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Abstract

Functional turnover of transcription factor binding sites (TFBSs), such as whole-motif loss or gain, are common events
during genome evolution. Conventional probabilistic phylogenetic shadowing methods model the evolution of genomes
only at nucleotide level, and lack the ability to capture the evolutionary dynamics of functional turnover of aligned
sequence entities. As a result, comparative genomic search of non-conserved motifs across evolutionarily related taxa
remains a difficult challenge, especially in higher eukaryotes, where the cis-regulatory regions containing motifs can be long
and divergent; existing methods rely heavily on specialized pattern-driven heuristic search or sampling algorithms, which
can be difficult to generalize and hard to interpret based on phylogenetic principles. We propose a new method:
Conditional Shadowing via Multi-resolution Evolutionary Trees, or CSMET, which uses a context-dependent probabilistic
graphical model that allows aligned sites from different taxa in a multiple alignment to be modeled by either a background
or an appropriate motif phylogeny conditioning on the functional specifications of each taxon. The functional specifications
themselves are the output of a phylogeny which models the evolution not of individual nucleotides, but of the overall
functionality (e.g., functional retention or loss) of the aligned sequence segments over lineages. Combining this method
with a hidden Markov model that autocorrelates evolutionary rates on successive sites in the genome, CSMET offers a
principled way to take into consideration lineage-specific evolution of TFBSs during motif detection, and a readily
computable analytical form of the posterior distribution of motifs under TFBS turnover. On both simulated and real
Drosophila cis-regulatory modules, CSMET outperforms other state-of-the-art comparative genomic motif finders.
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Introduction

Phylogenetic shadowing techniques based on probabilistic

molecular evolution models have been widely used in various

comparative genomic analyses to uncover sequence entities

believed to be conserved across species [1–4]. It is nothworthy

that in the literature, the term ‘‘Phylogenetic Shadowing’’ has

sometimes been (unnecessarily) narrowed down to refer to

methods tailored specifically to the case of analyzing extremely

closely related species, after its successful application to functional

annotation of the primate genomes [1]. Here we adopt a more

general interpretation reflecting the long-standing evolutionary

principles and inferential technique underlying such analysis,

rather than the choice of the study subjects. It refers to the class of

methods that treat evolutionarily related entities as outcomes of

some stochastic processes structured as a phylogeny, whereby the

relationships between the studied entities can be inferred and

utilized to unravel their underlying characteristics of interest.

Typically, extant phylogenetic shadowing methods employ either

a nucleotide (nt) or an amino-acid (aa) substitution process to

model the evolution of orthologous entities, such as genes or

proteins of interest at every nt or aa site. There are two key

assumptions underlying the basic form of these approaches. 1) The

orthology of the sequence entities across taxa, as captured by a

multiple sequence alignment, is complete in the sense that there is no

functional turnover of the aligned entities (e.g., no loss or gain of a

gene) in any of the taxa; so that all aligned sequences can be

modeled as descendants of a common ancestor following a single

evolutionary tree model unique to the function (e.g., either gene or

background) of the sequence entities. 2) Every site in the same

entity evolves independently. Although not realistic, such a complete

and independent shadowing model can lead to efficient algorithms

for scoring aligned sequences; and in practice it works well for

modeling large and highly conserved functional entities such as

gene coding regions in phylogenetically closely related taxa, and it

has led to a number of successful comparative genomic gene

finders [5–7].

Unlike genes, where functional turnover usually occurs only in

distant species and the complete orthology assumption is largely

satisfied when sequences are aligned across phylogenetically

closely related species, short and degenerate sequence patterns

such as transcription factor (TF) binding sites (i.e., motifs) exhibit

frequent turnover even across closely related taxa, such as various

fruit fly species [8] (Figure 1). As we will discuss shortly, the

functional heterogeneity of aligned regions across different taxa

due to motif turnover often renders the conventional phylogenetic

shadowing models inappropriate for comparative genomic motif

finding. Some recent methods combine scoring functions modified

PLoS Computational Biology | www.ploscompbiol.org 1 June 2008 | Volume 4 | Issue 6 | e1000090



from classic molecular evolution models with more flexible

heuristic partial alignment search, and exhibit better sensitivity

to non-conserved motifs [9,10], but they offer little insight into the

evolutionary dynamics of motif turnover and can have substantial

computational complexity. In this paper, we present a principled

approach that addresses the ‘‘incomplete orthology’’ issue arising

from either functional gain/loss such as motif turnover or

imperfect sequence alignment. We propose a new algorithm for

searching binding sites of given TFs in multiple genomes based on

a novel multi-resolution evolutionary model named CSMET.

CSMET stands for Conditional Shadowing via Multi-resolution

Evolutionary Trees. It explicitly models motif turnover across

species through a ‘‘low resolution’’ phylogeny defined by a

functional substitution process. Conditioning on the motif turnover

states, which specify the presence or absence of TFBS functionality

in each taxon, at any given location, specific ‘‘high resolution’’

phylogenies defined by function-specific nucleotide substitution

processes are applied to different subsets (corresponding to taxa

with different turnover status) of the aligned sequences at the

attendant location. The model thereby captures function-specific

sequence evolution in every taxon rather than subjecting all taxa

to the same phylogeny as in the conventional model (Figure 2).

Comparative Genomic Motif Search Under Incomplete
Orthology

We concern ourselves with uncovering motifs in eukaryotic cis-

regulatory modules (CRM) from multiple evolutionarily related

species, such as the members from the Drosophila clade. Due to

high degeneracy of motif instances, and complex motif organiza-

tion within the CRMs, pattern-matching-based motif search in

higher eukaryotes remains a difficult problem, even when

representations such as the position weight matrices (PWMs) of

the motifs are given. Extant methods that operate on a single

genome or simpler organisms such as yeast often yield a large

number of false positives, especially when the sequence to be

examined spans a long region (e.g., tens of thousands of bps)

beyond the basal promoters, where possible CRMs could be

located. As in gene finding, having orthologous sequences from

multiple evolutionarily related taxa can potentially benefit motif

detection because a reasonable alignment of these sequences could

enhance the contrast of sequence conservation in motifs with

respect to that of the non-motif regions, However, the alignment

quality of non-coding regions is usually significantly worse than

that of the coding regions, so that the aligned motif sequences are

not reliably orthologous. This is often unavoidable even for the

best possible local alignment software because of the short lengths

and weak conservation of TFBSs. When applying a standard

shadowing model on such alignments, motif instances aligned with

Author Summary

Functional turnover of transcription factor binding sites
(TFBSs), such as whole-motif loss or gain, are common
events during genome evolution, and play a major role in
shaping the genome and regulatory circuitry of contem-
porary species. Conventional methods for searching non-
conserved motifs across evolutionarily related species have
little or no probabilistic machinery to explicitly model this
important evolutionary process; therefore, they offer little
insight into the mechanism and dynamics of TFBS turnover
and have limited power in finding motif patterns shaped
by such processes. In this paper, we propose a new
method: Conditional Shadowing via Multi-resolution Evo-
lutionary Trees, or CSMET, which uses a mathematically
elegant and computationally efficient way to model
biological sequence evolution at both nucleotide level at
each individual site, and functional level of a whole TFBS.
CSMET offers the first principled way to take into
consideration lineage-specific evolution of TFBSs and
CRMs during motif detection, and offers a readily
computable analytical form of the posterior distribution
of motifs under TFBS turnover. Its performance improves
upon current state-of-the-art programs. It represents an
initial foray into the problem of statistical inference of
functional evolution of TFBS, and offers a well-founded
mathematical basis for the development of more realistic
and informative models.

Figure 1. A demonstration of motif turnover. (A) Two examples of multiple alignments of Drosophila CRMs, showing functional turnover in
known TFBSs. The first one (top) shows an instance of binding site loss in D. ananassae, the motif in question being Caudal, in the Hairy 6 CRM. The
second one (bottom) shows more instances of TFBS loss/gain. This example depicts a turnover with only melanogaster, simulans, and sechellia
retaining the binding site functionality. (B) Putative TFBSs in eve2 enhancer across 4 taxa: D. melanogaster, D. yakuba, D. erecta and D. pseudoobscura.
(Extracted and modified from Figure 4 in [11].) Notice that orthologs of melanogaster motifs bcd-3 and hb can not be identified from some of the
other taxa.
doi:10.1371/journal.pcbi.1000090.g001

Comparative Genomic Motif Scan Under Site Turnover

PLoS Computational Biology | www.ploscompbiol.org 2 June 2008 | Volume 4 | Issue 6 | e1000090



non-orthologous sequences or gaps can be hard to identify due to

low overall shadowing score of the aligned sequences (Figure 1A).

