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ABSTRACT

Motivation: Identifying transcription factor binding sites (TFBSs)
encoding complex regulatory signals in metazoan genomes
remains a challenging problem in computational genomics. Due to
degeneracy of nucleotide content among binding site instances or
motifs, and intricate ‘grammatical organization’ of motifs within cis-
regulatory modules (CRMs), extant pattern matching-based in silico
motif search methods often suffer from impractically high false
positive rates, especially in the context of analyzing large genomic
datasets, and noisy position weight matrices which characterize
binding sites. Here, we try to address this problem by using
a framework to maximally utilize the information content of the
genomic DNA in the region of query, taking cues from values of
various biologically meaningful genetic and epigenetic factors in
the query region such as clade-specific evolutionary parameters,
presence/absence of nearby coding regions, etc. We present
a new method for TFBS prediction in metazoan genomes that
utilizes both the CRM architecture of sequences and a variety of
features of individual motifs. Our proposed approach is based on
a discriminative probabilistic model known as conditional random
fields that explicitly optimizes the predictive probability of motif
presence in large sequences, based on the joint effect of all such
features.
Results: This model overcomes weaknesses in earlier methods
based on less effective statistical formalisms that are sensitive to
spurious signals in the data. We evaluate our method on both
simulated CRMs and real Drosophila sequences in comparison with
a wide spectrum of existing models, and outperform the state of the
art by 22% in F1 score.
Availability and Implementation: The code is publicly available at
http://www.sailing.cs.cmu.edu/discover.html.
Contact: epxing@cs.cmu.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
Deciphering the gene control circuitry encoded in the genome
is a fundamental problem in developmental biology (Michelson,
2002). In multi-cellular eukaryotic organisms such as the metazoans,
the time- and tissue-specific expression of essential genes during
various developmental and physiological processes is carried out
by an intricate interplay between the transcriptional factors (TFs),
and their regulatory mechanisms which control the binding of the
factors to recognition sites, known as TF binding sites (TFBSs),
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or motifs, within the regions of the DNA sequence called gene
regulatory regions (Davidson, 2001). Motifs often appear as
recurring, degenerate short string patterns (noisy copies of each
other) in the non-coding, regulatory regions of the genome. It has
been shown that in higher eukaryotes, instances of TFBS of each
TF usually occurs clustered in several small regions of the genome
(usually 200–2000 bp) known as cis-regulatory modules (CRMs)
near the coding region of the gene being regulated. Each CRM
typically contains more than one type of TFBS for implementing
the logic required to regulate the gene correctly throughout the life
of the organism (Davidson, 2001).

Due to the degeneracy of the nucleotide content among
motif instances, pattern matching-based in silico motif search in
higher eukaryotes remains a difficult problem, even when using
formalisms such as the position weight matrix (PWM) (or nucleotide
distributions at each position of the motif).

The ‘grammatical organization’ of motifs within CRMs that
encode complex spatio-temporal regulatory information can further
complicate motif search compared with similar tasks in simpler
organisms such as yeast (Frith et al., 2002). Extant methods based on
simple pattern matching scores often yield a large number of false
positives (FPs) (Sandve and Drablos, 2006), especially when the
sequence to be examined spans a long region (e.g. tens of thousands
of basepairs) beyond the basal promoters, where possible enhancers
and CRMs could be located.

In this article, we concern ourselves with searching for instances
of motifs and CRMs in higher eukaryotic genome based on not only a
given description of the motif sequence patterns, such as the PWMs,
but also additional features that distinguish a putative motif from the
background. Our proposed approach is based on a discriminative
probabilistic model known as conditional random field (CRF) that
explicitly optimizes the predictive probability of motif presence in
a large background, rather than the joint probability of both motif
and background sequence under a generative model, as in many
of the current methods reviewed below, whose predictive power
can be seriously compromised when the amount of background
sequence significantly dominates that of the motifs. See Figure 1
for a schematic workflow.

Numerous efforts have been made to predict CRMs comprising
of a cluster of TFBSs (Berman et al., 2002), or to use cluster-based
analyses to assist TFBS prediction. Some methods directly count the
number of matches of some minimal strength to given motif patterns
within a certain window of DNA sequence (Donaldson et al., 2005;
Rajewsky et al., 2002; Rebeiz et al., 2002; Sharan et al., 2003). From
a modeling point of view, this family of algorithms assumes that
motifs are uniformly and independently distributed within a fixed
size window. Such methods are conceptually straightforward and
often simple to implement and computationally efficient. In practice,
setting the optimal window size can be difficult and optimal
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Fig. 1. A schematic view of the workflow.

parameters may not be robust on input data and may require careful
analysis to calculate (Lin et al., 2008). Further, an i.i.d. distribution
of motifs is now known to be an unrealistic assumption (Bulyk et al.,
2002).

