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Abstract. The transcriptional regulatory sequences in metazoan genomes often
consist of multiple cis-regulatory modules (CRMs). Each CRM contains locally
enriched occurrences of binding sites (motifs) for a certain array of
regulatory proteins, capable of integrating, amplifying or attenuating multiple
regulatory signals via combinatorial interaction with these proteins. The archi-
tecture of CRM organizations is reminiscent of the grammatical rules underlying
a natural language, and presents a particular challenge to computational motif
and CRM identification in metazoan genomes. In this paper, we present BayCis,
a Bayesian hierarchical HMM that attempts to capture the stochastic syntactic
rules of CRM organization. Under the BayCis model, all candidate sites are eval-
uated based on a posterior probability measure that takes into consideration their
similarity to known BSs, their contrasts against local genomic context, their first-
order dependencies on upstream sequence elements, as well as priors reflecting
general knowledge of CRM structure. We compare our approach to five existing
methods for the discovery of CRMs, and demonstrate competitive or superior pre-
diction results evaluated against experimentally based annotations on a compre-
hensive selection of Drosophila regulatory regions. The software, database and
Supplementary Materials will be available at http://www.sailing.cs.
cmu.edu/baycis.

1 Introduction

Rules determining the spatio-temporal variations of gene expression in multi-cellular
organisms are believed to be encoded as “cis-regulatory sequences”, known to account
for a large portion of a metazoan genome [15]. While recent years have seen substantial
progress in in silico prediction of protein coding sequences from metazoan genomes,
our understanding of the vocabulary and rules governing cis-regulatory sequences is
limited, and remains a major open problem.
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Unlike prokaryotes or uni-cellular organisms like yeast, metazoan transcription fac-
tor binding sites (TFBS, also known as motifs) are usually neither located immediately
upstream of the proximal promoter element, nor are they distributed uniformly and
independently in the extended surrounding region. Instead, the distributions of these
motifs exhibit apparent general principles referred to as modular organizations – being
organized into a series of discrete regions of roughly 200-1000 bp in length, each of
which controls a distinct aspect of a gene’s expression pattern [3]. Each CRM consists
of a locally enriched collection of motifs of certain combination and ordering, capable
of integrating, amplifying, or attenuating multiple regulatory signals via combinato-
rial physical interaction with multiple transcriptional regulatory proteins (i.e., TFs) [2].
Furthermore, it is believed that there also exist dependencies among CRMs so that co-
ordinations between regulatory signals can be orchestrated.

Motif models of TFBSs for a single transcription factor have existed for many years,
currently the most common model being the position weight matrix (PWM) introduced
more than twenty years ago [25]. In recent years, focus has shifted from predicting
TFBSs for a single TF towards predicting CRMs comprising several TFBSs, often for
several distinct TFs. Several models have been proposed, making use of certain ar-
chitectural features of the CRMs. Some of these models apply comparative genomic
methods for CRM prediction [12,16,22,23]. These approaches are, however, restricted
to very closely related organisms, because non-coding sequences are hard to align and
more subject to events like duplication and shuffling which make orthology prediction
difficult. A large number of CRM and motif prediction algorithms, including the one
we propose in this paper thus rely on single species data.

One line of methods for the discovery of CRMs count the number of matches (of
some minimal strength) to given motif patterns within a certain window of DNA se-
quence [19,21,20,4]. From a modeling point of view, this family of algorithms assumes
that motifs are uniformly and independently distributed within each window; an ad hoc
window size needs to be specified, and careful statistical analysis of matching strength
is required to determine a good cutoff or scoring scheme [21,10]. Rajewsky et al. ad-
dressed the issue of compensating the matching scores for co-occurring weak motif
sites using an updatable word frequency measure, leading to higher scores for motifs
co-occurring more frequently within a given window size 1 [19].

A second line of methods takes an entirely different approach by modeling the oc-
currences of motifs and CRMs as the output of a first-order hidden Markov process.
This approach alleviates the necessity of both the window size and the score cutoff,
and takes into account not only the strengths of motif matches, but also the spatial
distances between matches (arguably more informative than co-occurrence within a

1 Their algorithm also contains an important extension for unsupervised CRM prediction, where
representations of novel motifs are estimated directly from input DNA sequences. However,
under a modular formulation of the CRM prediction problem (cf. the LOGOS model [30]),
prediction of motif instances from given representations, and estimation of motif representa-
tions from predicted instances, can be treated as two orthogonal sub-problems to be solved
separately and coupled as components of a higher-level joint model with estimates exchanged
in iterative fashion. In this paper, we only focus on CRM prediction given motif representa-
tions and defer implementing the fully autonomous de novo motif-finding program to a later
paper.
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window). The hidden Markov model (HMM) translates to a set of soft specifications of
the expected CRM length and the inter-CRM distance (i.e., in terms of geometric dis-
tributions). However, since training data for fitting the HMM parameters hardly exist,
these parameters typically have to be specified based on empirical guesses. HMMs and
similar models that captures TFBS distributions, as well as intra-CRM and inter-CRM
backgrounds, have been used in several CRM discovery methods, e.g. in Cister [7],
Cluster-Buster [6], CisModule [31] and EMCModule [9]. As these methods employ
a general inter-motif background, they do not infer any ordering between motifs. This
model is extended to include distinct motif-to-motif transition probabilities in the meth-
ods Stubb [24] and Module Sampler [27].

In this paper, we present a new method, BayCis, which implements a Bayesian hier-
archical HMM for CRM search. BayCis represents a step further along the direction of
HMM-based CRM models. It uses a more sophisticated HMM model that is intended
to capture, to a reasonable degree, the detailed syntactic structure of CRM and cis-
regulatory regions containing CRMs. By combining general intra-CRM background,
motif specific background surrounding motif instances, as well as specific motif-to-
motif transitions, it allows couplings between motifs to be captured. We also introduced
more advanced approaches to model the background, using separate inter-CRM, intra-
CRM and motif-specific higher-order Markov backgrounds. Furthermore, inter-motif
distances may be modeled with more flexible distributions (rather than only simple ge-
ometric distributions). Finally, as detailed in the following sections, we treat parameters
of the HMM grammar as stochastic variables for which Bayesian priors are applied, in-
stead of regarding the state-transition parameters of the HMM grammar as fixed param-
eters that solely rely on empirical default values or user specification like in previous
methods. This technique in principle alleviates user specification of model parameters
(although advanced users could choose to decide the “strength” of the priors, or de-
fine their own priors). On the computational front, we developed an efficient variational
inference algorithm for posterior inference of sequence annotation and Bayesian param-
eter estimation. This algorithm enjoys a desirable convergence guarantee and is much
more efficient than the classical Gibbs sampling methods without compromising much
accuracy.

BayCis has several advantages over existing methods for CRM discovery. The ex-
plicit model of CRMs makes architectural assumptions clear, and supports rich inter-
pretation of results by analyzing likelihoods at states and transitions. The sophisticated
modeling, including motif-to-motif specific transitions and several distinct background
states should allow more specific CRM predictions at the same level of sensitivity. Fi-
nally, by relying on soft priors instead of hard specification of model parameters, the
Bayesian approach adds generality and user convenience to the method.

2 Methods

To model the complex architecture of metazoan transcriptional regulatory sequences
(TRS), we propose to use a hierarchical hidden Markov model (hHMM) that can encode
a set of stochastic syntactic rules presumably underlying the CRM organizations and
motif dependencies. A first-order Markov process over a hierarchy of states allows us



BayCis: A Bayesian Hierarchical HMM for Cis-Regulatory Module Decoding 69

to describe the structure of regulatory regions at different levels of granularity, offering
more modeling power than existing methods.