In addition to the incomplete orthology due to imperfect alignment,

a more serious concern comes from a legitimate uncertainty over

the actual functional orthology of regions that are alignment-wise

orthologous.

A number of recent investigations have shown that TFBS loss

and gain are fairly common events during genome evolution

[8,12]. For example, Patel et al [13] showed that aligned ‘‘motif

sites’’ in orthologous CRMs in the Drosophila clade may have

varying functionality in different taxa. Such cases usually occur in

regions with reduced evolutionary constraints, such as regions where

motifs are abundant, or near a duplication event. The sequence

dissimilarities of CRMs across taxa include indel events in the

spacers, as well as gains and losses of binding sites for TFs such as the

bcd-3 and hb-1 motifs in the evenskipped stripe 2 (eve2) (Figure 1B). A

recent statistical analysis of the Zeste binding sites in several Drosophila

taxa also revealed existence of large-scale functional turnover [12].

Nevertheless, the fact that sequence similarity is absent does not

necessarily mean that the overall functional effect of the CRM as a

whole is vastly different. In fact, for the Drosophila clade, despite the

substantial sequence dissimilarity in gap-gene CRMs such as eve2, the

expression of these gap genes shows similar spatio-temporal stripe

patterns across the taxa [8,13].

Although a clear understanding of the evolutionary dynamics

underlying such inter- and intra-taxa diversity is still lacking, it is

hypothesized that regulatory sequences such as TFBSs and CRMs

may undergo adaptive evolution via stabilizing selections acting

synergistically on different loci within the sequence elements [8,12],

which causes site evolution to be non-iid and non-isotropic across all

taxa. In such a scenario, it is crucial to be able to model the evolution

of biological entities not only at the resolution of individual

nucleotides, but also at more macroscopic levels, such as the

functionality of whole sequence elements such as TFBSs over

lineages. To our knowledge, so far there have been few attempts

along this line, especially in the context of motif detection. The

CSMET model presented in this paper intends to address this issue.

Related Work
Orthology-based motif detection methods developed so far are

mainly based on nucleotide-level conservation. Some of the

methods do not resort to a formal evolutionary model [14], but

are guided by either empirical conservation measures [15–17],

such as parsimonious substitution events or window-based

nucleotide identity, or by empirical likelihood functions not

explicitly modeling sequence evolution [4,18,19]. The advantage

of these non-phylogeny based methods lies in the simplicity of their

design, and their non-reliance on strong evolutionary assumptions.

However, since they do not correspond to explicit evolutionary

models, their utility is restricted to purely pattern search, and not

for analytical tasks such as ancestral inference or evolutionary

parameter estimation. Some of these methods employ specialized

heuristic search algorithms that are difficult to scale up to multiple

species, or generalize to aligned sequences with high divergence.

Phylogenetic methods such as EMnEM [20], MONKEY [21],

and our in-house implementation of PhyloHMM (originally

implemented in [1] for gene finding, but in our own version tailored

for motif search) explicitly adopt a complete and independent shadowing

model at the nucleotide level. These methods are all based on the

assumption of homogeneity of functionality across orthologous

nucleotides, which is not always true even among relatively closely

related species (e.g., of divergence less than 50 mya in Drosophila).

Empirical estimation and simulation of turnover events is an

emerging subject in the literature [12,22], but to our knowledge,

no explicit evolutionary model for functional turnover has been

proposed and brought to bear in comparative genomic search of

non-conserved motifs. Thus our CSMET model represents an

initial foray in this direction. Closely related to our work, two

recent algorithms, rMonkey [12]—an extension over the MON-

KEY program, and PhyloGibbs [9]—a Gibbs sampling based

motif detection algorithm, can also explicitly account for

differential functionality among orthologs, both using the tech-

nique of shuffling or reducing the input alignment to create well

conserved local subalignments. But in both methods, no explicit

functional turnover model has been used to infer the turnover

events. Another recent program, PhyME [10], partially addresses

the incomplete orthology issue via a heuristic that allows motifs

only present in a pre-chosen reference taxon to be also detectable,

but it is not clear how to generalize this ability to motifs present in

arbitrary combination of other taxa, and so far no well-founded

evolutionary hypothesis and model is provided to explain the

heuristic. Non-homogeneous conservation due to selection across

aligned sites has also been studied in DLESS [23] and PhastCons

[24], but unlike in CSMET, no explicit substitution model for

lineage-specific functional evolution was used in these algorithms,

and the HMM-based model employed there makes it computa-

tionally much more expensive than CSMET to systematically

explore all possible evolutionary hypotheses. A notable work in the

context of protein classification proposed a phylogenomic model

over protein functions, which employs a regression-like functional

to model the evolution of protein functions represented as feature

vectors along lineages in a complete phylogeny [25], but such ideas

Figure 2. Diagrams showing the underlying generative models underlying basic phylogenetic shadowing approaches and the CSMET
approach. (A) The basic mixture of full-phylogeny model underlying PhyloHMM and EMnEM, where functional homogeneity across aligned sequences is
assumed, and all aligned taxa (i.e., rows) are either under a full motif phylogeny (when Zt = 1) or a full background phylogeny (when Zt = 0). (B) The
conditional shadowing model underlying CSMET, with an explicit evolutionary model Tf for species-specific functional turnover, and partial motif or
background phylogenies over subsets of taxa according to the turnover status. See the Results section for explanations of the notations.
doi:10.1371/journal.pcbi.1000090.g002

Comparative Genomic Motif Scan Under Site Turnover
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have not been explored so far for comparative genomic motif

search.

Various nucleotide substitution models, including the Jukes-

Cantor 69 (JC69) model [26], and the Felsenstein 81 (F81) model

[27], have been employed in current phylogenetic shadowing or

footprinting algorithms. PhyloGibbs and PhyME use an analogue

of F81 proposed in [28], which is one of the simplest models to

handle arbitrary stationary distributions, necessary to model

various specific PWMs of motifs. Both PhyME and PhyloGibbs

also offer an alternative to use a simplified star-phylogeny to

replace the phylogenetic tree when dealing with a large number of

taxa, which corresponds to an even simpler substitution process.

The CSMET Approach
Our CSMET model differs from these existing methods in

several important ways. First, it uses a different evolutionary model

based on a coupled-set of both functional and nucleotide

substitution processes, rather than a single nucleotide substitution

model to score every alignment block. Second, it uses a more

sophisticated and popular nucleotide substitution process based on

the Felsenstein84 (F84) model [29], which captures the transition/

transversion bias. Third, it employs a hidden Markov model that

explicitly models autocorrelation of evolutionary rates on succes-

sive sites in the genome. Fourth, it uses an efficient deterministic

inference algorithm that is linear to the length of the input

sequence and either exponential (under a full functional

phylogeny) or linear (under a star-shaped functional phylogeny)

to the number of the aligned taxa, rather than the Monte Carlo or

heuristic search algorithms that require long convergence times.

Essentially, CSMET is a context-dependent probabilistic

graphical model that allows a single column in a multiple

alignment to be modeled by multiple evolutionary trees condi-

tioned on the functional specifications of each row (i.e., the

functional identity of a substring in the corresponding taxon)

(Figure 2). When conjoined with a hidden Markov model that

auto-correlates the choices of different evolutionary rates on the

phylogenetic trees at different sites, we have a stochastic generative

model of phylogenetically related CRM sequences that allows both

binding site turnover in arbitrary subsets of taxa, and coupling of

evolutionary forces at different sites based on the motif

organizations within CRMs. Overall, CSMET offers an elegant

and efficient way to take into consideration complex evolutionary

mechanisms of regulatory sequences during motif detection. When

such a model is properly trained on annotated sequences, it can be

used for comparative genomic motif search in all aligned taxa

based on a posterior probabilistic inference algorithm. This model

can be also used for de novo motif finding as programs such as

PhyloGibbs and PhyME, with a straightforward extension of the

inference procedure that couples the training and prediction

routines in an expectation-maximization (EM) iteration on

unannotated sequence alignments. In this paper, we focus on

supervised motif search in higher eukaryotic genomes.