A second major class of methods adopt a generative formalism
to model the occurrences of motifs and CRMs as the output of
some hidden stochastic processes, such as a first-order hidden
Markov model (HMM), which removes the necessity of modeling
the window size. The hidden-state transition matrix within the HMM
usually corresponds to a set of soft constraints on the expected
CRM length and the inter-CRM distance in terms of geometric
distributions. HMMs that capture motif distributions, as well as
intra-CRM and inter-CRM backgrounds, have been used in several
prediction algorithms, e.g. Cister (Frith et al., 2002), and Cluster-
Buster (Frith et al., 2003). Further extensions have been made to
include distinct motif-to-motif transition probabilities in programs
such as Stubb (Sinha et al., 2006), Module Sampler (Thompson
et al., 2004) and BayCis (Lin et al., 2008), which also employs
generalized, hierarchical HMMs. These extended models often
require a significant amount of training data. Moreover, logical
rules have recently been applied in a model on yeast data (Noto
and Craven, 2007) in order to try and capture regulatory logic
models in the spirit of Davidson (Davidson, 2001). While the HMMs
and HMM-like models are capable of describing the architecture
and properties of CRMs to a certain degree, the expressive power
of HMMs is insufficient in that they cannot support complex
representations for motifs such as non-local, sequence–composition
based or epigenetic features surrounding the motif. As a result, their
performances on complex CRMs such as those of the Drosophila
early developmental genes are still unsatisfactory.

Phylogenetic conservation has been historically one of the most
commonly used features used besides binding specificity to detect
TFBSs (Loots et al., 2002; Moses et al., 2004). However, these
algorithms are restricted to very closely related organisms [no more
than 50 million years to the most recent common ancestor (Ray et al.,
2008)], because non-coding sequences are difficult to align across
large evolutionary distances due to commonplace evolutionary
forces like duplication and shuffling in the regulatory genome, hence
making orthology prediction difficult (Davidson, 2001). Several
comparative genomic methods have been applied to CRM and motif

prediction (Ray et al., 2008; Siddharthan et al., 2004; Sinha and He,
2007; Sinha et al., 2004). In this article, we concern ourselves only
with motif detection within a single species, but we try and use
additional features which use phylogenetic data from other species
to analyze the effect of multi-species data on motif discovery.

A key motif representation used in all the above methods to
score possible motif occurrence in an input DNA sequence is the
PWM (Staden, 1984), also known as position-specific scoring matrix
(PSSM) (see Supplementary Material for details). Several motif
detection algorithms work based on designing hard constraints on
features associated with motifs, like distance to transcription start
site (TSS) (Sinha et al., 2008). Recently, there has been a number
of works in the literature that focus on refining predictive models
for individual TFBS by using a wide range of features that have
been shown to correlate well with regulatory regions in general and
with TFBSs in particular, without necessarily modeling the CRM
structure (Narlikar et al., 2007; Naughton et al., 2006; Pudimat
et al., 2004; Sharon and Segal, 2007). Using biologically motivated
features like presence or absence of CpG islands, nucleosome
sites, and helical structures, they appear to be able to significantly
outperform models based on PWM motif representation alone.
Pudimat et al. (2004) models a variety of features to assist in
predicting binding sites, but selects the set of features in a greedy
fashion, and models the features as nodes of a generic graphical
model, causing topology selection of the graphical model to be NP-
hard (Pearl, 1988). Sharon and Segal (2007) uses Markov networks
to associate specific features with subsets of TFBS positions, causing
the difficult problem of estimating the network structure to arise.
Ernst (2008) analyzes a set of features to derive informative priors
for TFBS prediction, using logistic regression-based classifiers for
the choice of each feature. Such discriminative, integrative models
have also achieved some success on other problems like protein fold
recognition (Damoulas and Girolami, 2008).

In this article, we present DISCOVER : DIScriminative
COnditional random field for motif recoVERy in metazoan
genomes. DISCOVER is a discriminative method for motif detection
in higher eukaryotic genomes that enjoys the dual advantage of
modeling CRM architecture of sequences and features of individual
motifs. It is a CRF model (Lafferty et al., 2001), which incorporates a
wide range of both CRM structure-based and individual motif-based
features. CRFs have previously been used in sequence analysis,
most notably in gene prediction (DeCaprio et al., 2007; Gros
et al., 2007), since coding regions are much better characterized in
terms of sequence level features with respect to regulatory regions.
Bockhurst and Craven (2005) has applied a similar scheme to
identify regulatory signals in prokaryotic sequences; but their model
employs a simple feature set to resolve the motif sequence overlap
problem, and also requires a pre-screening of motif scores via basic
PWM-based models.