2.1 A Hierarchical HMM of TRS

As first proposed in [5], the hHMM is an extension of the classical HMM for modeling
domains with hierarchical structures. In an hHMM, all hidden states are not equal, but
follow a hierarchical organization that constrains stochastic transitions among states—
transitions are only permissible for (certain pairs of) states at the same level or adjacent
levels in the hierarchy; different states can emit either single observations or strings of
observations, depending on their position in the state hierarchy; and the strings emitted
from the non-leaf states in the hierarchy are themselves governed by a sub-hHMM
(or more generally, by an arbitrary generative model, which would further extend the
overall model beyond an hHMM).
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Fig. 1. The BayCis hHMM state transition diagram with 3-
level hierarchy. Circular nodes represent functional states in
DNA sequences, and round boxes represent start and end
states in each sub-model. CRM and motif states are sub-
models invoked by higher level models. Arrows between
nodes represent permissible state transtions, including hori-
zontal transitions denoted as black arrows, and verticle tran-
sitions denoted as dashed arrows.

An hHMM can explic-
itly capture nested gener-
ative structures (e.g., TRS
→ CRM → Motif → Sin-
gle Nucleotide Site) underly-
ing complex sequential data,
and dependencies among el-
ements at different levels of
granularity (e.g., motif ver-
sus motif, site versus site,
etc.), which makes it a pow-
erful and natural approach to
model genomic regions har-
boring transcriptional regula-
tory sequences. Fig. 1 shows
an example of an hHMM
encoding typical hierarchical
structures of the metazoan
TRSs we are concerned with
in this study. At the top (i.e.,
coarsest) level, this hHMM
represents a TRS as a con-
catenation of long stretches of sequences corresponding to global backgrounds and
CRMs. We can think of this top level as an HMM whose states emit whole CRMs and
inter-CRM (global) background sequences. Formally, we let Q1 ≡ {bg, c1, c2, . . . , cI}
denote the set of these possible states. At the next level, each CRM is represented as
a sequence of motifs and intra-CRM (local) background states. Accordingly we have
Q2 ≡ {bc, m1, m2, . . . , mK}. At a finer level below, each motif is represented as a
sequence of buffer states and nucleotide sites. (We will explain shortly why we in-
clude non-motif buffer states at this level.) Accordingly, we define Q3 ≡ B ∪ (∪iMi),
where B corresponds to the non-motif buffer states padding right before and after
the motif sequences and Mi corresponds to all possible sites within motif i. More
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specifically, we define: Mi ≡ Mf

i ∪ Mr

i , where Mf

i = {1(i) . . . L(i)
i } is the set of all

possible sites within motif i on the forward DNA strand, and Mr

i is the set of all possi-
ble sites within motif i if it is on the reverse complementary DNA strand.; B ≡ Bp ∪Bd,
where Bp = {b(1)

p
, . . . , b(K)

p
} denotes the set of proximal-buffer states associated with

each type of motif 2, and Bd = {b(1)
d , . . . , b(K)

d } denotes the set of distal-buffer states
associated with each type of motif.

The possible transitions between these states are made explicit by the arrows in the
hierarchical state diagram in Fig. 1. (To make the hHMM model well-defined, we also
introduce dummy states START and END at appropriate levels to enable instantiation of
state-traversal, and proper termination of subsequences at each level.) The biological
motivation for such a state hierarchy is that we expect to see occasional motif clusters
in a large ocean of global background sequences (represented by state bg); each motif
instance in a cluster is like an island in a sea of intra-cluster background sequences
(bc); and adjacent motifs may be statistically coupled (we will elaborate on this point
in the next section). Our model assumes that the distance between clusters is geometri-
cally distributed with mean 1/(1 − βg,g), and the span of the intra-cluster background
is also geometrically distributed with mean 1/(1 − βc,c). These modeling choices are
intended to not only reflect our uncertainty about the CRM structure, but also to of-
fer substantial flexibility to accommodate potential 1st-order syntactic characteristics
within the CRMs. In this hHMM, only the bottom-level motif-site and motif-buffer
states, as well as the global and local background states, are capable of emitting in-
dividual nucleotides constituting the TRS, according to a stochastic emission model
(which we will elaborate later). A stochastic traversal of the hHMM states according to
the hHMM state-transition diagram would generate a TRS of arbitrary length but with a
structure consistent with our empirical knowledge of the functional organization of the
metazoan TRS. Note that this hHMM model does not impose rigid constrains on the
number of motif instances or CRMs; the actual number of instances is determined by
the posterior distribution of the hHMM states given the observed sequence. Also note
that we have not included functional states related to gene annotation and basic promot-
ers, but such extensions are straightforward if co-identification of CRMs and genes is
desired.

Given the observed sequences, and proper (i.e., biologically meaningful) construction
of the state space and its hierarchical organization, one can infer the latent state-traversal
path, which correspond to a plausible annotation or segmentation of the input sequence,
using a number of exact posterior inference algorithms. The original algorithms given by
[5] is a variant of the inside-outside algorithm for stochastic context free grammar, and
takes O(T 3QD), where T is the length of the sequence, Q is the total number of states,
and D is the depth of the hierarchy. A linear time algorithm was developed by [17] based
on a transformation of hHMM into an equivalent dynamic Bayesian network. It is also
possible to flatten the hHMM to an HMM with a block-structured sparse transition, and
use a modified forward-backward algorithm for linear-time inference. In section 2.3 and

2 Here, proximal-buffer refers to the background sites immediately next to the proximal-end of
the motif. For consistency, orientations are defined with respect to the initial position of the
input sequence. That is, the 1st position of the input sequence corresponds to the proximal end,
and the last position corresponds to the distal end.
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Supplementary Materials, we exploit this strategy, and develop an efficient algorithm
for inference and learning under a Bayesian extension of hHMM to be described in the
sequel.

Motif bigram via hHMM. An hHMM not only encodes hierarchical segmental struc-
tures in a sequence, but it can also be used to capture dependencies between sequence
elements at different levels of granularity at a cost much smaller than that would be
needed by a “flat” Markovian model which must resort to heavily parameterized high-
order conditional probabilities. For example, we can capture the dependencies between
neighboring CRMs in a TRS by modeling transitions between the CRM states. Of par-
ticular importance in this paper, we use hHMM to capture the dependencies between
occurrences of motifs within a CRM. As discussed earlier, the spatial arrangement of
motifs within a CRM may encode intricate combinatorial transcriptional regulatory sig-
nal. Thus modeling at least 1st-order dependencies between motifs may be beneficial
to the unraveling of motifs in long TRS bearing complex regulatory function, as well-
known in the case of Drosophila enhancers. Note that a direct transition between triv-
ially defined motif states (e.g., last site of motif i and first site of motif j) would suggest
that coupled motifs always occur right next to each other, which is biologically not
always true. To capture possible dependencies between motifs in the vicinity of each
other, we define the emission of a motif state (in Q2) to contain not only the motif se-
quence itself, but also non-motif sequences denoted as proximal and distal buffers. Such
an emission can be understood as an extended instance of a motif, which we referred
to as a motif envelope. Thus cross-background (i.e., high-order) dependencies between
motifs can be captured by immediate (i.e., 1st-order) dependencies between the motif
envelopes.

We write A2 ≡ {ai,j} as the stochastic matrix for transitions among states in Q2,
which defines a bigram of motifs (and their local backgrounds) within CRMs. The
length of the proximal and distal buffers of a motif is geometrically distributed with
mean 1/(1 − αi,i) and 1/(1 − βi,i), and can be generated via self-transitions of the
corresponding states at the third level (i.e., in Q3) with probability αi,i and βi,i, re-
spectively. Then with equal probability αi,m/2, a proximal buffer state b(i)

p reaches the
start states 1(i) (resp. L(i′)

i ) of motif i on the forward (resp. reverse) strand, determin-
istically passes through all internal sites of motif i, and transitions to the distal-buffer
state b(i)

d , thereby stochastically generating a non-empty motif envelope 3. Each bi
d has

probability βi,j of transitioning to the proximal-buffer state of another motif j (or of
the same motif when j = i) to concatenate another motif envelope, or it may choose
to pad with some inter-cluster background before adding more envelopes, with proba-
bility βi,c. All distal-buffer states also have probability βi,g of returning to the global
background, terminating a CRM.