We compare CSMET with representative competing algo-

rithms, including EMnEm, PhyloHMM, PhyloGibbs, and a

mono-genomic baseline Stubb (which uses an HMM on single

species) on both simulated data, and a pre-aligned Drosophila

dataset containing 14 developmental CRMs for 11 aligned

Drosophila species. Annotations for motif occurrences in D.

melanogaster of 5 gap-gene TFs - Bicoid, Caudal, Hunchback, Kruppel

and Knirps - were obtained from the literature. We show that

CSMET outperforms the other methods on both synthetic and

real data, and identifies a number of previously unknown

occurrences of motifs within and near the study CRMs. The

CSMET program, the data used in this analysis, and the predicted

TFBS in Drosophila sequences, are available for download at

http://www.sailing.cs.cmu.edu/csmet/.

Results

The CSMET Model
Model for phylogenetically related motif sequences. To

motivate and explain the statistical foundation and biological

rationale underlying the CSMET model, we begin with a brief

description of a conventional model for phylogenetically related

sequences based on the classical molecular substitution process,

where functional turnover of motifs is not explicitly modeled. This

model will be used as a component in our proposed model.

Consider a multiple alignment of M instances of a motif of

length L. Let A denote an M 6 L matrix containing M rows

a1,…,aM, each representing an instance of this motif, i.e., ai ;
[ai,1,…,ai,L], where ai,l[N: A,G,C,Tf g. Due to the stochastic

nature of the sequence composition of TFBSs, a popular

representation of a motif pattern is the position weight matrix

(PWM), h;(h1,…,hL), of which each column vector hl defines a

multinomial probability distribution of the nucleotides observed at

the lth position of instances of this motif. That is,

P ai,l hljð Þ~Pk[Nh
N ai,l ,kð Þ
l,k , where N x,yð Þ is an indicator function

that equals to 1 when x = y and 0 otherwise. Under a PWM, all

sites in the motif are assumed to be mutually independent, thus the

probability of a length-L instance is simply a product of the

probabilities of nucleotides at every site: P ai hjð Þ~PL
l~1P ai,l hljð Þ.

When the motif instances in A are from different genomic

locations of a single species (i.e., they are phylogenetically unrelated),

the likelihood of the aligned motifs A is simply a product of

the likelihoods of every instance ai, P Að Þ~PM
i~1P ai hjð Þ~

PL
l~1P

M
i~1P ai,l hljð Þ, which means all the rows in A are

independent of each other (although in reality, they might not

evolve independently.)

If A contains M phylogenetically related motif instances each

from a different species, then a straightforward way to model the

likelihood of A is to assume that the instances therein from

different taxa are shadowed by a phylogenetic tree that defines a

nucleotide-level substitution process from an ancestral sequence

[29,30] (Figure 2A). Our proposed method uses this model as a

building block.

Formally, a phylogenetic shadowing model Tm for a motif is a

tree-likelihood model specified by a four-tuple {h,t,b,l}, where

h;(h1,…hL) represents the equilibrium nucleotide distributions

at the root of the evolutionary tree of every site within the motif;

t;(t1,…,tL) denotes the (usually identical) topologies of the

evolutionary trees of every site; b;(b1,…,bL) denotes the sets of

branch lengths of the evolutionary trees; and l represents where

necessary some additional evolutionary parameters of the motif

depending on the specific nucleotide substitution models. Under a

phylogenetic shadowing model, the probability distribution of

nucleotides in any taxon that corresponds to a leaf conditioning on

its predecessor in the tree can be derived based on a continuous-

time Markov model of nucleotide substitution along the tree

branches [30]. We employ the F84 substitution model parame-

terized by a given equilibrium distribution, a transition/tranver-

sion ratio r, and a total substitution rate m that can be estimated

from training data [29]. Detailed derivation and explicit

expressions are provided in Materials and Methods.

Typically, we can use the PWM of the motif as the equilibrium

distribution of the motif phylogeny. For simplicity, one can also

assume that all sites within the motif share the same topology t and

the same branch lengths b. This means that the evolutionary

processes underlying each site within the motif are homogeneous.

Comparative Genomic Motif Scan Under Site Turnover
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Similarly, we can define Tb ; {hb, tb, bb, lb} for the background.

Assuming that sites within the motif evolve independently, the

likelihood of M aligned L-mers can be expressed as:

P A Tmjð Þ~P
L

l~1
PN Al hl ,t,b,ljð Þ, ð1Þ

where Al denotes the lth column in A, and PN
: hl ,t,b,ljð Þ is the

marginal likelihood of the leaves under an motif-site-specific

evolutionary tree T lð Þ
m : hl ,t,b,lf g for nucleotide substitution,

which can be computed using Felsenstein’s pruning algorithm

[30], as detailed in Materials and Methods.

To model a multiple alignment of regulatory regions that is N

base-pairs long and contains motifs at unknown positions, we can

assume that every L-mer block in the alignment can correspond to

either a motif sequence, or the background, specified by a hidden

functional state Zt, where t denotes the position of the left-most

column of the block in the alignment. (For simplicity, we consider

only one motif type here, but the formulation readily generalizes to

multiple motif types.) The state sequence Z ; Z1:N can be thought

of as a functional annotation sequence of an ancestral regulatory

region of length N. In the EMnEM model [20], the Zt’s are

assumed to be independently sampled from a Binomial distribu-

tion of motif and background states, similar to the classic mixture

models of motif underlying MEME (Figure 2A). In a PhyloHMM

originally proposed in [3] for comparative gene finding, which can

be easily extended for motif search, Z1:N can follow a hidden

Markov model that captures the transition probabilities between

background and motifs.

Model for motif turnover. A caveat of the phylogenetic

shadowing model described above is that, at every location t, the

functionality indicator Zt must apply to all the taxa (i.e., rows) in

the alignment (as illustrated in Figure 2A), meaning that the

aligned substrings from all taxa at this position are derived from

the same evolutionary tree (either the motif or the background

tree, depending on the value of Zt; when Zt is hidden, this results in

a mixture of two complete trees). This is a strong orthologous

assumption which insists that every row in the alignment block

must have evolved from the same most recent common ancestor

(MRCA) according to the same molecular evolution model. This

assumption might not be valid for every region in the alignment

due to abrupt functional turnover such as whole motif insertion/

deletion, or due to imperfect alignment that fails to identify the

true sequence orthology.

We assume that every sequence segment in an alignment block,

generically referred as At where t denotes the left-most position of

the alignment, has its own functionality indicator Zi
t. Generalizing

the molecular evolution model for base substitution, we posit that

the functional annotation vector Zt: Z1
t , . . . ,ZM

t

� �’
of a block of

aligned segments are themselves governed by a coarser-grained

evolutionary tree that models the evolution of the functionalities of the

attendant segments in different taxa (Figure 2B). We refer to this

evolutionary tree as a (functional) annotation tree (or, interchange-

ably, a functional phylogeny), denoted by Tf ; {a, tf, bf, lf}. In

such a tree model, each leaf represents a random variable Zi
t

whose value reveals the functional status (i.e., being a motif,

background, or more detailed function information such as motif

types, etc.) of the segment from taxon i, and the root is

characterized by a hypothetical ancestral functionality indicator

Zr
t and an equilibrium distribution a. Along the branches of this

tree, the functional states evolve according to a functionality

substitution model, in much the same way the nucleotides do under

a molecular substitution model, except that now the model para-

meters Tf are fitted differently (we will return to this point in the

Materials and Methods section) and the evolutionary dynamics

can also have richer structures. For example, in the model

proposed by [25] for protein function evolution, the evolutionary

dynamics were captured by a logistic regression rather than a

constant-rate continuous-time Markov process used in standard

molecular substitution models. For simplicity,here we adopt a

simple JC69 model for functionality substitution, which is denoted

as PF(Zt|Tf) (see Equation 4 in Materials and Methods), and defer

the exploration of richer models to future research. In summary,

the functional phylogeny Tf models the quantum changes of

functional elements (rather than the fine-grained changes at the

nucleotide level) during evolution in terms of whether an entire

functional element is preserved, lost, or emerged, during the

course of speciation.