Our method is important in several respects in the context of
the literature. First, it is a discriminative model explicitly tailored
towards maximizing the conditional likelihood of predicting motifs,
rather than maximizing the joint likelihood—which often confounds
the analysis in the case of generative models. Secondly, it employs a
comprehensive set of features carefully selected from the literature
designed to capture a variety of characteristics of the motif and CRM
patterns. Thirdly, it is an integrative model that allows sequence-
specific features to be added at will to enhance the prediction
scheme. Further, since feature scores are computed offline, it is easier

i322

 at A
cquisitions D

eptH
unt Library on M

arch 29, 2010 
http://bioinform

atics.oxfordjournals.org
D

ow
nloaded from

 

http://bioinformatics.oxfordjournals.org


[10:13 15/5/2009 Bioinformatics-btp230.tex] Page: i323 i321–i329

DISCOVER: a discriminative motif search method

to incorporate scores involving complicated computation and long
computation times as well as long-range dependencies.

We evaluate the CRF model on both simulated CRMs and
actual biologically validated transcription regulatory sequences of
Drosophila melanogaster, in comparison with a wide spectrum of
existing models including, Cister (Frith et al., 2002), Cluster-Buster
(Frith et al., 2003), BayCis (Lin et al., 2008), MSCAN (Alkema
et al., 2004), Ahab (Rajewsky et al., 2002) and Stubb (Sinha et al.,
2006). The results suggest that our proposed method significantly
outperforms others on real Drosophila sequences.

The remainder of the article is outlined as follows: we discuss the
model and feature design in Section 2. In Section 2.1, we describe
how to learn the model from data. and then we briefly mention
the inference algorithm given the model. Biological and empirical
justifications for the features, experimental setup and results are
presented in Section 3. We finish by some discussion on the scope
of the model in Section 4.

2 METHODS
The conventional PWM representation for TFBSs is not discriminative
enough to distinguish true binding sites from false binding sites. We desire
a model for TFBSs and genomic sequence that supports a more complex
motif representation without losing the ability to characterize sequence
wide properties, which means a flexible feature design. The CRF model—a
feature-based log-linear model in which features are easily incorporated—is
an appropriate model choice under the circumstances. The basic inputs to
such a computational model is a set of genetic sequences, a set of feature
values corresponding to every nucleotide in the sequences and the PWMs
of TFs that are being predicted. The output of the model is a prediction of
a set of TFBSs which are being predicted, ranked in order of decreasing
likelihood. The CRM boundaries can also be similarly predicted, but in this
article we focus on the analysis of the TFBS predictions.

A CRF model that describes a conditional probability distribution of a
genomic sequence is defined as:

P(y |x,λ)= 1

Z
exp

{
λ·F(y,x)

}
(1)

where Z =
∑

y

exp
{
λ·F(y,x)

}
(2)

where we use xi to represent the type of the observed nucleotide at site
i in a sequence, and yi to represent the hidden state associated with xi,
which corresponds to the functionality of the site in the genomic sequence.
The value of a hidden state is also called a state label. Vector x={xi : i=
1,2,...,L}, and vector y={yi : i=1,2,...,L}, where L is the length of the
sequence. Vector F is the set of features, each element F of which is the sum
of feature scores of a particular feature category (where feature scores refer
to the numerical value of the feature). Vector λ corresponds to the feature
weights assigned to the set of features, and is learnt from data to decide
which features may be more important in predicting TFBSs. Z is a partition
function that normalizes the pdf and is a function of x and λ. The value space
for each xi is {A,C,G,T}. The values represent the four types of nucleotide in
DNA, adenine, cytosine, guanine and thymine, respectively. The value space
for hidden states yi, however, is not so straightforward, and it will be defined
subsequently.

State design: we design a set of hidden states based on the possible
functionality of each nucleotide in the genomic sequence being analyzed.We
incorporate each motif type as a state since this is our prediction goal. We
number the types of motifs and name the state for the m-th motif type M(m).
Representationwise, a hidden state yi being state M(m) implies that a motif
of the m-th type is located starting at site i of the sequence. Those states
are all that we need to represent binding sites. Next, we know that TFs are
usually working together to regulate genes, especially in genomes of higher

organisms. In order to work together, different types of TFBSs often lie close
to each other in the range of hundreds of base pairs forming a so-called CRM
(Davidson, 2001). We use state C to represent all nucleotides in the CRM
regions except those binding sites which have already been labeled as Ms.
The nucleotides which are still unlabeled after the first two rounds are set
to state G, which represents a global background in the genomic sequence.
Hence, the set of hidden states for modeling the functionality at a nucleotide
position is given by S={G,C,M(1),...,M(NM )}, where NM is the number of
motif types. We do not allow two motifs to share the same starting position,
but such occurrences are infrequent. It is still an improvement on HMM-
based approaches where modeling even partial overlap of motifs causes a
combinatorial increase in the state space. Overlapping of starting positions of
TFBSs can be accommodated in our model by using marginal probabilities
in the prediction step.

