36me3, H3K4me1, H3K4me3, and H3K9me3. The enrichment of these modifications was determined and used

in 100 bp bins from �1 to +1kb along the p300-binding sites or selected non-p300 background sites to train the RFECS classifier.

Using this classifier, we predicted enhancers genome wide in the 6 cell-types. In order to compare enhancers across cell-types, it is

preferable to have enhancer predictionswith the same level of confidence. To determine the appropriate cutoff formultiple cell-types,

we calculated a false discovery rate by randomly permuting 100 bp bins across the genome and computing the ratio of enhancers

predicted in permuted data versus enhancers predicted in observed data for various cutoffs of voting percentages. We selected a
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FDR cutoff of 2.5% for the 6 cell-types analyzed in this study. Enhancers predicted in each cell type were then examined, and those

that directly overlap with H3K4me3 peaks (identified by MACS [Zhang et al., 2008]) or within 2.5kb of the H3K4me3 peak centers or

TSSs of RefSeq genes were removed. The resulting lists of enhancers were used for downstream analyses. Additionally, for a joint

non-redundant list of enhancers existing in all cell types, wemerged enhancers from all cell types that are located close to each other

(<2 kb) and used the midpoint as the center of the ‘‘new’’ enhancer.

Identification of Lineage-Restricted Enhancers

To identify lineage restricted enhancers, we used H3K27ac (K27ac) as a marker for active enhancers (Rada-Iglesias et al., 2011;

Creyghton et al., 2010), and employed a strategy described previously based on the Shannon entropy to compute a cell type-spec-

ificity index to each enhancer (Barrera et al., 2008; Schug et al., 2005; Shen et al., 2012). We first selected lineage restricted enhancer

candidates in each one of the 6 cell types by the following criteria: the enhancer is significantly enriched by K27ac (Z-score trans-

formed RPKM>= 0.5), and such significant enrichment is observed in nomore than two additional cell types. Then for each enhancer

in the candidate enhancer set of a particular cell type, we computed the entropy to assess the cell type specificity of its K27ac enrich-

ment. Specifically, for each enhancer, we defined its relative K27ac in a cell type i as Ri = Ei / S E, where Ei is the normalized K27ac

RPKM value in the cell type i; S E is the sum of K27ac RPKM values in all cell types; N is the total number of cell types. Then the

entropy score for this element across cell types can be defined asH =�1*SRi * logRi(1% i%N), where the value of H ranges between

0 to log2(N). An entropy score close to zero indicates the activity of this enhancer is highly cell type-specific, while an entropy score

close to log2(N) indicates that this enhancer is active/silenced ubiquitously. We selected those with entropy less than 1 as lineage

restricted enhancers. Inactive enhancers were defined as those that show no H3K27ac enrichment (Z-score transformed

RPKM % 0).

GREAT Analysis for Lineage-Restricted Enhancers

The functional enrichment for genes that are near lineage specific enhancers was analyzed using the GREAT tool (McLean et al.,

2010). The following parameters were used: Basal plus extension, proximal 5kb upstream and 1 kb downstream, plus distal up to

100 kb or 50 kb.

Motif Analysis for Lineage-Restricted Enhancers

To identify a broad set of de novo motifs, we used two programs: (i) HOMER (Heinz et al., 2010), and (ii) our own method, Epigram.

Epigram works by calculating the enrichment of 9-mers within the peaks in comparison to two backgrounds: (i) the entire genome,

and (ii) the shuffled peak sequences. Those with fold-enrichment above 1.5 are classified as enriched, and the topmost is taken as a

seed for motif construction. All enriched 9-mers having exactly 1 or 2 mismatches to the seed are grouped with the seed to create an

initial ungapped alignment. A motif is produced from the alignment by weighting each of the 9-mers’ contributions by their corre-

sponding enrichment scores. The motif’s enrichment is calculated by comparing the motif to all the non-neutral 9-mers, those

with relative fold enrichment greater than 1.5 in the peaks, or the backgrounds.