Conditional shadowing under motif turnover. To

capture the effect of motif turnover, we assume that conditioning

on the functional states of all rows (i.e., species), which are

represented as a random column vector Zt: Z1
t , . . . ,ZM

t

� �’
distributed according to the functional phylogeny specified by

Tf, the sequences in alignment block t admit either a marginal motif

phylogeny or a marginal background phylogeny. As shown in

Figure 2B, typically, for a given block, only a subset of the rows A0t
correspond to conserved instances of a motif (e.g., rows 1, 2, and

3), and therefore their joint probability is defined by a marginal

phylogeny T 0m of the full motif phylogeny (i.e., the subtree

highlighted by solid red lines in Figure 2B). The remaining part

of the motif phylogeny (represented by the subtree in dotted red

lines in Figure 2B), which corresponds to taxa where the

corresponding motifs had turned-over to background sequences,

needs to be marginalized out. We can efficiently compute

the likelihood of the preserved motif instances A0t:
ai tð Þ : s:t: Zi

t~1
� �

under the marginal motif phylogeny T 0m,

expressed as P A0 T 0m
��� �

using the standard pruning algorithm.

Similarly, the subset of rows A00t: ai tð Þ : s:t: Zi
t~0

� �
corresponding to the background or merely gaps admit a

marginal background phylogeny T 0b (e.g., the blue tree with leaves

only correspond to rows 4 and 5 in Figure 2B). Putting these two

parts together, now for every position t in the input alignment, we

have the following joint probability (i.e., the complete likelihood)

of the observed alignment block At, the vector of instantiated

extant functional states zt, and an instantiated ancestral functional

state zr
t under a conditional shadowing model with multiple

evolutionary trees (aka, CSMET):

P At,zt,z
r
t

� �
~P At Ztj ~zt,Tm,Tbð ÞP Zt~zt Zr

t

�� ~zr
t ,Tf

� �

P Zr
t~zr

t

� �
~P A0t T 0m

��� �
P A00t T 0b

��� �
P zt zr

t ,Ta

��� �
P zr

t

� �
:

ð2Þ

In practice, the leaf functional states zt of an alignment block

starting at position t, and the ancestral functional state zr
t are not

observed. Thus the likelihood score of At follows a complex

mixture of marginal phylogenies defined by all possible joint

configurations of functional states zt: z1
t , . . . ,zM

t

� �’
and the

ancestral state zr, rather than a simple motif/background

mixture as in extant models. The typical tasks in motif detection

involves either computing the marginal conditional likelihood

P At zr
t

��� �
for all possible states of zr

t , which will be used as the

emission probability in an HMM of the ancestral functional states

over the entire alignment (to be detailed in the next section); or the

marginal posterior P(zt|A1:T), which will be used to extract the

maximum a posteriori (MAP) motif annotation of the alignment.

Both tasks involve a marginalization step that sums over all joint

configurations of the internal tree nodes, zr’s, and zt’s. This leads to

an inference problem in a state space defined by the product of
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multiple trees and therefore can be computationally intensive.

Since in practice it is unusual to encounter more than 20 or so taxa

in the comparative genomic setting, inference is still feasible. In

this case, one can apply a coupled-pruning algorithm described in the

Materials and Methods or a standard junction tree algorithm [31]

for exact inference.

For an alignment of a large number of species and/or for a

problem which involves searching for a large number of motifs

simultaneously, marginalization of the product space of trees can

be prohibitive. In these circumstances, we can apply an

approximate inference method such as the generalized mean field

algorithm [32], which decomposes the coupled trees in CSMET

into disjoint trees and applies iterative message-passing across

these trees to obtain an approximate posterior of zt or the

conditional likelihood of At. Alternatively we can replace some or

all of the full phylogenetic trees for motif, background and

functional evolution by star-topology phylogenies as in PhyloGibbs

[9]. For simplicity of the exposition, we omit details of these

generalizations.

Tree- and rate-transition along alignment. Different sites

in the genome are subject to different evolutionary constraints and

therefore follow phylogenetic trees with different equilibriums,

topologies and rates. The conditional phylogenetic shadowing

model described above couples multiple site-specific trees of all

sites within a moving window of alignment block via a functional

phylogeny; but it does not explicitly model transitions between

possibly different evolutionary processes as the window scans over

different functional entities along the aligned sequences, for

example, transitions between motifs and different background

regions, and among different motifs.

We introduce a hidden Markov model to model the transitions

between functional annotations along the alignment. In principle,

this HMM can employ highly structured transition models such as

the global HMMs used in LOGOS [33] or CISTER [34], which

intend to capture sophisticated ‘‘motif grammars’’ underlying

higher eukaryotic CRMs. In this paper, we adopt a simplistic 3-

state HMM that models the length of the spacer between motifs as

a geometric distribution, and allows the motifs to be on either

strand of the DNA. We define the HMM over the sequence of

ancestral functional states Zr
1:N , modeling the spatial transitions of

functionalities along a hypothetical ancestral regulatory sequence

underlying the aligned sequences from the study species. To model

TFBS on either DNA strand with opposite orientations, two

functional states are needed for each type of motifs, which

determine the appropriate orientation for the PWM employed by

the motif tree Tm for defining the likelihood of a selected DNA

substring; but these two functional states correspond to a

degenerated motif state (i.e., Zr
t~1) at the root of the functional

tree Tf in CSMET, and follow the same turnover process. Details

of such an HMM is given in Materials and Methods.

Unlike the standard HMM for mono-genomic motif detection

where the emission probability uses a simple conditional

multinomial distribution of a single nucleotide, or a PhyloHMM

for comparative-genomic motif detection ignoring motif turnover

where the emission probability is defined by a conditional

likelihood of a column of aligned nucleotides under a single

phylogeny, to accommodate functional turnover of segments in

certain species in the alignment, we define the emission model to

be the CSMET conditional likelihood of an alignment block,

Pc At Tm,Tb,Tf ,zr
t

��� �
~
X

zt
P At zt,Tf ,Tb

��� �
P zt zr

t ,Tf

��� �
, and

thereby enable conditional shadowing over the taxa at each site.

A technical issue arising from this construction is that unlike the

PhyloHMM, which is still a standard 1st-order HMM, in our case

we have a higher-order HMM due to the contex-dependent

coupling of all the sites within a motif by the functional phylogeny

Tf, which models the whole sequence segment within a window of

length L as a unit. In the next section, we outline statistical

inference strategies that address this technical issue.

Strategy
Posterior inference. The incorporation of the functional

phylogeny Tf to explicitly model functional turnover of entire

segments (rather than individual sites) of DNA sequences in

different taxa in a multiple alignment introduces not only higher-

order Markov dependencies among sites, but also context-

dependent dependencies among taxa. Thus CSMET is

essentially a probabilistic model with context-specific independencies,

which is well-known to be intractable in general [35]. Figure 3A

and 3B show an example of the context-specific relationships

among variables due to two different possible value-configurations

of the hidden variables corresponding to ancestral and taxa-

specific functional annotations (of a small chunk of the alignment).

Computing the likelihood of the entire alignment requires a

summation of all joint configurations of all of these hidden

variables, for which no efficient exact algorithm resembling the

dynamic programming algorithms applied to HMMs is available.