Feature design: each element F(y,x) of vector F(y,x) in Equation (1) is the
sum of feature scores of a particular feature category, where feature score
simply refers to the numerical value of the feature. It sums up feature function
f ’s over the sequence, which have a common meaning and share the same
weight. An example is shown in Equation (16) of Supplementary Material,
after we see some concrete features. The design of f ’s is a critical part of
CRF models. We include a rich set of features, most of which are introduced
in Section 3. The set of features includes conventional features (TFBS
sequence specificity, state transition probability) as well as evolutionary
features (like presence of repeats, and of conservation across species),
structural and epigenetic features (like melting temperature, nucleosome
occupancy), features related to the protein coding mechanism (like distance
to TSS, presence in 3′-UTR region), and additional discriminative features
(like reverse complementarity of a site, and conservation symmetry). Their
formal definitions can be found in Supplementary Material.

Features with a one-to-one correspondence with nucleotide base pairs can
be easily integrated into the framework by defining as:

f (yi,x)=
(∑

m

δ(yi,M
(m))

)
S(i,x) (3)

where S(i,x) is the feature score, All features are in the form of f (y,x), but as
for now, they have a simpler common form of f (yi,yi+1,x), which we called
a chain structure CRF model.

Model Parameters: feature weights constitute the set of model parameters,
some of which are fixed and some are free to be estimated. More free
parameters make the CRF model more complex, which might be harder to
learn. The set of free parameters are modeled to avoid redundant parameters,
which will not make any contribution. Also, parameters that are not likely to
be properly estimated from training data should never be included, because
including them will only increase the chance of overfitting the model. Our
focus is on the weight of state transition features, because they account for
a large proportion of the whole parameter set and good estimation of the
weights are critical for successfully predicting TFBSs. A detailed analysis is
presented in Supplementary Material.

In the CRF model, we assign a parameter as a weight to each of the
features defined previously which are collectively the vector λ in Equation
(1). Not all of these parameters are free parameters. Among state transition
parameters, we constrain an M state to be only directly reachable from a C
state, and not from a G state, since motifs are not present outside CRMs. Thus,
state transition features corresponding to taboo transitions have a weight
−∞ (a low enough number in practice), meaning that the transitions never
occur in the CRF model. However, we want to have a reasonable number
of free model parameters as more free parameters increase the expressibility
of the model. With increase in the number of free parameters, the hardness
of estimating model parameters increase, the running time of the learning
algorithm also rises and some parameters may overfit due to data scarcity
for corresponding features.
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2.1 Model training and inference
In this section, we briefly describe the model training and inference
procedures in which feature weights of the CRF model are learnt from
training data and subsequently used to make TFBS predictions. A more
thorough exposition is presented in Supplementary Material.

Model training: First, a learning criterion is set up, which can either be to
maximize likelihood or maximize posterior probability. It is then converted
to a convex optimization problem, and finally a Quasi–Newton method
is applied (Avriel, 2003). Our goal here is to learn the best setting for λ, the
weights of features in the CRF model given a set of sequences as training data
with their nucleotide types x and state labels y. The value of feature functions
f can be computed given necessary hyper-parameters. A reasonable criteria
to learn the feature weights λ from nucleotide types x and state labels y
(or more precisely from feature values f) in a CRF model is to maximize
likelihood of λ wrt y conditioned on x, which equals the probability of state
labels y given feature weights λ conditioned on nucleotide types x, because
the probability model itself is defined in this conditional scheme. The max
likelihood estimator of λ can be expressed as:

̂λ=argmax
λ

L(λ |y,x)

where L(λ |y,x)=P(y |x,λ)

Inference: the learnt feature weights of the CRF model are used to predict
TFBSs on a new genomic sequence—the inference step. There are two
categories of prediction schemes analogous to the popular inference schemes
for HMMs: sequence decoding by Viterbi algorithm and marginal decoding
by forward–backward algorithm. We choose the marginal probability rank
scheme as it enables us to predict overlapping TFBSs. Marginal decoding
considers one hidden state at a time, making predictions based on the
marginal probability, P(yi |x,λ), which can be computed by the dynamic
programming forward–backward algorithm in a chain structure CRF model
(Lafferty et al., 2001; Sha and Pereira, 2003). Variants on the marginal
decoding scheme include maximum a posteriori decoding (MAP) where we
predict a TFBS if the marginal probability of it is the highest among all state
labels

ŷi =argmax
yi

P(yi |x,λ) (4)

Alternatively, we make a positive prediction whenever the marginal
probability is above a threshold, known as threshold decoding. It is a
flexible method, but a good threshold is hard to set in practice. We use a
similar scheme that takes advantage of thresholding by choosing a threshold
automatically by limiting the number of predictions. Thus we calculate a
list of TFBS and marginal probability pairs, sort them by probability in
descending order and output the top P ones as predictions, P being the
number of desired predictions. We make P for each sequence proportional
to its length L, as a longer sequence tends to contain more TFBSs. The
coefficient k =P/L is called prediction factor. We call this rank decoding.