Spacer length distribution via GhHMM. A spacer is the interval seperating adjacent
motif instances, modeled as bc, bp, and bd states in BayCis. It has been suggested that the

3 The distinction between proximal and distal buffers avoids generating empty envelops (other-
wise, a single buffer state wont be able to remember if a motif has been generated beyond k
positions prior to the current position under a k-th order Markov model).
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range of spacer length is under selection forces according to comparative genomics data
of several Drosophila species [13]. Empirically, we found that the distribution of spacer
lengths can be approximated by a negative binomial distribution (see figure in Sup-
plementary Materials), whereas under an hHMM, the state durations of cluster back-
grounds is distributed as a goemetric distribution, which is not a good approximation
of the space length distribution. In Supplementary Materials, we describe a generalized
hierarchical hidden Markov model (GhHMM) which implements an approximate nega-
tive binomial distribution of spacer lengths by joining several geometrically distributed
cluster background states.

The emission models: PWM and higher-order Markov background. Once the
hHMM enters the motif-site states, we resort to a motif model to generate the nu-
cleotides at the corresponding sites. To maintain our focus on the hHMM and relevant
algorithmic issues, we only consider the scenario of searching for known motifs in this
paper (although extending our model for de novo motif detection is straightforward
based on, for example, the LOGOS framework [30]). For motif model we choose the
classical product-multinomial (PM) model, which can be represented by a PWM [25].

Several previous studies have stressed the importance of using a richer background
model for the non-motif sequences [26,11]. In accordance with these results, BayCis
uses a standard global k-th order Markov model for the emission probability of the
global background state. For the intra-CRM states, we used locally estimated Markov
models. Since the models are defined to be local, the conditional probability of a nu-
cleotide at position t is now estimated only from a window of length 2d centered at t.
These probabilities can still be computed off-line and stored for subsequent uses, by us-
ing a careful bookkeeping scheme (i.e., using a “sliding-window” to compute the local
Markov model of each successive position, each with a constant “update cost” based on
the previous one).

2.2 Bayesian hHMM

One caveat of the standard HMM approach for CRM modeling is the difficulty of fit-
ting the model parameters, such as the state-transition probabilities, due to rarity of fully
annotated CRM-bearing genomic sequences. In principle, using the Baum-Welsh algo-
rithm one can learn the maximal-likelihood (ML) estimates of the model parameters di-
rectly from the unannotated sequences while analyzing them. In practice, however, such
a completely likelihood-driven approach tends to result in spurious results, such as over-
estimation of the motif and CRM frequencies and poor stringency of the learned models
for potential motif patterns. Previous methods tried to overcome this by reducing the
number of parameters needed as much as possible, and by setting them according to
some good guesses of the motif/CRM frequencies or CRM sizes [7]. But as a result,
such remedies compromise the expression power of the already simple HMM, and risk
mis-representing the actual CRM structures. In the following, we propose a Bayesian
approach that introduces the desired “soft constraints” and smoothing effect for an
HMM of rich parameterization, using only a small number of hyper-parameters. This
approach defines a posterior probability distribution of all possible value-assignments of
the HMM parameters, given the observed un-annotated sequences and empirical prior
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distributions of the parameters that reflect general knowledge of CRM structures. The
resulting model allows probabilistic queries (i.e., estimating the probability of a func-
tional state) to be answered based on the aforementioned posterior distribution rather
than on fixed given values of the HMM parameters.

We assume that the self-transition probability of the global background state βg,g,
and the total probability mass of transitioning into a motif-buffer state

∑
k∈B

p βg,k (note
that βg,g = 1 −

∑
k∈B

p βg,k), admit a beta distribution, Beta(ξg,1, ξg,2). We choose

a small value for ξg,2
ξg,1+ξg,2

, corresponding to a prior expectation of a low CRM fre-

quency. Similarly, we define a beta prior Beta(ξc,1, ξc,2) for the self- and total motif-
buffer-going transition probabilities [βc,c,

∑
k∈B

p βc,k] associated with the intra-cluster
background state; and another beta prior Beta(ξp,1, ξp,2) for the self- and motif-going
transition probabilities [αi,i, αi,m] associated with the proximal-buffer state of a mo-
tif. Finally, we assume that for the distal-buffer state, the self-transition probability, the
total mass of transition probabilities into a proximal-buffer state, the probability of tran-
sitioning into the intra-cluster background, and the probability of transitioning into the
global background, [βi,i,

∑
k∈B

p βi,k, βi,c, βi,g], admit a 4-dimensional gamma distri-
bution, Gamma(ξd,1, ξd,2, ξd,3, ξd,4).

To define priors for the GhHMM parameters, the GhHMM with a single cluster
background state (bc) is considered as an HMM with several cluster background states
({b1

c, · · · , bgcr
c }) sharing the same self-transition probability βc,c. Similar to other back-

ground states, we define a beta prior Beta(ξc,1, ξc,2) on the total probability mass of
transitions into motif-buffer states

∑
k∈Bp βc,k (note that βc,c =

∑
k∈Bp βc,k).

Note that due to conjugacy between the prior distributions described above and the
corresponding transition probabilities they model, the hyper-parameters of the above
prior distributions can be understood as pseudo-counts of the corresponding transition-
ing events, which can be roughly specified according to empirical guesses of the motif
and CRM frequencies. But unlike the standard HMM approach, of which the transition
probabilities are fixed once specified, the hyper-parameters only lead to a soft enforce-
ment of the empirical syntactic rules of CRM organization in terms of prior distribu-
tions, allowing controlled posterior update of the HMM transition probabilities while
analyzing the un-annotated sequences. For the BayCis hHMM, we specify the hyper-
parameters (i.e., the pseudo-counts) using estimated frequencies of the corresponding
state-transition events, multiplied by a “prior strength” N , which corresponds to an
imaginary “total number of events” from which the estimated frequencies are “derived”.
That is, for the beta priors, we let [ξ[·,1], ξ[·,2]] = [1−ω[·], ω[·]]×N , where the “·” in the
subscript denotes either the g, c, or p state, and ω[·] is the corresponding frequency. For
the gamma prior, we let [ξd,1, ξd,2, ξd,3, ξd,4] = [ωd,1, 1−

∑
j ωd,j, ωd,2, ωd,3]×N . Over-

all, we need to specify 7 hyper-parameters (of course one can use different “strengths”
for different priors, with a few additional parameters), a modest increase compare to,
say, 3 needed in Cister [7].

2.3 Inference and Learning

We have developed an efficient algorithm called modified FB-algorithm for inference
on a “flattened” hHMM, which reduces the time complexity of the standard forward-
backward algorithm from O(K2L̄2T ) to O(K2T ). Identification of motifs/CRMs is
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based on posterior decoding. We also developed a variational EM algorithm for
Bayesian inference and parameter estimation under our Bayesian hHMM and GhHMM,
which is much more efficient than the traditional MCMC sampling approaches. Due to
space limit, details of these algorithmic innovations are given in the Supplementary
Materials.

3 Results

We evaluated BayCis on both synthetic transcriptional regulatory sequences and a rich
set of carefully compiled real genomic TRSs of Drosophila melanogaster (available
at our website). The prediction performance of BayCis was compared with 5 popular
published methods for supervised discovery of motifs/CRMs based on a wide spec-
trum of models: Cister [7], Cluster-Buster [6], MSCAN [1], Ahab [19] and Stubb [24]
(all of which were applied to the real data, and two seemingly superior ones to the
semi-synthetic data), which cover a wide spectrum of different models/algorithms (e.g.,
HMMs, windows) for motif search. We ran other methods with default parameters,
specifying 500 bp CRM window where needed.