While it is possible to implement a Monte Carlo algorithm that

performs sampling over the functional annotation space of

Z1:M
1:N

� �
| Zr

1:N

� �
conditioning on the observed multiple align-

ment, we propose an approximate algorithm for posterior

inference. As illustrated in Figure 3C, we can treat an N-column

alignment as a sequence of (N2L+1) consecutive L-column aligned

blocks. We assume each such block At is either generated from a

CSMET emission model conditioning on the ancestral function of

this segment being a background, i.e., P At Zr
t

�� ~0
� �

, or it can be

generated from a CSMET conditioning on the ancestral function

being a motif, say, of type k, expressed as P At Zr
t

�� ~k
� �

. We can

pre-compute the emission probabilities for all the aligned blocks,

plug them back into an equivalent HMM of Zr
t ’s on blocks rather

than on columns, and then compute the posterior probabilities or

Viterbi-sequence of the labels of each block using the standard

dynamic programming algorithms (e.g., forward-backward) for

HMMs (see Materials and Methods section for details). The

approximation introduced here lies in the approximate computing

of the emission probabilities for the blocks, specifically at the

boundary between motifs and background. For these blocks the

likelihood of the aligned sequences should be defined by two

different emissions, one on the background sub-block and the

other on the motif sub-block, whereas our approximation employs

only a single emission—either an entirely background-derived

CSMET P At Zr
t

�� ~0
� �

or an entirely motif-derived CSMET

P At Zr
t

�� ~k
� �

. But since our approximation results in a poorer fit

only for the boundary regions, we expect that the overall posterior

indication of the motifs, which is primarily driven by the emission

probabilities of the motif blocks, will only suffer moderate

weakening of contrast at the boundaries. We refer to this

approximation method as block-approximation (BA). Another more

subtle approximation due to BA is the ignoring of different

turnover behaviors within a block At conditioning on the ancestral

function of this segment( being a motif or a background), as

exemplified in Figure 3B. Unlike a motif block derived from an

ancestral motif, a segment of ancestral background sites do not

evolve as a whole block, thus a block At entirely originated from a

ancestral background can contain rows (descendents) that are

either entirely non-motif, or partially non-motif and partially motif

(i.e., starting from an arbitrary position t9 in window t:t+L, the

segment t9: t9+L, part of which extends out of At, in an arbitrary

taxon can evolve into a motif), whereas a block At entirely
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originated from a motif can only contain either fully preserved

motif rows or turned-over non-motif rows. A detailed discussion of

this subtlety is beyond the scope of this paper, and BA simply

treats each entire row in At as a homogeneous functional

evolutionary unit. The computational time for BA is linear in

the length of the input, with a multiplicative factor determined by

Figure 3. Context-specific relationships among variables due to two possible value configurations of hidden variables shown in (A)
and (B). Note that when the ancestral state is a motif, the segment corresponding to the TBFS evolves as a unit (as shown by the arrow from an
extant functional state pointing to a multi-column segment), either retaining its functionality as a motif, or turning-over to a background segment, as
illustrated in (A). When the ancestral state is a background, then every position can evolve independently as long as it is still in the background (as
shown by the arrow from a functional state pointing to a single column). But when a motif emerges out of the background, as shown in (B), the
segments corresponding to the TFBS start to evolve as a unit, causing even the aligned nucleotide positions to evolve under different positional
constraints. (C) Outlines the idea of a block approximation of the CSMET emission probability.
doi:10.1371/journal.pcbi.1000090.g003
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the length of the motif and the number of species concerned in the

alignment. In case of multiple motifs, the emission probabilities of

the blocks should be computed under the unique CSMET of each

motif. Since motifs can have different lengths, bookkeeping of all

the emissions can be slightly more complicated due to the need to

handle blocks of different lengths. But the computational cost is

only increased by the order of the number of the motifs in

question. For simplicity, we defer details of this generalization to a

later update of the CSMET.

With the BA strategy, we arrive at an approximation to the

posterior distribution of motif annotation at every position given

the entire alignment, P Z1:M
t A1:Nj

� �
, and the posterior of the

sequence of ancestral functions, P Zr
t A1:Nj

� �
. For an alignment

block of which only a few taxa correspond to motifs and others are

merely background, under the CSMET model, the Zr
t of this block

can be either motif or background. In the first case, it means that

absence of motifs in some taxa is interpreted as the result of loss of

ancestral motifs, whereas in the second case, the presence of motifs

in some taxa is interpreted as the result of emergence of nascent

motifs out of the background. As far as we are aware of, CSMET

is the only motif-finding algorithm that rigorously offers a closed-

form deterministic solution to the posterior probability distribution

of motif annotations both in the alignment and in the ancestral

sequence over the entire space of binding site configurations.

PhyloGibbs [9] offers a sample-based solution to the posterior of

Z1:M
t ,t~1, . . . ,N given A1:N, but as mentioned earlier, it is not

based on an explicit model of binding site turnover, and thus does

not have a closed-form expression that can motivate efficient

deterministic approximation.

Maximum likelihood training. The CSMET can be trained

on annotated CRM alignments. We need to learn the nucleotide

phylogenetic trees for motifs and backgrounds, and the phylogenetic

tree that describes the evolution of functional annotation. We use the

F84 model for nucleotide substitution on the motif and background

trees; for evolution of functional annotation, we use the simpler JC69

model. As detailed in Materials and Methods and Text S1, for a

given tree topology, for the JC69 model all we need to estimate is the

branch length on the tree, which relates to total substitution

probability. For the F84 model, besides the tree topology, we need to

estimate the stationary distribution, which we set to be the PWM for

motif phylogenies or the background nucleotide frequencies for

background phylogeny; and also two additional evolutionary

parameters: the overall substitution rate per site m and the

transition/transversion ratio r.

Given a multiple alignment, the ground truth of functional

annotation, the PWMs for motifs, and nucleotide frequency for the

background, we use the following strategy for estimating the trees

and the evolutionary parameters. Detailed derivation and explicit

expressions are provided in Materials and Methods.

N Find a tree topology t and the branch lengths b by running

fastDNAml [36] over the entire alignment.

N Find a scaling factor rf over branch lengths bf of the functional

tree Tf, by maximizing the likelihood of aligned functional

annotations under Tf via a line-search in parameter space.

N Find a scaling factor rm over branch lengths bm of the motif tree

Tm, and the Felsenstein rate mm, by maximizing the likelihood

of aligned motif sequence under Tm with the F84 model.

N Find a tree topology tb and branch lengths b0 for background

tree Tb by running fastDNAml directly over only the

background sequences. The Felsenstein rate mb is then

estimated by maximizing the likelihood under Tb with a

simple line-search.

To compute the Felsenstein substitution rate m, we use a fixed

transition-transversion ratio of 2. If the stationary nucleotide

distribution defined by the motif PWM is incompatible with this

value of the transition-transversion ratio, we set it to the smallest

value that is compatible with the stationary distribution as in [5].

Performance on Synthetic Data
At present, biologically validated orthologous motifs and CRMs

across multiple taxa are extremely rare in the literature. In most

cases, motifs and CRMs are only known in some well-studied

reference taxa such as the Drosophila melanogaster; and their orthologs

in other species are deduced from multiple alignments of the

corresponding regulatory sequences from these species according

to the positions and PWMs of the ‘‘reference motifs’’ in the

reference taxon. This is a process that demands substantial manual

curation and biological expertise; rarely are the outcomes from

such analysis validated in vivo (but see [8] for a few such validations

in some selected Drosophila species where the transgenic platforms

have been successfully developed). At best, these real annotations

would give us a limited number of true positives across taxa, but

they are not suitable for a systematic performance evaluation

based on precision and recall over true motif instances. Thus we

first compare CSMET with a carefully chosen collection of

competing methods on simulated CRM sequences, where the

motif profiles across all taxa are completely known.

We choose to compare CSMET with 3 representative algorithms

for comparative genomic motif search, PhyloGibbs, EMnEM,

PhyloHMM; and the program Stubb, which is specialized for motif

search in eukaryotic CRMs, and in our paper, set to operate in

mono-genomic mode. The rationale for choosing these 4 bench-

marks is detailed in the Material and Methods.