3 RESULTS
We evaluate our method of TFBS prediction on a set of real genomic
transcription regulatory sequences (TRSs) of D.melanogaster, as
well as a set of synthetic TRSs. The prediction performance
is compared with six popular published methods for supervised
discovery of motifs/CRMs based on a wide spectrum of models:
Cister (Frith et al., 2002), Cluster-Buster (Frith et al., 2003), BayCis
(Lin et al., 2008), Stubb (Sinha et al., 2006), Ahab (Rajewsky
et al., 2002) and MSCAN (Johansson et al., 2003). In general, the
prediction performance of the CRF model is superior or competitive
wrt all the chosen benchmark methods on this comprehensive
selection of real D.melanogaster dataset.

The semi-synthetic dataset was generated by artificially simulated
CRM structures with a third-order Markov model for background

sequences and planting real TFBSs from the TRANSFAC database
(Wingender et al., 2000) into the simulated background sequences
based on the generative model for the HMM-based TFBS prediction
tool Baycis and published in Lin et al. (2008). It involves 30
20 kbp-long sequences, containing 887 TFBSs of 10 types. The
real D.melanogaster binding site data were obtained from the
Drosophila Cis-regulatory Database at National University of
Singapore (Narang et al., 2006). The PWM and CRM boundary
data were obtained independently of the binding site database
from the REDfly CRM database (Gallo et al., 2006). This TRS
dataset was previously published in Lin et al. (2008). The dataset
contains 97 CRMs pertaining to 35 early developmental genes
of D.melanogaster (in 35 sequences). Each of the 35 sequences
contains 1–4 CRMs. The lengths of sequences range from 10 000 bp
to 16 000 bp, except two extremely long sequences whose lengths
are 40 kb and 79 kb, respectively. There are 700 TFBSs of 44 types
labeled in the dataset in all. It is worthwhile noticing that 12 out of
the 44 types appear in only one sequence, which account for 10%
of the binding sites. A visualization of the dataset illustrating the
locations of TFBSs and CRMs is presented in Figure 2.

3.1 Input features
We include a rich set of features in our model, based on previous
findings in the literature as well as some derived features which
empirical evidence suggests are more discriminative than the
original features from which they were derived. Most of the feature
scores are accurately or heuristically calculated based solely on the
sequence data, but some require external annotation (like translated
and transcribed regions, and TSS). It is also easy to change
feature values from sequence-derived heuristic values to actual
experimental results should they become available. See the work
schematic (Fig. 1) for a visual schema of feature calculation. CRFs
adjust feature weights based on training data, so it is also interesting
to try new features to check if they improve the predictive power
of the model. The rigorous mathematical definitions corresponding
to the non-trivial feature definitions is presented in Supplementary
Material. Binding site positioning and characterization of the
nucleotide content of binding sites in terms of binding site specificity
have been the most standard features which have been used in motif
finding, especially in generative models like HMMs. This is based
on sound biological validation of the fact that specificity of binding
sites and CRM ‘architecture’s, are pervasive in regulatory regions
(Davidson, 2001).

PWM constraints: the basic feature we use is the PWM constraint,
which implements the information present in the PWM of a motif.
It represents the binding specificities of the DNA binding domain(s)
of the TF in question as an ordered set of multinomials, and is an
indicator of the level of evolutionary constraint and hence selection
each nucleotide is under. Some PWMs tend to be more constrained
(under greater purifying selection) than others. Some PWMs also
tend to suffer from noisy data. Because of this, the discriminative
power of the PWM constraints feature varies from PWM to PWM.
For PWMs with poor discriminative power, additional features are
critical for improving predictability. The PWM score provides a
good baseline measure for the CRF model in motif prediction,
though it is not an essential feature in our model.

State transition: state transition features are an effort to model the
architecture of the regulatory region. The state transition feature
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Fig. 2. Aligned data and prediction visualizations with CRMs in blue, ground
truth and true positive (TP) TFBSs in red and false positive (FP) TFBSs in
green. Very long sequences are broken in two for ease of depiction.

models the relationship between the functionality of neighboring
nucleotides, which correspond to neighboring states in the CRF
and is based on the differing likelihoods of the hidden CRF states
transitioning from one to the other. Details of the mathematical
modeling of this feature is provided in Supplementary Material.