The alignment is then widened by adding each enriched 9-mer that can be aligned, with an offset of one and with at most one

mismatch, to at least one 9-mer already in the alignment. During thewidening step an expansion is rejected if it causes the enrichment

score to decrease. The initial alignment may be extended for a maximum for four bases in either direction, to produce a motif of at

most 17 bases.

Once amotif is completed the process repeats, using only the set of enriched 9-mers that have not yet been included in a previous

motif. The process continues until all enriched 9-mers have been used to initialize a motif or have been included in a motif.

The final set of motifs is scanned against the peaks, and the shuffled peak, sequences and best score for each motif, in each set of

sequences, is recorded. These scores are then used to calculate the area under the curve (AUC), which represents howwell the motif

can differentiate the two sets of sequences. Motif with AUCs < 0.55 are excluded from subsequent analysis. Finally, to allow the mo-

tifs to be ranked alongside themotifs produced by HOMER, which ranks by P-value, the hypergeometric distribution is used to calcu-

late enrichment P-values for each of the motifs.

To identify which of the de novo motifs matched known motifs, Tomtom was run with an E-value cut-off of < 0.05 (Gupta et al.,

2007; Tanaka et al., 2011). When running Tomtom, a library of known motif was constructed from the following four databases: (i)

TRANSFAC (Matys et al., 2003), (ii) JASPAR (Bryne et al., 2008), (iii) Uniprobe (Robasky and Bulyk, 2011) and (iv) hPDI (Xie et al.,

2010). JASPAR motifs with IDs starting with ‘‘LM’’ or ‘‘PF’’ were excluded, as the interacting partners of these motifs are unknown.

Any motifs that did not significantly match any known motifs were ignored from subsequent analysis.

To produce the final motif table the motif lists went through two rounds of manual curation. During the first round of curation,

the origin and the quality of the known motifs were checked. If the known motif was not produced using a mammalian transcrip-

tion factor, or if it was a mammalian transcription factor not present in humans, then the motif was ignored. Furthermore, if a de

novo motif significantly matched multiple motifs from the same family of transcription factors then it was summarized as being the

family. This approach is necessary as both the de novo and known motif making processes are noisy and slight variations that

make a de novo motif more similar to a single member of a family cannot be taken as strong evidence that a particular family

member is enriched. This curation step resulted in the motif table that is shown in Table S3. Next, this motif table was further

refined to establish the final list shown in Figure S4D. During the final curation, several factors were taken into consideration.

When the identified motif matches common regulatory elements (e.g., the CREB-element) that are recognized by many transcrip-

tions factors, it is impossible to accurately identify transcription factors that are likely responsible for the enrichment; in such

cases the motif was excluded. Motifs that were identified in multiple sets of enhancers were excluded, as they might well reflect
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ubiquitously expressed transcription factors. The reason for deciding to include, or exclude, each motif from the final table is given

in Table S3.

Zebrafish Reporter Assays

Identified human enhancers were evaluated for their ability to regulate tissue specific expression using a Tol2 transposon-mediated

zebrafish transgenesis approach as previously described (Rada-Iglesias et al., 2011). Selected human enhancers were PCR ampli-

fied and subcloned either upstream or downstream of the hsp70 promoter/eGFP cassette in the pT2HE vector (gift from Dr. Joanna

Wysocka). Tol2 transposase was in vitro transcribed from a linearized pCS2+ vector using the mMessage mMachine Sp6 kit (Am-

bion), and mixed with reporter plasmid DNA containing corresponding human enhancer sequences. This cocktail was subsequently

injected in one-cell-stage ABwild-type zebrafish embryos. Zebrafish imaging was performed on these injected embryos with a Leica

M205 FA fluorescent stereoscope, and eGFP expression patterns were monitored at 24-28 hr postfertilization (hpf). Expression pat-

ternswere considered as representative for a given enhancer if expressionwas consistently displayed by at least 30%–40%embryos

(at least 100 surviving zebrafish embryos were analyzed per enhancer). Candidate enhancers were further validated by a second set

of injectionswhere at least 50 additional surviving injected zebrafish embryoswere analyzed for recapitulation of expression patterns.