Multi-specific CRM simulator. We developed a simulator

of multi-specific CRMs with flexible TFBS turnover dynamics

across taxa and realistic TFBS arrangement within CRM. The

overall scheme is illustrated in Figure 4. Specifically, the input of

the simulator includes: 1) topologies of the phylogenetic trees for

nucleotide (e.g., in motif sites and background) and functionality

substitutions; 2) prior distributions of the stationary distribution of

states (i.e., nucleotide or functionalities) at the roots of the trees; 3)

prior distributions of the branch lengths of the trees and the

substitution rates, and other evolutionary parameters where

necessary (e.g., the Felsenstein rate m and r in F84 model); 4) a

global HMM encoding the motif grammar in the CRMs. As

detailed in the Material and Methods, during simulation, all

building blocks of a CRM, such as the motif instances, background

sequences, functionality states (that determines motif turnover) in

different taxa, and positions of the motifs in the CRM are sampled

separately as illustrated in Figure 4, and put together to synthesize

an artificial CRM. This simulator can be used to simulate realistic

multi-specific CRMs resulting from various nontrivial evolutionary

dynamics. It is useful in its own right for consistence/robustness

analysis of motif evolution models and performance evaluation of

comparative genomic motif-finding programs.

Below, we report results of four experiments based on simulated

datasets. Each experiment was based upon varying one parameter

of the model, keeping all the others fixed, in order to analyze

robustness of CSMET and various other methods under different

conditions. Every simulated CRM alignment contained 10 taxa,

and for each experiment we simulated 50 datasets. The simulated

data is available at the CSMET website to allow external

comparisons. Performance of all the tested programs were based

on the precision, recall and their F1 score (i.e., the harmonic mean

of precision and recall) [37].
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Performance under varying degrees of motif

turnover. To examine the effect of motif turnover (i.e.,

functional conservation) in aligned regions across taxa on the

motif-detection performance, we simulated CRM alignments with

differing magnitudes of the evolutionary rate along the functional

phylogeny. Since known motifs in the Drosophila species we are

working with usually have around 75% conservation, we chose our

evolutionary rates so as to achieve conservation percentages

between 64%–75% (or equivalently, turnover percentages

between 25%–36%) at the species-specific motif-instance level.

(See Text S1 for how this is achieved.)

We find that even with increasing rates of functional turnover,

the performance of CSMET and Phylogibbs remain largely stable,

with CSMET consistently dominating PhyloGibbs in F1 score

with a modest margin (Figure 5). The margin is statistically

significant with p = 2.4861027 under a paired t-test. EMnEM has

a high recall score, but overall its F1-scores are well below

CSMET and PhyloGibbs, also it appears to be affected more by

the increased turnover rates. PhyloHMM shows an interesting

trend, it performs better than its non-phylogenetic cousin Stubb on

data with low turnover rates, but its performance worsens when

compared to Stubb on data with increasing turnover rate. This

Figure 4. An illustration of the generative scheme of a Multi-specific CRM simulator.
doi:10.1371/journal.pcbi.1000090.g004
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shows that a naive application of phylogenetic shadowing in multi-

species alignment with high functional divergence can actually

result in degraded performance compared even to just single

species analysis.

Performance under varying degrees of motif/background

contrast. The difference in conservation between the motif and

background sequences will have an impact on the performance of

the model. However, this experiment can be performed in two

different ways: changing the degree of similarity between motif

and background stationary distributions; and changing the

evolutionary rates of one or the other. We choose the second

method and conduct the simulation as follows: we attribute the

motif phylogeny with a low entropy stationary distribution

resembling a PWM, and with a fixed evolutionary rate; and we

let the background to have a stationary distribution similar to but

with higher entropy than that of the motif, and have a variable

evolutionary rate. The evolutionary rate in the background tree is

changed gradually from low values to high values, by varying the

scaling factor applied to the background tree from 1 to 8. This is to

check how well the CSMET model may detect motifs emerging

out of the background with differing degrees of sequence-level

conservation with respect to the background caused by their

relative evolutionary rates. The corresponding performances are

shown in Figure 6.

We found that even under low variation between the motif and

background, i.e., both following an evolutionary tree with similar

stationary distribution, and the same branch lengths and scaling

parameters, CSMET outperforms all the other methods. CSMET

steadily improves in performance upto the scaling factor of 4, after

which its performance roughly plateaus. PhyloGibbs behaviors

similarly, but overall with lower F1 scores that is statistically

significant (p = 1.41610214). EMnEM, on the other hand

outperforms all other methods for scaling factors of 6 or more;

meaning that when motifs are extremely highly conserved

compared to the background, the advantage of modeling their

turnover as in CSMET and PhyloGibbs over using a basic

phylogenetic model diminishes, which is well expected. Since in

real CRMs, the evolutionary rates of of the non-functional regions

with respect to that of the functional regions (e.g., coding regions,

TFBSs) in eukaryotes have been shown to be lie between 1.2 and

2.5 [1], we can claim that CSMET outperforms all other software

in the region of biologically relevant parameter settings.

Robustness on Data Violating CSMET Model Assumptions
Effect of non-uniform functional evolution rates. We

analyzed the robustness of CSMET (compared to other

algorithms) in the face of a breakdown of a key CSMET model

assumption—that the motif turnover rates are allowed to vary

along the simulated CRM sequences instead of staying constant,

which is possible in real regulatory sequences. The CSMET model

does not explicitly address this dynamics and simply assumes an

invariant turnover rate throughout the sequence. We simulated a

Figure 5. Performance under varying degrees of functional conservation.
doi:10.1371/journal.pcbi.1000090.g005

Figure 6. Performance under varying degrees of motif/background contrast.
doi:10.1371/journal.pcbi.1000090.g006
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dataset where the motif turnover rates are chosen uniformly from

4 pre-specified categories, corresponding to branch scaling factors

of 1.00, 1.50, 2,00 and 2.50, respectively, over the baseline

phylogeny. The corresponding motif turnover rates were 20%,

25%, 30% and 32%, respectively. As shown in Figure 7, we found

that while performance of CSMET on such data declines

compared to its performance on data simulated with a invariant

turnover rate, it still performs no worse than any of the other

software even though a primary assumption it adopts (that of a

constant functional turnover rate) is violated.

Effect of different generative model. To examine the

robustness of CSMET under the violation of many of its model

assumptions all at the same time, we then performed an

experiment using an external simulator PSPE [22], which is

based on an entirely different generative model with respect to

CSMET (in terms of nucleotide substitution, motif placement,

motif turnover, etc.) to synthesize multi-specific CRM sequences.

However, at times PSPE generates motifs in some species with

some lateral displacements, which appears to be an empirical

operation not universal to evolutionary mechanisms that lead to

functional turnover in aligned motifs (e.g., see [12]), but similar to

an assumption underlying PhyloGibbs. To obtain a fair

comparison, we suppress the lateral displacements by a post-

processing of the sequences simulated by PSPE. In the post-

processing step, we remove any motif instances that are laterally

displaced in the multiple sequence alignment that is generated.

This leaves us with a multiple sequence alignment with all the

motif instances perfectly aligned.

We used PSPE driven by five different scaled versions of the

phylogenetic tree on the 11 Drosophila species to simulate different

degrees of motif evolution, and test CSMET and PhyloGibbs on

simulations under each scaled tree. For sequence evolution, an

HKY nucleotide substitution model with parameter set to 0.05 was

used; for the gap distribution, a negative binomial distribution with

parameters {1, 0.5} was used (note that none of these assumptions

are used in CSMET). The motif sequence was generated by PSPE

from the default constraints provided. We generated sequences of

length 1000 for training, each with about 7–10 motifs; and we test

on sequences of length 500 containing 4–5 motifs. For each tested

simulation condition (i.e., tree scaling factor), 50 samples were

generated, and the performance of CSMET and PhyloGibbs are

shown in Figure 8. We can see that the F1 scores of CSMET are

quite stable under different tested conditions and with low

variance, and in all conditions CSMET outperforms Phylogibbs

on F1 scores, and the margins are statistically significant

(p = 1.875610213). This suggests that CSMET is reasonably

robust with respect to violations of its model assumptions.

Performance on Aligned Drosophila CRMs
We applied CSMET and competing methods to a multi-specific

dataset of Drosophila early developmental CRMs and motifs

compiled from the literature [38]. However, in this situation, we

score accuracy only on the motifs annotated in Drosophila

melanogaster (rather than in all taxa), because they are the only

available gold-standard. Upon concluding this section, we also

report some interesting findings by CSMET of putative motifs,

some of which only exist in other taxa and do not have known

counterparts in melanogaster.