Evolutionary conservation and presence or absence of
evolutionary events like duplication and repeats can also play
a role in identifying TFBS, as evidenced by the large body of work
in phylogenetic motif finding. The basic premise in such cases is
that functionally relevant nucleotides like TFBS would be under
selection, and would hence be distinguishable from surrounding
sequence on the basis of evolutionary parameters. While we do not
explicitly use multiple species sequence data, we implicitly use
evolutionary data in terms of feature data.

Presence of repeats: Interspersed repeats and low complexity DNA
sequences are common elements in the genome, often near coding
regions and inside regulatory sequences. The repeat feature is a
simple single nucleotide-based feature indicative of whether that
nucleotide is part of a repeat as predicted by RepeatMasker using

the repeat database RepBase (Jurka et al., 2005). On one hand,
repeats with motif-like patterns may lead to a large number of FP
results, but repeats have also been reported to have been under
purifying selection (Britten, 1994) and to have been harnessed into
the regulatory machinery (Kamal et al., 2006). Thus, instead of
masking out repeats to lower the FP rate, we choose to identify
repeats in the sequence in a bid to find locational correlations with
TFBSs.

PhastCons score and related features: We use the PhastCons
score as an evolutionary score-based feature. PhastCons (Margulies
et al., 2003) is a phylogenetic 2-state HMM which predicts if
nucleotide positions in a multiple alignment are in an evolutionarily
conserved state or not. The PhastCons score at a nucleotide position
is merely the posterior probability that the nucleotide was generated
from the conserved state based on the 15-way Multiz (Blanchette
et al., 2004) alignment of the Drosophilae species, Apis mellifera,
Anopheles gambiae and Tribolium castaneum. We also use two other
derived binary features which we feel to be discriminative based
on an empirical analysis of PhastCons score distributions (Fig. 3):
‘Is PhastCons score <0.05’ and ‘Is PhastCons score >0.95’. We
also keep an additional feature indicating whether PhastCons data
are available or not for bookkeeping purposes.

It is well established in the literature that the distance of the TFBS
to the TSS plays an important role of the efficacy of the TFBS in
regulating the gene (Defrance and Touzet, 2006; Kim et al., 2008;
Tharakaraman et al., 2005), and of the nature of function of the TFBS
(Elnitski et al., 2006). We therefore incorporate several features
which contain information of the distance to the TSS, the locations of
the transcribed and translated regions, and the positioning of binding
site with respect to the gene transcription–translational direction.

Distance to TSS and translated: TFBS are typically present near
coding sequences, and we utilize two features indicative of that fact.
The binary feature ‘Translated’ indicates at each nucleotide position
whether it is translated or not by the gene translation/transcription
machinery. It has also been shown that TFBSs are not uniformly
distributed wrt their distance from the TSS (Defrance and Touzet,
2006), and the Distance to TSS feature is a score of the distance of
each nucleotide from the TSS in question.

5′-UTR and 3′-UTR: The position of the TFBS wrt directionality
of the gene being coded has been shown to be a discriminative
feature for identifying TFBS. We use two binary features indicative
of this fact, the ‘5′UTR’ feature indicates for each nucleotide if it
is located in the 5′ untranslated region, and the ‘3′UTR’ feature
indicates likewise for the 3′ untranslated region.

Recent work in the literature has approached the TFBS prediction
problem as a non-binary classification problem, instead choosing to
model the affinity of a TF to bind to a particular oligonucleotide
sequence with an affinity score (Ward and Bussemaker, 2008).
This has led to the realization that TFBSs may also be effective
gene regulators in cases of low binding affinity but high chromatin
stability and accessibility (Ozsolak et al., 2007). While we model
our TFBS prediction as a sort of classification problem, we still
incorporate the notions of chromatin accessibility and stability.

GC content and melting temperature: The GC content feature
of a genomic sequence or the fraction of G+C bases in a sequence
is a simple heuristic which can be used to estimate several factors
reflective of the stability of the chromatin structure like the melting
temperature and in higher eukaryotes is a determining factor for
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identifying CpG islands (Zhang, 2007), thus being indicative of how
easy it might be for a TF to actually bind in the locality. The window
size w for the genomic neighborhood over which to estimate the GC
content is a hyperparameter that must be determined ahead of time,
and is usually chosen to be of the order of magnitude of the binding
site. The melting temperature feature is defined as the temperature
for which half the DNA strands of an oligonucleotide are in the
double helical structure, while the other half are in a random coil
formation. It corresponds strongly to chromatin stability, and has
been shown as a feature to correlate well with TFBS (Ponomarenko
et al., 1999).

Nucleosome occupancy: Recent research has suggested that
nucleosome occupancy has a strong correlation with binding
preference of TFs (Segal et al., 2006). This is due to the
non-feasibility of access to the chromatin by the TF when a
nucleosome is already bound there. Some research has successfully
used nucleosome occupancy scores to improve TFBS predictions
(Narlikar et al., 2007).