Correlation Analysis for Epigenetic Mark Enrichment at Promoters and Gene Expression

For each promoter, we averaged normalized RPKM values for each histone modification within �2 to +2 kb of the TSS and percent-

age of CGmethylation within�200 to +200bp of the TSS, and computed the Pearson correlation coefficient between the enrichment

of each epigenetic mark and the corresponding RNA-seq expression value across the 6 cell-types. In this analysis, we used a small

window for DNA methylation as we found that many low-CG promoters show hypo-methylation only for very short regions around

TSSs. We also performed a similar correlation analysis by permuting gene expression values across the 6 cell-types for each pro-

moter 10 times, to assess the ‘‘random’’ background correlation levels.

Correlations Analysis for Epigenetic Mark Enrichment at Enhancers and Expression for Potential Enhancer-Targeted

Genes

To identify the potential targeted genes for each enhancer, we averaged the normalized H3K27ac RPKM values within�1 to +1kb of

lineage-specific enhancers, and examined the correlation between the H3K27ac level at enhancers and the expression level of genes

within 200kb of this enhancer across the 6 cell types. As a control, we permuted genes within 200kb 100 times to create random

enhancer-gene pairs and computed the correlation similarly.We then selected all enhancer-gene pairs that showed a significant pos-

itive correlation of H3K27ac with gene expression compared to randomly permutated pairs, based on theWilcoxon signed-rank test.

Next, for each of these predicted enhancer-gene pairs, we computed the correlations between the enrichment of each epigenetic

mark (averaged RPKM values for histone marks within�1 to +1 kb, and CGmethylation within�500 to +500bp) at lineage-restricted

enhancers and the expression level of the associated genes. A similar analysis was done for those enhancer-gene pairs using

randomly permutated gene sets to assess the ‘‘random’’ correlation levels.

Identification of DMVs

As DMVs are larger than CpG islands and typical LMRs and UMRs, we employed a window-based approach to identify DMVs. To

identify each DMVs in a cell type, the genome was first divided in 1kb bins and the DNA methylation level was averaged within each

bin. Then a sliding 5kb window (with 1kb step) was used to identify regions that have an averagedmethylation level less than 0.15 in a

5kb window. Continuous regions resulting from this analysis were then merged to form DMVs.

PMD and FMR/LMR/UMR Analysis

PMDs were identified as described previously (Lister et al., 2009). Only those that are no less than 50 kb were included. For the FMR/

LMR/UMR analysis, the methylomes of H1 and the H1-derived cell types were segmented using the Hidden Markov Model param-

eters and methodology described in (Stadler et al., 2011). Unmethylated regions (UMRs), lowly methylated regions (LMRs), and fully

methylated regions (FMRs) were identified accordingly.

CpG Island Cluster Analysis

A list of CpG islands (CGIs) was downloaded from the UCSC Genome Browser or from a previous study (Irizarry et al., 2009). CGI

clusters were identified as following: a CGI cluster contains at least three CGIs, with the maximal distance between two adjacent

CGIs no more than 5kb. Genes with TSSs overlapping CGI cluster loci were subsequently identified.

Identification of Histone Modification Peaks and Domains

For H3K4me3,MACS (Zhang et al., 2008) was used to identify its peaks using the default setting. For H3K27me3 andH3K9me3which

typically show broad enrichment, HOMER (Heinz et al., 2010) was used to identify their enriched regions, using the findPeaks script

with the module designed for broad histone modification peak calling. For even larger H3K27me3 and H3K9me3 domains (such as

those that are preferentially present in MSCs and IMR90) (Hawkins et al., 2010), a different approach was employed using a sliding

window based approach modified from a method described previously (Hon et al., 2012). Briefly, the genome was divided into 10kb

bins and the RPKMvalues of K27me3 and K9me3 enrichment were averagedwithin each bin. A bin was counted as an ‘‘enriched bin’’