Real CRMs from 11 Drosophila taxa. To evaluate

CSMET on real sequence data, we use a pre-aligned benchmark

data set containing multiple alignments of orthologous CRMs

from 11 related Drosophila species, whose divergence time with

respect to the most recent common ancestor is roughly 50 million

years. The species included are: melanogaster, simulans, sechellia,

yakuba, erecta, ananassae, persimilis, pseudoobscura, mojavensis, virilis, and

grimshawi. Our data set contains 14 different multiple-alignments

ranging from 3640-bp to 5316 bp long; each alignment

corresponds to a DNA segment containing a CRM (Table 1)

that has been annotated in Drosophila melanogaster [38,39] plus

1000bp flanking regions on both ends, and its putative orthologs in

the other 10 taxa identified using the precompiled Drosophila

genome data from the UCSC Genome browser website [40].

Overall, our data set contains 250 instances of motifs in a total of

14 CRMs. To our knowledge, it represents one of the most

complete multi-genomic collection of Drosophila CRM/motifs. This

dataset, along with a full graphical representation of the CRMs

and TFBSs, are available at the CSMET website.

Results on real CRM data sets. Using a 1 versus K21 cross

validation scheme detailed in the Materials and Methods section,

where K is the total number of CRMs in which a motif in question

is present, we tested all algorithms on five motifs, Bicoid, Caudal,

Hunchback, Kruppel and Knirps, one motif type at a time, and the

results are summarized in Figure 9. We used posterior decoding

for CSMET and PhyloHMM, since even motifs of the same type

can overlap on opposite strands or even on the same strand. For

the other three algorithms, we explored their optimum parameter

configuration to get meanful results. The five algorithms were

compared on the basis of precision, recall, and their F1 score only

Figure 7. Effect of varying motif turnover rates across sequence. In the pair of barplots of each method, the left bar corresponds to
performance with varying turnover rates ranging from 20% to 32%; the right bar corresponds to performance under a fixed turnover rate at 25%.
doi:10.1371/journal.pcbi.1000090.g007
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on the melanogaster motifs they manage to identify within the

CRMs. Overall, CSMET outperforms all other methods in all

motifs except for Kruppel. For Kruppel, all methods perform

poorly because the quality of the PWM that can be obtained from

training data has very high entropy. Figure 9B and 9C also show

that CSMET gives a much higher recall score than other softwares

in most cases while maintaining a precision comparable to them

(except in some cases where Stubb has very high precision but very

low recall). It is worth mentioning that in these real CRMs,

biological annotations tend to be conservative because they are

only based on existing footprinting experiments performed in a

non-exhaustive fashion in most of the CRMs. Thus a high recall is

not very surprising.

Since real CRM data are more complex than simulated data due

to the presence of a significant number of gaps, broken motifs etc.,

there is a significant variance in the performances across different

motifs by CSMET, as well as by all other algorithms; on the other

hand, training data for fitting the model parameters needed in a

CSMET is extremely limited. We found that the performance of

CSMET can be improved over its maximum likelihood configura-

tion (determined from training data) by adjusting the values of the

evolutionary parameters. The evolutionary parameters that are

estimated from the training data are: the tree evolutionary rates

(represented as the scaling coefficients of the tree branches) for the

motif and annotation tree, and the Felsenstein rates for the motif and

background nucleotide substitution models. Of these parameters, we

found that the predictive power of the model is most significantly

affected by the evolutionary rate of the functional tree. Figure 10

shows the ROC curve of CSMET performance under various values

of the evolutionary rate r ranging from a half to 4 times the

maximum likelihood estimator of r, along with the scores of 3

competing softwares at a working parameterization adjusted based

on their default setting. From Figure 10, it is noteworthy that the

performance of all programs on the Hunchback motif is generally

Table 1. A short summary of the nature of the annotated
CRMs.

Name of CRM Length Motif types

Abdominal A 1745 Hunchback, Kruppel

Buttonhead 1429 Bicoid, Hunchback

Engrailed 900 Caudal

Eve Str 2 730 Bicoid, Hunchback, Kruppel

Eve Str 3+7 512 Hunchback, Knirps

Eve Str 4+6 602 Hunchback, Knirps

FushiTarazu Zebra 653 Caudal

Hairy Str 5 1574 Kruppel

Hairy Str 6 556 Caudal, Hunchback, Knirps, Kruppel

Hairy Str 7 1471 Bicoid, Hunchback, Kruppel

Kruppel 730 1158 Bicoid, Hunchback, Knirps

Runt 1335 Bicoid, Hunchback, Knirps, Kruppel

Spalt 721 Bicoid, Caudal, Hunchback, Kruppel

Tailless 635 Caudal, Bicoid

doi:10.1371/journal.pcbi.1000090.t001

Figure 8. Performance on modified PSPE data. The label on the x-axis denotes the scaling factor used by the PSPE tree with respect to a
reference Drosophila phylogeny.
doi:10.1371/journal.pcbi.1000090.g008

Figure 9. Comparison of algorithms on motif search performance over 5 motifs on real CRMs.
doi:10.1371/journal.pcbi.1000090.g009
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good. This is probably because the Hunchback motif instances are

generally very well conserved, and thus the quality of our training

annotation based upon visual inspection is relatively more reliable.

Findings on real CRM data sets. CSMET has correctly

retrieved a significant portion of previously known TFBSs within

the 14 CRMs in the melanogaster taxon, along with their putative

conserved orthologs in other taxa, or in some cases, apparent site

turnovers in other taxa. Furthermore it has also found numerous

interesting instances of alignment blocks of putative TFBSs not

known before, both inside CRMs as well as in CRM flanking

regions, where TFBS turnovers are apparent in some taxa. A

database containing the complete summary of our predictions is

available at http://www.sailing.cs.cmu.edu/csmet/, where the

positions and taxonomic-identities of all predicted TFBSs and

turnovers are documented graphically with appropriate color

highlights for each of the 14 CRM alignments we analyzed.

Figure 11 shows a snapshot of a fraction of one of the annotated

alignments in our database. Some examples of the predicted

TFBSs are presented in Figure 12.

Due to the functional heterogeneity across taxa in many of these

alignment blocks of putative TFBSs, these motifs can be difficult

for other algorithms to detect. Some of these instances correspond

to putative TFBSs appearing in non-melanogaster taxa, such as

the putative Knirps motif block in the Kruppel 730 CRM

(Figure 12H), and the putative Hunchback motif in the flanking

region of Spalt CRM (Figure 12F). Another interesting observa-

tion is that numerous putative TFBS blocks were identified not just

inside the developmental CRMs but also in the flanking regions of

the CRMs we analyzed. We had chosen 1000 bp of flanking

region from D. melanogaster, and found that while some putative

sites are located within 100 bp of established CRM boundaries

(e.g., Figure 12H), others may lie as far away as 1000 bp (our limit

of analysis) and possibly further away from established CRM

boundaries (e.g., Figure 12F). We also noted several interesting

patterns in examples of functional turnover. These include single

species loss of TFBSs, as for the Caudal motif in the Tailless CRM

region (Figure 12C) and for the Knirps motif in Even Skipped

Stripes 4+6 CRM region (Figure 12G); and subclade specific loss

or gain of binding sites, as in the Hunchback motif block in the

Abdominal A CRM region (Figure 12D) and the Hunchback motif

block in the Hairy Stripe 7 CRM region (Figure 12E). A common

form of subclade specific loss or gain is that they take place in

Figure 10. ROC of CSMET with different values of functional evolutionary (i.e., TFBS turnover) rates on Drosophila CRMs.
doi:10.1371/journal.pcbi.1000090.g010

Figure 11. A screenshot of the summary of TFBS-predictions as displayed on the CSMET website.
doi:10.1371/journal.pcbi.1000090.g011
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Figure 12. Example of previously unknown or biologically validated motif instances uncovered by CSMET in the presence of
functional turnover or misalignment. CRM regions are shown in yellow in the alignment. The genomic loci for the flanking region borders, CRM
borders and display snippet borders for melanogaster assembly 4 are shown on the immediate left of the alignment; with the logos of the identified
motifs shown on the far left [43]. (a) A Caudal motif in Engrailed CRM Alignment. (b) A Caudal in FushiTarazu Zebra CRM. (c) A Caudal in Tailless. (d) A
Hunchback in the Abda CRM. (e) A Hunchback in Hairy stripe7 CRM. (f) A Hunchback in Spalt CRM flanking region about 1000 bp apart from the CRM.
(g) A Knirps in Even skipped stripe 4/6 CRM. (h) A Knirps in Kruppel 730 CRM flanking region 38bp apart from the CRM.
doi:10.1371/journal.pcbi.1000090.g012
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closely related sister taxa, like D. pseudoobscura and D. persimilis as in

the Caudal motif in the Fushi Tarazu Zebra CRM (Figure 12B) and

the Hunchback motif in the Spalt CRM (Figure 12F).