We also tried several other features directly computable from
sequence information, and found that the following features can help
in discriminating between TFBS and non-TFBS. The cause of the
discriminative power of these tracks may stem from the nature of the
binding specificities of the TFs in question, and a closer investigation
is warranted.

Reverse complementarity and conservation symmetry: We also
try two additional features for the CRF based on symmetry of the
oligonucleotide in question. The reverse complementarity feature
indicates as a fraction between 0 and 1 how similar a nucleotide
sequence is to its reverse complement. It is exactly 1 only when an
oligonucleotide sequence is identical to its reverse complement. The
conservation symmetry feature models how symmetric the degree
of conservation in the PWM is wrt the center of the binding site.
This is based on the empirical observation that DNA binding domain
binding specificities often have symmetric sequence conservation
profiles.

The design of new features has exciting new possibilities. Long-
range regulatory effects have been reported in the literature (Carroll
et al., 2005). The CRF model also readily enables us to model long-
range dependencies if we deviate from the chain structured CRF
structure. It can also be used as a form of ensemble learning by
incorporating predictions by other independent tools as features.
Other features which have been shown in the literature to correlate
well with the data and which are candidates for future inclusion on
this and other datasets include the presence of the nucleotide in the
first intron of the regulated gene, and presence of the nucleotide in
the neighborhood of a CpG island.

We tested the discriminative nature of these features on the
dataset in Figure 3. Figure 3a shows the difference in mean values
for background, CRM and motif nucleotides for two of the most
discriminative features: GC content and PhastCons score. Figure 3b
shows the distribution of PhastCons scores in motif versus non-
motif nucleotides, with the most discriminative bins being at either
end of the score range, which offered us some insight as to how
to define a derived feature which is more discriminative than the
original one. Figure 3c shows the interesting multimodal distribution
of the normalized and transformed values of the feature distance to
the TSS, suggesting a complicated, non-uniform distribution worth
additional investigation.
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Fig. 3. (a) Means of two discriminative features plotted for GC content
and PhastCons score for Motifs, CRMs and background nucleotides, (b)
distribution of PhastCons scores in motifs versus non-motifs and (c)
multimodal empirical distribution of feature values for the transformed
distance to TSS feature.

3.2 Experimental setup
In this part, we include biological and empirical bases for selection
of some features, data preparation, hyper-parameter setting, test
scheme and evaluation scheme. For training data, we use a part of
the sequences with ground truth labels. For testing, the required
hyper-parameters in the CRF model are the window size used
in GC percentage calculation and pseudo-counts used to smooth
the probabilities in PWMs to allow for greater tolerance in motif
discovery. We set the window size of GC percentage to 8 bps
(approximately the average length of a motif) and pseudo-count for
smoothing PWM probabilities to 0.5.

Our evaluation is based on a leave-one-out cross-validation
(LOOCV) scheme. Each time we take all but one sequences as
training data, and predict on the remaining sequence by the model
with parameters learnt from the training data. We use the rank
decoding scheme with the prediction factor k set to 0.0015 by
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default. This threshold is obtained by analyzing the empirical density
of TFBSs in training data. Varying the value of the threshold results
in increasing one of the performance metrics of precision (P) or recall
(R) at the cost of the other. For evaluating performance, we use the
standard definitions of P, R and the F1 score using counts of TP,
FP and false negative (FN) prediction instances. The exact method
of calculating the evaluation metrics is given in Supplementary
Material.

Specificity scores and ROC curves are not shown as these
evaluation schemes are inappropriate in the context of motif
detection. True negative (TN) instances in ground truth for motif
data is rare as instances labeled as negatives in the ground truth may
be discovered to contain motifs in the future. Also, the number of
positive instances and number of predictions are much smaller than
the number of total instances, causing the specificity to be very close
to 1 almost always.

3.3 Tests on features
We have empirically established the discriminative nature of our
feature set, but we also examine the soundness of the designed
features in the context of the CRF model after incorporating some
basic features, before including all of them in the model to test
for feature redundancy and compatibility in the CRF framework.
The state transition features and sequence conservation features are
fundamental, so we check the validity of the other features based on
predictions made by a basic model consisting of only state transition
features and sequence conservation features. The soundness of
additional feature is shown by comparing the distributions of
the set of TPs and the set of FPs as predicted by the basic
model.