(+1) if the average value is no less than 0.95 quantile of all bins in the genome. If a bin shows an average FPKM value below 0.8 quan-

tile of all bins in the genome, a penalty was given (�1). Next, for K27me3, the percentage of enriched bins within a 10-bin sliding win-

dow was counted (including penalty if any) and was compared to the expected percentage of enriched bins in the entire genome. A

binomial test was then employed to compute the p-value to assess the likelihood that the observed number of enriched bins occurs

by chance.When the p-value is less than 0.001, the slidingwindow is identified as an enrichedwindow. To avoid including boundaries

that are only marginally enriched by K27me3, only the 2.5kb-7.5kb region within the 0-10kb window was labeled as the final domain
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regions. Such analysis was repeated for each sliding windowwith a step of 10kb. The contiguous domain regions were then merged.

The K9me3 domains were identified similarly but with a larger sliding window (25bins), as we observed that the K9me3 domains are

typically larger than the K27me3 domains.

Enrichment of DMV Genes for Oncogenes and Tumor Suppressor Genes

A total of 496 oncogenes and 874 tumor suppressor geneswere obtained from the Cancer Gene database, Memorial Sloan-Kettering

Cancer Center (http://cbio.mskcc.org/CancerGenes/Select.action). The significance of the overlap between DMV genes and onco-

genes or DMV genes and tumor suppressor genes was assessed by the hypergeometric test.

Data Analyses

Details of bioinformatic analyses can be found in Supplemental Information.

SUPPLEMENTAL REFERENCES

Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D.J. (1997). GappedBLAST and PSI-BLAST: a new generation of protein

database search programs. Nucleic Acids Res. 25, 3389–3402.

Apweiler, R., Bairoch, A., Wu, C.H., Barker, W.C., Boeckmann, B., Ferro, S., Gasteiger, E., Huang, H., Lopez, R., Magrane, M., et al. (2004). UniProt: the Universal

Protein knowledgebase. Nucleic Acids Res. 32(Databaseissue), D115–D119.

Bryne, J.C., Valen, E., Tang, M.H., Marstrand, T., Winther, O., da Piedade, I., Krogh, A., Lenhard, B., and Sandelin, A. (2008). JASPAR, the open access database

of transcription factor-binding profiles: new content and tools in the 2008 update. Nucleic Acids Res. 36(Databaseissue), D102–D106.

Bu, D., Yu, K., Sun, S., Xie, C., Skogerbø, G., Miao, R., Xiao, H., Liao, Q., Luo, H., Zhao, G., et al. (2012). NONCODE v3.0: integrative annotation of long noncoding

RNAs. Nucleic Acids Res. 40(Databaseissue), D210–D215.

Cabili, M.N., Trapnell, C., Goff, L., Koziol, M., Tazon-Vega, B., Regev, A., and Rinn, J.L. (2011). Integrative annotation of human large intergenic noncoding RNAs

reveals global properties and specific subclasses. Genes Dev. 25, 1915–1927.

Derrien, T., Johnson, R., Bussotti, G., Tanzer, A., Djebali, S., Tilgner, H., Guernec, G., Martin, D., Merkel, A., Knowles, D.G., et al. (2012). TheGENCODE v7 catalog

of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res. 22, 1775–1789.

Fang, F., Turcan, S., Rimner, A., Kaufman, A., Giri, D., Morris, L.G., Shen, R., Seshan, V., Mo, Q., Heguy, A., et al. (2011). Breast cancer methylomes establish an

epigenomic foundation for metastasis. Sci. Transl. Med. 3, 75ra25.

Gupta, S., Stamatoyannopoulos, J.A., Bailey, T.L., and Noble, W.S. (2007). Quantifying similarity between motifs. Genome Biol. 8, R24.

Guttman, M., and Rinn, J.L. (2012). Modular regulatory principles of large non-coding RNAs. Nature 482, 339–346.

Heinz, S., Benner, C., Spann, N., Bertolino, E., Lin, Y.C., Laslo, P., Cheng, J.X., Murre, C., Singh, H., and Glass, C.K. (2010). Simple combinations of lineage-

determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589.