Overall, the prediction performance of BayCis is competitive or superior to all cho-
sen benchmark methods on this quite comprehensive selection of data sets, according
to a wide assortment of performance measures. By employing sound and flexible prob-
abilistic modeling of regulatory regions, BayCis is also able to strike a good balance
between precision and recall with its default MAP solution.

3.1 Semi-realistic Synthetic TRS
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Fig. 2. The precision-recall (P/R) curves of two mod-
els of BayCis (hHMM and GhHMM) versus the P/R of
default predictions by CISTER and ClusterBuster

Synthetic TRSs are useful in that
the ground truth for motif/CRM
locations is known exactly. To
generate semi-realistic synthetic
TRSs, we planted selected TFBS
from the Transfac [29] database in
simulated background sequences
according to model assumptions
underlying the background distri-
bution, the inter-TFBS and inter-
CRM spacer length distributions
for Baycis. 30 sequences of length
20,000 bp containing 0 - 3 CRMs
were generated. The CRM length
is uniformly distributed between
200 and 1600 bp, while the aver-
age motif spacer length is 50 bp.
Each CRM contains 3 to 6 motif
types and about 14 motif instances. To simulate motif co-occurrence, about 25% of the
motif instances in each CRM appear as predefined pairs. The background sequences
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inside/outside the CRM are simulated by a 3rd-order Markov model learnt from an
intergenic region.

As shown in Fig. 2, the performance of BayCis using either hHMM or GhHMM
is significantly better than CISTER and ClusterBuster in terms of the overall preci-
sion/recall (P/R) trade-off at the MAP prediction. The P/R curve of BayCis is also well
above the default predictions from other methods. It also shows that GhHMM performs
consistently better than hHMM in both precision and recall, although the difference is
not very large. CISTER and ClusterBuster were chosen for the simulation study based
on their good performance on real data (see next subsection).

3.2 Real Drosophila TRS

Fig. 3. Frontpage screenshot of the motif database

The dataset. The synthetic TRSs
are generated partially based on
the same model assumptions
underlying BayCis, and thus the
results cannot be interpreted as
conclusive. A systematic investiga-
tion of the robustness of BayCis
with respect to a wide spectrum
of simulation conditions can be
highly interesting but is beyond
the scope of this short report; we
will pursue this in a later full ver-
sion of the paper. In this section
we present an empirical evaluation
based on a rich and carefully com-
piled Drosophila TRS dataset, al-
though it is noteworthy that even
though we have tried our best to gather the most complete annotations for each test
sequence based on footprinting results from the literature, this “gold standard” is still
possibly only a subset of the ground truth.

We created a manually curated dataset containing 97 CRMs pertaining to 35 early
developmental genes (see table in Supplementary Materials for details). This collec-
tion was compiled based on a filtering of all known CRMs from a number of pub-
lic databases (e.g., the REDfly CRM database [8] and the Drosophila Cis-regulatory
Database at the National University of Singapore [18]), through which we only chose
CRMs that are at least 200 bp long, and contain at least 5 experimentally confirmed mo-
tif instances (2 CRMs with a borderline count of 4 motif instances were also included).
Each test sequence consists of the CRMs pertinent to a particular gene, all intra-CRM
background inbetween, with flanking regions on either side of the extremally located
CRMs such that the entire sequence is at least 10 kbp long, and the boundaries of the
sequence are at least 2 kbp from the extremal CRMs. We included the exonic regions of
the genes only when they fell in the aforementioned selected region, and not otherwise.
This database is available at http://www.sailing.cs.cmu.edu/BayCis,
where the BayCis software will soon be also released. A snapshot of the interface of
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graphical interface of the database shown in Fig. 3, and more details are available in
Supplementary Materials.

Experimental setup. BayCis is a Bayesian framework based on hHMMs and GhH-
MMs to model the organization and distribution of TFBS. Prior beliefs pertaining to
the parameters of the model thus could be specified by the user before running on ex-
perimental data in the form of hyperparameters (i.e., pseudocounts) of the hHMM or
GhHMM parameters. The PWMs of the motifs to be searched for also need to be pro-
vided because here we are interested in identifying TFBS of existing TF motifs, rather
than de novo motif detection. As mentioned in previous sections, extending BayCis for
this function is straightforward by introducing an EM step for the PWM estimation, and
will be pursued in a later paper.

Hyperparameters: The choice of hyperparameters should in principle be dealt with via
an “empirical Bayes scheme”, which employs maximal likelihood estimates of these
hyperparameters based on some fully labeled training sequences. Upon prediction on
an unannotated sequence, the hHMM or GhHMM parameters themselves can be ad-
justed in an unsupervised fashion via the variational EM algorithm. We specify the
hyperparameters as follows: for the global background, ωg = 0.002; for the inter-CRM
background, ωc = 0.05; for the proximal motif buffer, ωp = 0.25; for the distal buffer
hyperparameters, ωd,1 = 0.125 (distal to global background), ωd,2 = 0.125 (distal to
clustal background), and ωd,3 = 0.25 (distal to proximal buffer). Finally, the “strength”
of the hyperparameters are set to 1/10 of the expected counts of the transitions on a 15
kbp dataset, with the exception of ωg which is set to 10, 000. The background probabil-
ity of the nucleotide at each position was computed locally using a 2nd-order Markov
model from a sliding window of 1100 bp centered at the corresponding position. For
the GhHMM, based on visual inspection of spacer length distributions between motifs,
we choose the parameter as r = 2.

Prediction scheme: BayCis provides three kinds of prediction schemes for motifs. The
maximum a posteriori (MAP) prediction is based on the posterior probabilities of the la-
beling state at each site, which allows overlapping motifs. A Viterbi prediction, which
gives a consistent prediction in the Bayesian setting analogous to an ML prediction
under a classical setting can also be used. A third scheme is based on a simple but
effective thresholding scheme where we directly predict motifs based on whether the
motif states have a higher probability than the specified threshold in the posterior proba-
bilities. For simplicity, in this paper we only present the MAP results and the P/R curve
of the threshold method. Note that unlike many other scoring schemes for motif/CRM
detection, such as logodds (i.e., the PSSM score) or a likelihood score regularized by
word frequencies, our MAP prediction does not require a cutoff value for the scores,
nor a window to measure the local concentration of motif instances, both of which are
difficult to set optimally.

Evaluation measures: There is no unanimous way of evaluating the prediction perfor-
mance of a motif/CRM discovery method against annotations. To avoid reliance on a
single evaluation procedure and measure, we have chosen to present the performance
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Fig. 4. Performance of BayCis (hHMM) on a representative eve TRS. (a) The posterior proba-
bility plot of the global background (blue), cluster background (green) and motif specific (red
and other colors) states. (b) The precision versus recall performance of the MAP and thresholded
predictions of the hHMM and GhHMM algorithms, as compared to those made by other methods.

of BayCis in comparison with other methods using several different evaluation proce-
dures. This also ensures a thorough and objective presentation of results. For an overall
evaluation we compare the prediction performance of BayCis with other methods us-
ing both the F1-score of precision and recall, and the coefficient of correlation (CC)
score at nucleotide-level [28] as single point measures (see Supplementary Materials
B.3 for detailed definitions). We do this by first summing true/false positives/negatives
across datasets at the nucleotide level, and then computing F1/CC from these combined
counts. To present the behavior of BayCis with respect to site-level P/R, we plot the
binding-site level P/R curve from different thresholds in extracting predictions, along
with the P/R at MAP predictions.