We learn a CRF model using the two kinds of fundamental
features, and use it to get a set of predictions of TFBSs,
which contains both TP predictions and FP predictions. We split
the predictions into two groups, TP group and FP group, and
compute the GC percentage score, reverse complementary score
and conservation symmetry score for each of the instances in
the two groups. We can show the soundness of a feature by a
statistical analysis on the difference between scores of the two
groups. There are 193 instances in TP group and 499 instances in
FP group. Comparisons of cumulative distribution function (CDF)
curves between TP group and FP group on GC percentage scores,
reverse complementary scores and conservation symmetry scores
are shown in Figure 4. The scores plotted are raw scores without
an offset, such as p, s and cs in Equations (9), (11) and (13) of
Supplementary Material. We can see that the CDF curve of TP group
is almost always lower than that of FP group in GC percentage
score and reverse complementary score, while the CDF curve of TP
group is almost always higher than that of FP group in conservation
symmetry score.

For the feature of GC percentage, the scores in TP group have
a mean at 0.4641 and sample variance at 0.0043, and the scores in
FP group have a mean at 0.4323 and sample variance at 0.0065.
Assuming that they both follow Gaussian distributions, we have a
difference between means at 0.0318 with a SD at 0.0059, which
gives us a confidence value at 1–4×10−8 that the mean of TP
group is bigger than the mean of FP group. It is credible that GC
percentage feature is informative. Following a similar analysis, for
the feature of reverse complementarity, the mean TP score is 0.3041
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Fig. 4. On (a) GC percentage score, (b) reverse complementary score and
(c) conservation symmetry score, a comparison of CDF curves between TP
group and FP group.

and sample variance 0.0349, and the mean FP score is 0.2413 and
sample variance 0.0360. With a difference between means at 0.0159
with a SD at 0.0059, we have a confidence value at 1–4×10−5 that
the mean of TP group is bigger than the mean of FP group. For the
feature of conservation symmetry, the TP scores have mean 0.5215
and sample variance 0.0541, and the FP scores have a mean 0.5950
and sample variance 0.0666. The confidence value that TP group
has a smaller average score than FP group is 1–1.5×10−4.

3.4 Performances on TFBS prediction
Synthetic dataset: We compare the CRF model with BayCis,
ClusterBuster and Cister on the synthetic TRS dataset. CRF model
outperforms ClusterBuster and Cister but not BayCis (Fig. 5a) on
the synthetic dataset. BayCis has an advantage over the other tools
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Fig. 5. (a) P–R performance of CRF, BayCis, Cluster-Buster and Cister on
the synthetic dataset, (b) F1 score and (c) P–R curve of the CRF model
in comparison with other algorithms at their default settings on the real
D. melanogaster TRS dataset.

having the same background model as the simulation scheme, but
we outperform Baycis on the real dataset.
Drosophila dataset: We compare the CRF model with BayCis,
Ahab, Cluster-Buster, Cister, Mscan and Stubb on the real
D. melanogaster TRS dataset. The overall F1 scores of the CRF
model and six comparing methods are shown in Figure 5. All the
algorithms are set to default configurations. The feature-based CRF
model outperforms all other methods on the F1 score measure. It
is 22% higher than the best competing tool. We also show the P–R
curves of the our methods and BayCis, as well as points in the P–R
landscape for other tools in Figure 5. We plot P-R curves of the CRF
model by varying the prediction factor k (from 0.0005 to 0.0040).
For BayCis, we plot a P-R curve resulting from different thresholds
for predictions, in addition to its default MAP setting. The CRF
model outperforms BayCis, Ahab, ClusterBuster and Stubb in their
default settings. The other two methods strike extremely different
balances between P and R in their default output. MSCAN focuses
on very high P predictions, while Cister is geared towards high
values of R. It is noticeable that Stubb’s performance is much below

the rest, possibly because it uses distinct motif-to-motif transition
probabilities, which can only be properly learned without overfitting
from datasets richer in scope than the present one. Addition of
further non-redundant features like other epigenetic feature scores
is expected to improve performance further. A set of predictions
by the CRF model with default setting comparing with that of
Cluster-Buster is shown in Figure 2. While they have comparable
TP predictions, CRF model makes much less FP predictions than
Cluster-Buster does. In a way, the performance gap between the
CRF model and the HMM-based models may be looked upon as a
combination of two factors: the discriminative nature of the analysis,
and the availability of features besides PWM and transition data.

4 DISCUSSION
We propose DISCOVER, a discriminative model using CRFs for
motif discovery. Among advantages of the CRF model are the facts
that the user can incorporate new features at will (with the model
automatically adjusting feature weights to weed out uninformative
features) and can configure our publicly available tool to add new
genetic and epigenetic features. It can even be used for ensemble
learning by incorporating predictions from other models as features.
In the future, a Bayesian version of the work can be tried by putting
priors on parameters as long as they do not break the concavity of
the target function. We will model higher order CRFs by moving
beyond chain structure CRFs with only edges between neighboring
hidden states to incorporating feature functions with long-range
dependencies to handle features like motif co-occurrence, distance
models for CRM lengths and inter-motif spacer runs. A detailed
discussion on the scope of the model can found in Supplementary
Material.
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