Hon, G.C., Hawkins, R.D., Caballero, O.L., Lo, C., Lister, R., Pelizzola, M., Valsesia, A., Ye, Z., Kuan, S., Edsall, L.E., et al. (2012). Global DNA hypomethylation

coupled to repressive chromatin domain formation and gene silencing in breast cancer. Genome Res. 22, 246–258.

Hsu, F., Kent, W.J., Clawson, H., Kuhn, R.M., Diekhans, M., and Haussler, D. (2006). The UCSC Known Genes. Bioinformatics 22, 1036–1046.

Hubbard, T., Barker, D., Birney, E., Cameron, G., Chen, Y., Clark, L., Cox, T., Cuff, J., Curwen, V., Down, T., et al. (2002). The Ensembl genome database project.

Nucleic Acids Res. 30, 38–41.

Kong, L., Zhang, Y., Ye, Z.Q., Liu, X.Q., Zhao, S.Q., Wei, L., and Gao, G. (2007). CPC: assess the protein-coding potential of transcripts using sequence features

and support vector machine. Nucleic Acids Res. 35(WebServer issue), W345–W349.
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Figure S1. Differentiation of hESCs (H1) to ME, NPCs, TBL, and MSCs, Related to Figure 1

(A and B) H1 and the H1-derived cells were stained with various (A) hESC-specific markers or (B) lineage specific markers using immunofluorescence.

(C) H1 and the H1-derived cells were analyzed by FACS for various lineage specific markers. The numbers indicate the percentages of cells stained positive for

the specific marker compared to the negative controls (differentiation efficiency). For H1, ME, NPC, and TBL, a second cell type in which the marker is not

expressed was used as a negative control as indicated. For MSCs, an isotype control was used. CD31 is also a negative control marker for MSCs.

(D) Definitive endoderm cells differentiated fromH1-derivedMEwere stained for the definitive endodermmarkers CXCR4 and FOXA2 using immunofluorescence.

(E) Neurons differentiated from H1-derived NPCs were stained for various neuronal markers TH, TBR1, MAP2, and bIII Tubulin using immunofluorescence.
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Figure S2. Identification of Lineage-Restricted Transcripts in H1 and H1-Derived Cells, Related to Figure 2

(A) Bar graphs showing the numbers of expressed and lineage-restricted genes identified in each cell type used in this study for coding genes (RefSeq) (left) or

long non-coding RNA genes (lncRNA) (right). The total numbers of non-redundant genes are also shown.

(B) Distributions of the entropy of expression values (FPKM) across H1, H1 derivatives and IMR90 are shown as probability density curves for coding genes

(black), known lncRNA genes (red) and novel lncRNA genes (green).

(C) A pie chart showing the distribution of lineage-restricted coding genes and lncRNA genes. For known lncRNA genes, annotations from RefSeq (Pruitt et al.,

2012), a long intergenic non-coding RNA (lincRNA) gene database (Cabili et al., 2011) and NONCODE (Bu et al., 2012) were used.

(D) A bar chart showing the number of lineage-restricted coding or lncRNA genes as a percentage of total number of expressed coding or lncRNA genes (ex-

pressed in at least one cell type).

(E) The average levels of DNA methylation are shown as bar graphs for both CG (left) and non-CG (right) sites in each of the 6 cell types.

(F) CG methylation levels are shown for a region where a partially methylated domain (PMD) is present in IMR90 (left, black arrow). The total lengths of PMDs

present in each of the 6 cell types are shown as bar graphs (right).
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Figure S3. Epigenetic Regulation of Lineage-Restricted Promoters, Related to Figure 3

(A) A histogram showing the distribution of CG densities at all RefSeq promoters. The thresholds used to separate high-, medium-, and low-CG promoters are

also shown.

(B) RNA, K27ac, K4me3, K27me3 and DNA methylation levels are shown for promoters of either somatic tissue-specific genes (top) or housekeeping genes

(bottom), identified previously using a panel of gene expression data from 18 human tissues (Zhu et al., 2008). Genes were classified based on their promoter CG

density.