Motif prediction performance. As an illustration, Fig. 4a shows a plot of the MAP
prediction along the even-skipped gene TRS, under a particular hyperparameter setting.
As revealed in the ground-truth annotation bar bellow the plot, this region contains 5
CRMs (from left to right): stripe3+7, stripe2, stripe4+6, stripe1, and stripe5. BayCis
picks out all of them, although the CRM boundary appears to be more stringent in most
cases. We believe this can be improved by adopting a more specialized cluster back-
ground model (i.e., local higher-Markov model, better GhHMM model, etc.), which
we have not fully explored yet. BayCis also identifies motif-rich regions proximal and
distal to the stripe3+7 CRM, which is not reported before, and it also finds another
putative motif-rich region spanning the core promoter and the CDS of eve, which can
be a false positive or a putative CRM. The overall MAP prediction score of BayCis,
and the P/R curves resulted from applying different threshold values under BayCis, are
shown in Fig. 4b, along with the scores of 5 other competing algorithms in their default
configurations. The BayCis MAP predictions seem significantly better than other meth-
ods, and strike a good balance between recall and precision. It is important to realize
that although the threshold method can reach high precision or recall at both extremes,
in practice it is very hard to pick the optimal threshold without knowing the prediction
results, and typically a threshold optimal for one sequence is not necessarily good for
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Fig. 5. (a) F1 and CC scores, and (b) P/R performances of the MAP and thresholded predictions
of the hHMM and GhHMM, in comparison with other algorithms on the full Drosophila TRS
dataset (c) A boxplot showing variation in CC across datasets

another sequence; significance-test based determination of threshold is also difficult for
a complex model or large sequence. Thus, a default prediction such as MAP, which
automatically finds an appropriate trade-off between precision and recall, is highly de-
sirable.

The overall CC and F1-scores of running BayCis and five competing methods on the
full set of Drosophila melanogaster sequences are shown in Fig. 5a. According to either
measure, both the hHMM and the GhHMM version of BayCis outperforms all existing
methods. The hHMM version of BayCis performs slightly better overall compared to
GhHMM according to both measures. For both versions of BayCis, the MAP solution
was chosen.

To look at the behavior of BayCis in the P/R landscape on our entire dataset, we
plot the P/R curve resulting from different thresholds for BayCis predictions. For other
methods we provide the single points in P/R landscape corresponding to their default
output. As is apparent from Fig. 5b, the 5 competing methods strike different balances
between precision and recall in their default output. MSCAN focuses on very high
precision predictions, while Cister is geared towards high values of recall. The P/R
curves of both versions of BayCis span a balanced range in the P/R landscape, with
MAP estimates lying in the middle of the curves. Again, in practice the P/R values are
not available for use by methods, so the balance between precision and recall has to be
found based solely on the input data. Thus the ability to appropriately balance precision
and recall automatically is essential.

To further investigate the prediction performance, we look at the variation of individ-
ual dataset prediction performance across all datasets. The boxplot in Fig. 5(c) shows
the median CC-score for each method, as well as upper and lower quartiles and min-
imum/maximum values. We see that prediction scores varies much between datasets
for all methods, and that the overall performance differences between methods is not
very large compared to the variation of individual methods across datasets. This con-
firms what has long been acknowledged in the motif discovery field, that even the best
performing methods will in many cases give misleading predictions (although some
of the low scores may be due to lack of annotations). Among the high scoring meth-
ods (hHMM, GhHMM, Cluster-Buster and Cister), GhHMM and Cister come out as the
most stable with low variance across datasets, a criterion which is useful when handling
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a varied set of data. The posterior expectations of the hHMM/GhHMM parameters also
carry rich architectural information of each TRS we processed, and merits systematic
analyses. We defer this investigation to the full paper.

4 Discussion

BayCis uses an advanced probabilistic framework to accurately model metazoan tran-
scriptional regulatory genomic sequences — which often consist of multiple CRMs,
tandemly joined by long stretches of background DNA, each containing locally en-
riched occurrences of binding motifs for a certain array of transcriptional regulatory
proteins. Thus, we are able to detect many TFBS while avoiding too many false pos-
itives and (slightly) outperform the best of the existing methods on a comprehensive
set of Drosophila regulatory regions. The BayCis software will soon be released on our
website.

Recently, experimental results have shown that sequences immediately flanking a
TFBS may contribute to the binding energy between a TF and the TFBS [14]. This
suggests that sequence composition of the proximal and distal buffers of motifs may
have weak type specificity, which we would like to explore in our future work. Our
current TRS database for performance evaluation is still limited in size and very diverse
in terms of CRM structures and complexity, which could cause BayCis to overfit cer-
tain TRS when it is applied independently to each TRS separately (as we did in this
paper), using a generic set of hyperparameters that are empirically chosen. We intend to
adopt a more systematic approach to fit the hyperparameters based on a small amount
of labeled TRS, e.g., using a k-fold cross validation scheme. But ultimately, we believe
additional TRS data will be needed to attain further performance increase. One direc-
tion of increasing input data is to combine regulatory regions of several genes that are
believed to share similar CRM structure. Such gene sets should be attainable for many
real scenarios where CRM discovery methods are used, could trivially be used as input
to BayCis. We speculate that this could improve predictions. The limitation lies mostly
in collecting such gene sets containing rich, high-quality annotations that could serve
in quantitatively measuring correspondence between computational prediction and ex-
perimental determination.

Another direction is to conjoin BayCis with a phylogenetic model of motifs across
species [16,22,23], and apply the integrant to orthologous TRSs. Although this lim-
its the applicability of the approach to species where valuable orthologous sequence
is available, and to the discovery of regulatory elements shared between species, we
believe it could attain considerably performance gain in the cases for which it is suited.
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A Details on the BayCis model and algorithm

A.1 Modeling spacer length distribution via GhHMM

Consider the actual spacer length histogram inD. melanogaster in Figure 1. Smoothed distribution fitted by maximum
likelihood estimation according to geometric, normal, andnegative binomial distribution are also shown. The normal
distribution is definitely a very poor approximation. In thetail, the exponential and the negative binomial is not very
different but in the shorter region, the negative binomial provides a better fit to the distribution. Furthermore, the peak
lies between 5 and 10, not lying between 0 and 5.
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Fig. 1. The histogram of spacer length distribution with known standard distributions superimposed.

Generalized hidden Markov models (GHMM) have been proposedfor the explicit modeling of the state durations
in an HMM [10, 3, 7]. A state in a GHMM does not generate one character at a time but instead a region of arbitrary
length. The length of the regions is determined according toan explicit duration distribution

The explicit duration models accurately models the state durations at the cost of computation. Alternatively, the
negative binomial distributions can be modeled by using instead of one self-transiting state, several externally indis-
tinguishable but internally distinguishable states joined together, as shown in Figure 2. This allows approximation of
the GHMM functionality in a HMM [2], where the efficient forward-backward and posterior decoding algorithms can
be reused.
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evaluating CRM predictions, and Oznur Tastan for investigating the spacer length distributions.



In the GhHMM version of BayCis, we model the cluster background as negative binomial distribution, but leave
the global, proximal and distal background as geometric distribution. Unlike the Poisson distribution, the negative
binomial distribution can model different mean and variance, allowing a better fit to the empirical distribution shown
in Figure 1. This scenario has been used to model exon length distribution by EasyGene to achieve better accuracy
[6]. To control computation cost, we approximate the negative binomial distribution by joining several geometrically
distributed states. This also makes assigning conjugate priors possible, which will be explained in detail shortly. For
the global background, the length distribution has a heavy tail, and in practical usage of BayCis system its length is
dependent on how the user cuts the upstream sequence. For theproximal and distal background, the lengths tend to be
very short, and the joining of a distal and then a proximal background already provides better expressive power.

A.2 Details on Flattening hHMM and the modified FB-algorithm

P 2P 1
D KD 2 CC C P K

D 1 p1 �p 1 �p 1 �pp p
Fig. 2. The state-transition diagram
of a gHMM.

When a hHMM is flattened to a HMM, if there are re-used models inthe hHMM,
these models must be duplicated, and the heirarchical structure will be lost under
unsupervised learning of the parameters [8]. If the hierarchy is a tree, as in BayCis
hHMM, the hHMM can be converted to a HMM without losing the hierarchical
structure. The HMM state space is exactly the production states in the hHMM,
denoted asQ = {bg, bc} ∪ B ∪

(

∪k Mk

)

.
Due to the sparsity of our transition probability matrix, asshown in Figure 2,

we can further reduce the time complexity of inference for obtaining the proba-
bility of a hidden state given the sequence, i.e. the forward-backward algorithm,
which is a subroutine in the Bayesian learning algorithm. For notational simplic-
ity, we assume the number of cluster background states is 3. The state space consists of a global background, 3 cluster
backgrounds,K proximal and distal backgrounds, and2Lk motif states for each motifk (including sense and anti-
sense), so the total size of the state spaceN is

N = 4 + 2K + 2

K
∑

k=1

Lk.

Following Rabiner’s notation [10], letαt(j) be the probability of the partial sequenceY1 · · ·Yt and statesj at
locationt, orαt(j) = p(Y1 · · ·Yt, Xt = sj). Letβt(j) be the probability of the partial sequenceYt+1 · · ·YT given the
statesj at locationt, orβt(j) = p(Yt+1 · · ·YT |Xt = sj) (in this section the termβt(j) is used in backward algorithm
for convention, not to be confused with the parametersβg,k, βc,k, etc.) The induction step in the forward and backward
algorithm are thus

αt+1(j) = [

N
∑

i=1

αt(i)Aij ]Bj(Yt+1), t = 1, 2, · · · , T − 1, 1 ≤ j ≤ N, (1)

βt(i) =

N
∑

j=1

AijBj(Yt+1)βt+1(j), t = T − 1, T − 2, · · · , 1, 1 ≤ j ≤ N, (2)

It is known that the standard forward and backward algorithmboth takeO(N2T ) = O(K2L̄2T ), whereL̄ is the
averaged motif length,̄L = 1

K

∑K

k=1 Lk. If there are many motifs, the amount of calculations in the forward algorithm
may still be large. Our modified forward-backward algorithmfurther reduces the amount of calculations in the matrix
multiplication in (2), based on the fact that ”non-trivial”transitions, i.e. transitions whose probability is not 0 nor 1, are
restricted to transitions from any of the background statesgoing to either any background state or to the first sense/ last
antisense motif position. These transitions correspond toa smaller block of size(4+2K) by (4+4K) in the transition
probability matrix, marked as ”‘non-trivial transitions”’ in Figure 2. With this observation, the modified induction step
in the forward algorithm is described here. The vectorα̃ is a holder for temporary values.

1. LetQ̃1 andQ̃2 be the sets of source and target states of the non-trivial transitions, repectively. Formally speaking,
if 0 < Aij < 1, we knowi ∈ Q̃1 andj ∈ Q̃1, where

2



Q̃1 = {bg, bc, b
(1)
p , · · · , b(K)

p , b
(1)
d , · · · , b

(K)
d },

Q̃2 = Q̃1 ∪ {1
(1), 1(2), · · · , 1(K), L(1′), L(2′), · · · , L(K′)}

2. Forward induction: for eacht = 1, 2, · · · , T − 1,

α̃(j)←
∑

i∈Q̃1

αt(i)Aij , j ∈ Q̃2,

α̃(l(k))← αt((l − 1)(k)), 2 ≤ l ≤ Lk, 1 ≤ k ≤ K,

α̃(l(k
′))← αt((l + 1)(k

′)), 1 ≤ l ≤ Lk − 1, 1 ≤ k ≤ K,

α̃(bk
d)← α̃(bk

d) + αt(L
(k)
k ) + αt(1

(k′)), 1 ≤ k ≤ K,

αt+1(j)← α̃(j)Bj(Yt+1), j ∈ Q

3. Backward induction: for eacht = T − 1, T − 2, · · · , 1,

βt(i)←

N
∑

j=1

AijBj(Yt+1)βt+1(j), i ∈ Q̃1, j ∈ Q̃2

βt(l
(k))← B(l+1)(k)(Yt+1)βt+1((l + 1)(k)), 1 ≤ l ≤ Lk − 1, 1 ≤ k ≤ K,

βt(l
(k′))← B(l−1)(k′)(Yt+1)βt+1((l − 1)(k

′)), 2 ≤ l ≤ Lk, 1 ≤ k ≤ K,

βt(L
(k)
k )← Bbk

d
(Yt+1)βt+1(b

k
d), 1 ≤ k ≤ K,

βt(1
(k′))← Bbk

d
(Yt+1)βt+1(b

k
d), 1 ≤ k ≤ K,

The time complexity of the modified forward-backward algorithm isO((K2 + KL̄)T ). Since the motif length is
typically short, we can assumēL < K and the time complexity of the modified forward-backward algorithm will be
O(K2T ), instead ofO(K2L̄2T ) of the standard forward-backward algorithm.

Fig. 3. The transition probability matrix of the flattened HMM, shown as a heat map. G, C, P, D, and the num-
bers correspond to global, cluster, proximal and distal background, and the motif states. The motif states are or-

dered as:1(1), 1(2), · · · , 1(K), L
(1′)
1 , L

(2′)
2 , · · · , L

(K′)
K , 2(1), (L1 − 1)(1

′), 3(1), (L1 − 2)(1
′), · · · , L

(1)
1 , 1(1′), · · · , 2(K), (LK −

1)(K
′), 3(K), (LK − 2)(K

′), · · · , L
(K)
K , 1(K′).
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A.3 Posterior decoding of DNA binding sites

We can read off the functional annotation (or segmentation)of the input sequences from the posterior probability
distribution of the functional states at each position of the sequences according to amaximal a posteriori (MAP)
scheme. In this scheme, the predicted functional stateX∗

t of positiont is: X∗

t = arg maxs∈S p(Xt = s|Y ), whereS
is the set of functional states (motifs and different kinds of background) and Y is the observed (genomic) sequence.

Note that by using such a posterior decoding scheme (rather than a Viterbi), we integrate the contributions of all
possible functional-state-paths for the input sequence (rather than a single “most probable” path), into the posterior
probability of each position. Therefore, although in the HMM architecture we do not explicitly model overlapping
motifs, our inference procedure does take into account possible contributions of DNA binding sites interacts with
competing TFs.

A.4 Bayesian inference and learning

Under the Bayesian framework described in the main paper, the parameters in the HMM are treated as continuous
random variables (collectively referred asΞ) with a prior distribution. Now to compute the posterior probability of
functional states, we need to marginalize out these parameter variables:

p(Xt|Y ) =

∫

p(Xt = s|Y, Ξ)p(Ξ|Y )dΞ (3)

This computation is intractable in closed form. One approach to obtain an approximate solution is to use Markov
chain Monte Carlo methods (e.g., a Gibbs sampling scheme). Here we use a more efficient, deterministic approxima-
tion scheme based onGeneralized Mean Field inference [12], also referred to asvariational Bayesian learning [5] in
the special scenario applied to our problem setting. Omitting theoretical and technical details, our algorithm can be
understood as replacing the single-round posterior decoding with an iterative procedure consisting of the following
two step:

– Compute the expected counts for all state-transition events (formally called sufficient statistics) using the forward-
background algorithm, usingcurrent values of the HMM parameters.

– Compute the Bayesian estimation (to be detailed shortly) ofthe HMM parameters based on its prior distribution
and the expected sufficient statistics from last step.Update the HMM parameters with these estimations.

This procedure is different from the standard EM algorithm which alternates between inference about the hidden
variables (the E step) and maximal likelihood estimation ofthe model parameters (the M step). In our algorithm, the
“M” step is a Bayesian estimation step, in which we compute the posterior expectation of the HMM parameters.