(C) The levels of H3K27me3 enrichment for all 6 cell types are shown at a locus where the expanded H3K27me3 domains are observed in MSCs and IMR90.

(D) The levels of various epigenetic mark enrichment at the promoters were compared to gene expression across 6 cell types, and the Pearson correlation

coefficients are shown as boxplots. The analyses were done before (blue) and after (red) permutation of gene expression values across cell types, for high-CG

(top), medium-CG (middle) and low-CG promoters (bottom).
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Figure S4. Epigenetic Regulation of Lineage-Restricted Enhancers, Related to Figure 4

(A) Bar graphs showing the numbers of all (left) and lineage-restricted (right) enhancers predicted in each cell type used in this study.

(B) Bar graphs showing the percentages of enhancers that overlap with DNase I hypersensitive sites (DHSs) in each cell type. For H1, a combined set of genomic

loci for DHSs, the binding sites of p300, NANOG, SOX2 and OCT4 were used.

(C) The PhastCons scores are shown for +/� 5kb regions around the center of lineage specific enhancers in each of the 6 cell types.

(D) Motifs identified in lineage-restricted enhancers using existing and our in-house developed motif identification algorithms are shown for each cell type,

together with their P-values, expression levels of corresponding transcription factors in that lineage, and notes and references supporting the roles of these

transcription factors in that lineage (Extended Experimental Procedures). The full list of references used in the table is included in Table S3.

(E) Gene ontology terms are shown for genes near lineage-restricted enhancers as analyzed by the GREAT tool (McLean et al., 2010).

(F) Predicted enhancer elements have developmental enhancer activity in vivo. 1). Schematic representation of the enhancer reporter vectors used in the ze-

brafish reporter assay. Selected human enhancers (orange) were PCR amplified and subcloned either upstream (left) or downstream (right) of the hsp70 pro-

moter/eGFP cassette (green) in the pT2HE vector. The resulting constructs and transposase RNA were co-injected into one-cell stage wild-type AB zebrafish

embryos. 2-5) Fluorescence and brightfield microscopy imaging of individual injected embryos were merged to show representative GFP expression for each

reporter construct in 24 hr post fertilization (hpf) zebrafish embryos. 2) The identified human T enhancer regulates GFP expression in the somites (white arrow).

Lateral view of body/tail. 3) The identified human RUNX2 enhancer regulates GFP expression in the cartilage (white arrow). Lateral view of body/head. 4) The

identified human SIX3 enhancer regulates GFP expression in the ventral telencephalon (white arrow). Dorsal view of body/head. 5) The identified human LHX2

enhancer regulates GFP expression in the forebrain and hindbrain (white arrow). Dorsal view of body/head. Sequences of enhancers were retrieved from the

following genomic loci: T, chr6:166,506,973-166,507,828; RUNX2, chr6:45,513,329-45,514,246; SIX3, chr2:45,053,109-45,054,078; LHX2, chr9:125,835,444-

125,836,299.

(G) The levels of various epigenetic marks at enhancers were compared to the expression level of predicted enhancer-targeted genes, and Pearson correlation

coefficients are shown before (blue) and after (red) permuting all genes within 200kb of enhancers. Associated enhancer-promoter pairs were identified when the

level of H3K27ac at an enhancer shows strong correlation with the expression of a gene within 200kb of enhancers (Extended Experimental Procedures).
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Figure S5. Identification and Characterization of DMVs, Related to Figure 5

(A) Distributions of DNA methylation levels across the genome in H1 and the H1-derived cells (1kb window) are shown as density plots. The threshold used to

identify hypo-methylated windows in the genome is indicated (red arrow).

(B) The numbers of CpG islands in DMVs are shown as a histogram plot.

(C) Bar graphs showing the numbers of DMVs identified in H1, the H1-derived cells, as well as those identified in two human tissues colon (Berman et al., 2012)

and blood (Li et al., 2010). The number of DMVs shared by all is indicated by the horizontal line.