Now we outline the formulas for Bayesian estimation of the HMM parameters. Note that since the state-transition
probability distributions (which are multinomial) and theprior distributions (which are either beta or gamma) of the
transitioning parameters are conjugate-exponential [1]4, we have to compute the Bayesian estimation of the logarithm
of the transitioning parameters (referred to as thenatural parameterizations) rather than of the parameters themselves.
For example, for the state-transitioning parameterβg,g, we have:

E[ln(βg,g)]

∫

βg,g

lnβg,gp(βg,g|ξg,1, ξg,2, E[ng,g])dβg,g

=Ψ(ξg,1 + E[ng,g])− Ψ(
∑

j

ξg,j +
∑

k∈Bp

E[ng,k]), (4)

4 Strictly speaking, this claim is only partially true. Because the conjugacy only applies to the transition probabilitybetween a
pair of states, but not to the total transition probability mass from a state of interest to all motif-buffer states,

P

k∈Bp
β[·,k], which

is treated as a single “motif-buffer-going” probability inour beta or gamma prior models. (Defining priors for each individual
β[·,k], k ∈ Bp would require too many hyper-parameters.) As a heuristic surrogate, in certain computational step, we split the
prior mass (total pseudocounts) corresponding to the total “motif-buffer-going” probability equally among all individual “motif-
buffer-going” probabilities as if each has its own pseudocounts, and install strict conjugacy. Since each prior distribution involves
at most one such “motif-buffer-going” probability, and that the state-transition probabilities are multinomial parameters subject
to a normalization constrain, we only need to use the installed conjugate-exponential property for Bayesian parameterestimation
for each “non-motif-going” transition probability, and then obtain the Bayesian estimation of the total “motif-buffer-going”
probability indirectly, by subtracting all newly estimated “non-motif-going” transition probabilities from 1.
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whereΨ(x) = ∂ log Γ (x)
∂x

Γ
′

(x)
Γ (x) is the digamma function;E[·] denotes the expectation with respect to the posterior

distribution of the argument; andng,g refers to the sufficient statistic of parameterβg,g (i.e., counts of transitioning
eventg → g). The Bayesian estimate of the original parameter is simplyβ∗

g,g = exp(E[ln(βg,g)]). (In fact we will keep
using the natural parameterization in the actual forward-background inference algorithm to avoid numerical underflow
caused by long products of probability terms.)

The total “motif-buffer-going” probability is estimated as described in footnote 4, e.g.,β∗

g,ḡ =
∑

k∈Bp
β∗

g,k =
1− β∗

g,g
. To estimate each individual “motif-buffer-going” probability, we use the standard Baum-Welch update based

on expected sufficient statistics computed from the matrix of co-occurrence probabilitiesp(Xt, Xt+1|Y ), scaled by
the Bayesian estimation of the total “motif-buffer-going”probability, for example:

βg,i = β∗

g,ḡ

∑

t p(Xt = g, Xt+1 = i|Y )
∑

t,k p(Xt = g, Xt+1 = k|Y )
(5)

The initial state probability of the theBayCis HMM is not important for CRM prediction as it only directly
determine the functional state of the first position of the input sequences and its influence diminishes quickly along
the sequence. We simply fix the initial state to be a global background with probability 1.

A.5 Bayesian learning of the GHMM parameters

The Bayesian estimation of the GHMM parameters is similar tothe estimation of the HMM parameters, with some
modifications. Note that although we use HMM state space to simulate a negative binomial duration distribution, the
self-transition probability of all the cluster backgroundstate must remain the same. Otherwise, the duration distribution
will no longer be negative binomial. Hence the averaged number of self-transitions and transitions to the next state is
used.

Let cj denotes thej-th cluster background states,ncj ,cj denotes the number of self transition on statecj , ncj ,cj+1

denotes the number of transition from statecj to cj+1. Let E[nc,c] denotes the average of expected number of self-
transitions from every cluster background states, andE[nc,c1] denotes the average of expected number of transitions
out of every cluster background states, defined as:

E[nc,c] =
1

ξcr

ξcr
∑

j=1

E[ncj ,cj ], (6)

E[nc,c1] =
1

ξcr

(

ξcr−1
∑

j=1

E[ncj ,cj+1 ] +
∑

k∈Bp

E[ncξcr ,k]
)

(7)

Bayesian estimation of the expected value of (log) self-transition probability, with respect to the posterior distribu-
tion, would be

E[ln(βcj,cj )]Ψ(ξc,1 + E[nc,c])− Ψ(ξc,1 + ξc,2 + E[nc,c] + E[nc,c1]) 1 ≤ j ≤ ξcr. (8)

As in other parameters, the natural parameterizationln(βcj,cj ) is used, but when the Bayesian estimation of the
original parameter is preferred, we useβ∗

cj,cj = exp(E[ln(βcj,cj )]).

B Additional details on experiments

B.1 The Drosophila TRS dataset

We tested our model on a selective dataset consisting of transcriptional regulatory regions regulating theDrosophila
melanogaster developmental genes. Each TRS in the dataset consists of theCRMs pertinent to a particular gene, any
intra-CRM background inbetween, with flanking regions on either side of the extremally located CRMs such that
the entire sequence is at least 10K bp long, and the boundaries of the dataset are at least 2K bp from the extremal
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CRMs. We included the exonic regions of the genes only when they fell in the aformentioned selected region, and not
otherwise.

Selection of the datasets was based on the REDfly CRM databaseand the Drosophila Cis-regulatory Database at
the National University of Singapore [4, 9]. We initially chose 89 CRMs pertaining to 34 early developmental genes.
This selection was based on a filtering of CRMs, through whichwe only chose CRMs which were at least 200 bp long,
and contained at least 5 motif instances (2 CRMs with a borderline count of 4 motif instances were also included).

All motif instances used were based on biological curation,and motif instances of the same type in the database
often correspond to varying lengths of nucleotide sequences. This is at odds with most computational models of the
motifs, which assume a fixed length of the motif in terms of nucleotides. We overcome this issue by searching a 10 bp
neighborhood of the annotated location for a fixed width nucleotide sequence which has a high log odds probability
of being a motif over background (based on the PWM counts of the motif). Since both our motif algorithm and most
competing motif search algorithms assume a PWM based model of the motif, this curation provides more accurate
annotation data without placing any competing algorithm ata disadvantage. A short summary of our input sequences
is provided in Table 1.

Gene(Length)CRM/Length Motif Gene/LengthCRM(Length) Motif

1.28 (10072) 1.28 DRE / 664 DEAF1 / 8 abd-a (10045 abd-A) iab-2(1.7) / 1745 EVE / 4 KR / 1
DFD / 4 GT / 1 HB / 5

alphaTub84B alphaTub84Balpha1- TRL / 5 ap (10050) ap ApME680 / 680 ANTP / 5
(10055) tubulin promoter / 855
bap(10000) bap baplac4.5 / 4957 MAD / 4 betatub60D (10181)betaTub60Dbeta3-14/vm1 / 524 BAP / 1 UBX / 2
ct(10068) ct wing margin enhancer / 2692 SD / 7 dfd (11658) Dfd EAE / 2658 DEAF1 / 2

wingmarginGuss / 668 Dfd EAE-D / 833 DFD / 13
Dfd EAE-F9 / 329 EXD / 1
EAE-F2 / 392

dpp (30199) dpp dpp813 / 812 ABD-A / 9 en (11004) en stripeenhancerintron 1 / 900 EN / 6
dpp dpp261 / 256 BIN / 3 en intron / 720 EVE / 3
dpp dpp419 / 419 DL / 14 en upstreamenhancer / 2401 FTZ / 12
dpp intron2 / 1983 EN / 5 FTZ-F1 / 2
dpp dl mel / 539 EXD / 5 HB / 2
dpp BS1.0 / 8801 GRH / 1 KR / 1
dpp BS1.1 / 1738 UBX / 13 ZEN / 3

ems (10304) emselementIV / 304 ABD-B / 7 TLL / 2 twi (10415) twi dl mel / 1415 DL / 7
emsARFE / 1244 BCD / 2 EMS / 3

ftz (10487) ftz upstreamenhancer / 2562 CAD / 2 salm (10144) salmsalE/Pv / 1078 BCD / 7
ftz proxA / 580 FTZ / 21 salmwingpouchGuss / 328 CAD / 4
ftz Prox-323 / 324 FTZ-F1 / 1 salmblastodermearly enhancer / 512 HB / 1
ftz neurogenicenhancer / 2250 GRH / 4 TTK / 4 salmsal242S/P / 242 HKB / 2 SD / 2
ftz zebraelement / 745 HR39 / 1 SLP1 / 1 salmsal272P/P / 276 KR / 3 UBX / 5

h (10867) h stripe3+4 ET22 / 1745 BCD / 10 hb (12055) hb 0.7 / 730 BCD / 8
h h7 element / 932 HB / 29 hb anterioractivator / 245 HB / 1
h stripe6+2 / 1081 KNI / 22 hb HZ1.4 / 1421 TLL / 9
h stripe6 / 547 KR / 13 hb upstreamenhancer / 1424