(D) A scatter plot showing the relationship of numbers of DMVs identified and the percentages of CGs at promoters (TSS +/� 2.5kb) covered by high quality

MethylC-Seq data (as defined by Berman et al. [2012] for colon or at least 10 reads for all other cell types) in each cell type. A Pearson correlation coefficient is also

shown.

(E) A bar graph showing the percentages of promoters in DMVs that are in the classes of high CG, medium CG and low CG.
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Figure S6. Regulation of DMVs in Cell Differentiation, Related to Figure 6

(A) Venn diagrams showing the overlaps between coding genes in DMVs (n = 1,081) and bivalent genes (marked by both H3K4me3 and H3K27me3) in hESCs as

defined in this study (n = 2,401) (left) or (Zhao et al., 2007) (n = 1,797 after gene symbol conversion) (right). A similar result was also obtained using bivalent genes

defined in Pan et al., (2007) (data not shown). GO terms for genes that are unique to each gene set are shown with p-values indicated in parentheses.

(B) Venn diagrams showing the overlaps between coding genes in DMVs (n = 1,081) and various gene classes, including genes with the longest CpG islands (n =

1,081) (top left), or genes with the highest promoter CG densities (n = 1,081) (top right), or genes with CpG island clusters (n = 1,019) (bottom). GO terms for genes

that are unique to each gene set are shown with p-values indicated in parentheses.

(C) A heatmap showing DNA methylation levels for all promoters in DMVs (average of +1/-1 kb of TSSs) in 17 cell types for which base-resolution maps are

available. The following cell types are shown (from left to right): 1-3, foreskin fibroblast (FF)-derived iPSC lines (19.11,6.9,19.7); 4, adipose-derived stem (ADS) cell

iPSCs; FF iPSC-derived trophoblasts (iPSC-TB); H9 hESC line; H1, ME, NPC, TBL, MSC, adipose-derived stem (ADS) cells; IMR90, ADS-derived adipocytes;

foreskin fibroblasts (FF); the colon tissue (Berman et al., 2012); peripheral blood mononuclear cells (PBMC) (Li et al., 2010); and sperm (Hammoud et al., 2009).

Methylome data for cells other than H1 and the H1-derived cells were obtained from studies as indicated or Lister et al., 2011 otherwise. Notably, several genes in

DMVs are hypermethylated only in iPSCs as reported previously (Lister et al., 2011), indicating aberrant epigenetic reprogramming at these genes.
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Figure S7. Analyses of Published hESC-TBL and hESC-Cardiomyocyte Differentiation Data, Related to Figure 7

(A) The overlap of genes between those in DMVs and those that are associated with CpG island methylator phenotype (CIMP) in breast cancer (top) or colorectal

cancer (bottom) identified using the Illumina Infinium arrays (Fang et al., 2011; Weisenberger et al., 2006).

(B) Trophoblast (TB) and placenta related genes that were activated early (3-6hrs) or late (3-7 days) during hESC-TBL differentiation (Xu et al., 2002) (left) are

shown for their promoter CG density and the presence of DMVs (middle). A heatmap also shows the levels of H3K4me3, H3K27me3, DNA methylation at

promoters and the RNA level for these genes in H1, the H1-derived cells, and IMR90 (right).

(C) Key regulator genes of cardiac differentiation (left), many of which are known to be enriched for H3K27me3 before activation during cardiac differentiation

(K27me3 group) (Paige et al., 2012), are shown for their promoter CG density and the presence of DMVs (middle). A heatmap also shows the levels of H3K4me3,

H3K27me3, DNA methylation at promoters and the RNA level for these genes in H1, the H1-derived cells, and IMR90 (right). A similar plot is shown for cardiac

structural factor genes, many of which are known to lack H3K27me3 during cardiac differentiation (no K27me3 group) (Paige et al., 2012). Notably, the key

regulators of cardiac development are generally activated early during differentiation, as evidenced by the advanced enrichment of active chromatin marks,

compared to cardiac structural factors (Paige et al., 2012). A cardiac regulator gene (MEF2C) was removed from the list as it contains multiple promoters that

show different categories of CG density.
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