TLL / 7 hb HZ526 / 528
kni (15498) kni KD / 870 BCD / 2 kr (11348) Kr CD1 / 1159 BCD / 4

kni L2 enhancer / 1360 CAD / 1 Kr StBg1.2HZ / 1130 GT / 1
GT / 2 TLL / 6 Kr StH0.6HZ / 540 HB / 6
HB / 8 KR / 4 Kr H/I / 950 KNI / 1 TRL / 7
HIS2B / 5 SD / 5 Kr Kr/F / 1587 TLL / 7

otp (10000) otp C / 441 BYN / 4 rho (10589) rho NEE-600 / 590 DL / 4
rho NEE-300 / 328 SNA / 4
rho NEE / 299 TWI / 2

gsb (10916) gsb fragIV / 516 EVE / 3 FTZ / 3 ser (10000) Ser minimal wing enhancer / 812 AP / 14 SUH / 2
PRD / 7 PAN / 9

scr (13258) Scr 5.5HH / 5653 CAD / 2 SLP1 / 1 tsh (11144) tsh enhancer / 2144 ABD-A / 4
Scr 3.0XX / 2953 FTZ / 21 GRH / 4 tsh del-1-5 / 463 ANTP / 4
Scr 6.5KS / 6985 FTZ-F1 / 1 HR39 / 1 tsh 220bp / 221 FTZ / 4

TTK / 4 UBX / 4
slp1 (10000) slp1 5-2 / 1554 PAN / 9 sna (10013) sna2.8kb / 2913 DL / 10

snaVA / 612 TWI / 2
so (10012) so so10 / 428 EY / 3 tll (10063) tll P2 / 2764 BCD / 8 TRL / 1

so so7 / 1612 TOY / 5 tll P3 / 1725 GRH / 1 TTK / 1
tin (10000) tin tinD / 350 MAD / 7 MED / 3 TIN / 2 sim (10065) sim mesectoderm / 631 SNA / 3 TWI / 2
eve (14256) eve stripe3+7 / 511 BCD / 5 ubx (78414) Ubx bx1 / 1705 EN / 5

eve stripe2 / 484 GT / 3 Ubx BRE / 502 EVE / 2 ZEN / 2
eve MHE / 312 HB / 12 Ubx basalpromoter / 1189 FTZ / 10 TLL / 5
eve EME-B / 395 KNI / 5 Ubx PREpolycombresponseelement / 1556GRH / 1 TRL / 17
eve EME-B5 / 233 KR / 10 Ubx PBX enhancer / 1378 HB / 27
eve eme2 / 300 MED / 5 TIN / 4 Ubx pbxPB / 297 KNI / 3 TWI / 6
eve EME-B3 / 262 PAN / 6 ZFH1 / 1 Ubx pbxSB / 623 KR / 1 UBX / 2

Ubx pbxAS / 584 PHO / 5 Z / 20
vg (12096) vg boundaryenhancer / 754 MAD / 2 w (11737) w Bmdel-W / 6628 Z / 11

vg minimal boundaryenhancer / 360NUB / 4 SUH / 1 w HPst-W / 7737
vg quadrantenhancer / 798 SD / 4 VVL / 1 w H-del-BgRVdel-W / 770

zen (10662) zen 0.7 / 726 BRK / 6
zen 1.4 / 1513 DL / 3
zen dorsalectoderm / 624 GRH / 1 MAD / 10

Table 1.Summary of the Drosophila TRS dataset used for in performance comparison.

This database is available online athttp://www.sailing.cs.cmu.edu/BayCis.Each TRS is graphically
depicted with color coded CRM and motif regions, and is extensively hyperlinked so that the corresponding sequences
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may be obtained by clicking on a relevant gene dataset or CRM.A snapshot of the front page of the online database is
shown in Fig.3 in the main paper.

B.2 Hyperparameter selection scheme

Choosing hyperparameters for transition probabilities can be a difficult problem and has significant impact on the
performance of the model. As discussed in the Methods section, the hyperparameters of the BayCis model reflect
prior beliefs about the architectural features of the CRM structure, such as rough spans of the inter- or intra-module
background and distances between motif instances.

A standard way of specifying hyperparameters would be to seewhich parameter settings work best for datasets
with known TFBS, and apply the same on all datasets on which TFBS discovery is to be performed. This is somewhat
similar to the supervised learning setup of “training” and “test” sets. The basic assumption here is that in CRMs
regulating genes of similar functionality, the CRM architecture would be somewhat similar causing the same set of
hyperparameters to work well. More formally, the hyperparameters can be also estimated in the maximal likelihood
fashion based on the empirical Bayes principle. We chose to use a representative dataset based on the CRMs of the
even-skipped gene to choose our hyperparameters for the hHMM and GhHMM.

Based on our observations, the most important hyperparameters governing precision and recall are those regulating
transition probabilities into and out of the CRM backgroundstate(s). The CRM background state(s) and motif specific
states are the only states from where one can enter the motif specific states of the HMM. Hence, hyperparameters
which cause the HMM to stay in the CRM background states more frequently than usual risk a low precision, high
recall performance while hyperparameters which cause the CRM background states to be rarely visited risk a high
precision, low recall scenario. Accurate prediction of CRMs cause the HMM to obtain acceptable values of precision
and recall.

We specify the hyperparameters as follows: for the global background,ωg = 0.002; for the inter-module back-
ground,ωc = 0.05; for the proximal motif buffer,ωp = 0.25; for the distal buffer hyperparameters,ωd,1 = 0.125
(distal to global background)ωd,2 = 0.125 (distal to clustal background) andωd,3 = 0.25 (distal to proximal buffer),
and the strength of the hyperparameters are set to1/10 of the expected counts of the transitions on a 15 kbp dataset
with the exception ofωg which is set to10, 000. The background probability of the nucleotide at each position was
computed locally using a 2nd-order Markov model from a sliding window of 1100 bp centered at the corresponding
position. For the GhHMM, based on visual inspection of spacer length distributions between motifs, we choose the
parameter asr = 2.

B.3 More on F1 and CC scores

The nucleotide-based prediction error is used in the NatureBiotechnology benchmark paper by Tompa et al. [11]. The
formulas for the F1 and CC scores are as follows:

CC =
nTP × nTN − nFN × nFP

√

(nTP + nFN)(nTN + nFP )(nTP + nFP )(nTN + nFN)
, (9)

F1 =
2× Pr ×Re

Pr + Re
, (10)

wherePr = nTP
nTP+nFP

(Precision) andRe = nTP
nTP+nFN

(Recall).
Both CC and F1 are calculated from the number of nucleotides (single positions) that are correcly/wrongly pre-

dicted as positives/negatives. The value range of CC is in principle between -1 and +1 (as it is a correlation), but
in practice it would lie between 0 (random predictions) and 1(perfect predictions). As F-1 measure is also a value
between 0 and 1, we use the same numerical units in the plot.
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