To assess whether CSMET predicts TFBSs of biological

significance, we tried validating our findings by checking which

of our predicted motif blocks with functional turnover had been

biologically validated. While this is not possible for motifs

predicted only in non-melanogaster taxa, or for motifs predicted

in CRM flanking regions, we found numerous examples of

conserved motif blocks which were biologically validated for the

ortholog in D. melanogaster. For example, based on the binding site

database of papatsenko, the Caudal motif block in Tailless CRM

(Figure 12C) and the Hunchback block in Abdominal A CRM

(Figure 12D) were both biologically validated. We further used two

recently available large public TF databases—Oreganno [41] and

the RegFly [42]—to check if we could find biologically validated

binding sites outside those listed in papatsenko. Of the 8 motifs

displayed, 2 additional cases were confirmed in this independent

dataset—the Caudal motif in the Fushi Tarazu Zebra enhancer

(Figure 12B) region, and the Hunchback in the Hairy Stripe 7

(Figure 12E) region. Even though we did not perform an

exhaustive search to examine whether the validated binding sites

(with functional turnover in other species) predicted by CSMET

were also predicted by other programs, our results include several

non-conserved biologically validated binding sites which are

predicted by CSMET but not by PhyloGibbs, including the

Hunchback motif in Abdominal A CRM (Figure 12D), and the

Hunchback motif in Hairy Stripe 7 CRM (Figure 12E). Other such

binding sites like mel3L+:8639083 were also noted.

Discussion

CSMET is a novel phylogenetic shadowing method that can

model biological sequence evolution at both nucleotide level at

each individual site, and functional level of a whole TFBS. It offers

a principled way of addressing the problem that can seriously

compromise the performance of many extant conservation-based

motif finding algorithms: motif turnover in aligned CRM

sequences from different species, an evolutionary event that results

in functional heterogeneity across aligned sequence entities and

shatters the basis of conventional alignment scoring methods based

on a single function-specific phylogeny. CSMET defines a new

evolution-based score that explicitly models functional substitution

along the phylogeny that causes motif turnover, and nucleotide

divergence of aligned sites in each taxa under possibly different

function-specific phylogenies conditioning on the turnover status

of the site in each taxon.

In principle, CSMET can be used to estimate the rate of

turnover of different motifs, which can elucidate the history and

dynamics of functional diversification of regulatory binding sites.

But we notice that experimentally validated multi-species CRM/

TFBS annotations that support an unbiased estimate of turnover

rates are yet to be generated, as currently almost all biologically

validated motifs only exist in a small number of representative

species in each clade of the tree of life, such as melanogaster in the

Drosophila clade. Manual annotation on CRM alignments, as we

used in this paper, tends to bias the model toward conserved

motifs. Thus, at this time, the biological interpretation of

evolutionary parameters on the functional phylogeny remains

preliminary. Nevertheless, these estimated parameters do offer

important utility from a statistical and algorithmic point of view,

by elegantly controlling the trade-off between two competing

molecular substitution processes—that of the motif sequence and

of the background sequence—at every aligned site across all taxa

beyond what is offered in any existing motif evolution model.

Empirically, we find that such modelling is useful in motif

detection.

On both synthetic data and 14 CRMs from 11 Drosophila taxa,

we find that the CSMET performs competitively against the state-

of-the-art comparative genomic motif finding algorithm, Phylo-

Gibbs, and significantly outperforms other methods such as

EMnEM, PhyloHMM and Stubb. In particular, CSMET

demonstrates superior performance in certain important scenarios,

such as cases where aligned sequences display significant

divergence and motif functionalities are apparently not conserved

across taxa or over multiple adjacent sites. We also find that both

CSMET and PhyloGibbs significantly outperform Stubb when the

latter is naively applied to sequences of all taxa without exploiting

their evolutionary relationships. Our results suggest that a careful

exploration of various levels of biological sequence evolution can

significantly improve the performance of comparative genomic

motif detection.

Recently, some alignment-free methods [19] have emerged

which search for conserved TFBS rich regions across species based

on a common scoring function, e.g., distribution of word

frequencies (which in some ways mirrors the PWM of a reference

species). One may ask, given perhaps in the future a perfect search

algorithm (in terms of only computational efficiency), do we still

need explicit model-based methods such as CSMET? We believe

that even if exhaustive search of arbitrary string patterns becomes

possible, models such as CSMET still offer important advantage

not only in terms of interpretability and evolutionary insight as

discussed above, but possibly also in terms of performance because

of the more plausible scoring schemes they use. This is because it is

impractical to obtain the PWM of a motif in species other than a

few reference taxa, thus the scores of putative motif instances in

species where their own versions of the PWM are not available can

be highly inaccurate under the PWM from the reference species

due to evolution of the PWM itself in these study species with

respect to the PWM in the reference species. The CSMET places

the reference PWM only at the tree root as an equilibrium

distribution; for the tree leaves where all study species are placed,

the nucleotide substitution model along tree branches allows

sequences in each species to be appropriately scored under a

species-specific distribution that is different from the reference

PWM, thereby increasing its sensitivity to species-specific instan-

tiations of motifs.

A possible future direction for this work lies in developing better

approximate inference techniques for posterior inference under

the CSMET model, especially under the scenarios of studying

sequences from a large clade with many taxa, and/or searching for

multiple motifs simultaneously. It is noteworthy that our methods

can be readily extended for de novo motif detection, for which an

EM or a Monte Carlo algorithm can be applied for model-

estimation based on the maximum likelihood principle. Currently

we are exploring such extensions. Also we intend to develop a

semi-supervised training algorithm that does not need manual

annotation of motifs in other species on the training CRM

alignment, so that we can obtain a less biased estimate of the

evolutionary parameters of the CSMET model.

A problem with most of the extant motif finders, including the

proposed CSMET, is that the length variation of aligned motifs

(e.g., alignments with gaps) cannot be accommodated. In our

model, while deletion events may be captured as gaps in the motif

alignment, insertion events cannot be captured as the length of the

motif is fixed. This is because in a typical HMM sequence model

the state transitions between sites within motifs are designed to be

deterministic. Thus stochastically accommodating gaps (insertion
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events) within motifs is not feasible. Hence, some of the actual

motifs missed by the competing algorithms were ‘‘gapped’’ motifs.

These issues deserve further investigation.

Materials and Methods

The Molecular and Functional Substitution Model
We use the Felsenstein 1984 model (F84) [29], which is similar

to the Hasegawa–Kishino–Yano’s 1985 model (HKY85) [44] and

widely used in the phylogenetic inference and footprinting

literature [5,29], for nucleotide substitution in our motif and

background phylogeny. Formally, F84 is a five-parameter model,

based on a stationary distribution p ; [pA, pT, pG, pC]9 (which

constitutes three free parameters as the equilibrium frequencies

sum to ) and the additional parameters k and i which impose the

transition/transversion bias. According to this model, the

nucleotide-substitution probability from an internal node c to its

descendent c9 along a tree branch of length b can be expressed as

follows:

PN Vc0~j Vcj ~i,bð Þ~e{ kzið Þbdijze{ib 1{e{kb
� �

pjP
h

phejh

� �
0
B@

1
CAeijz 1{e{ib

� �
pj ,

ð3Þ

where i and j denote nucleotides, dij represents the Kronecker delta

function, and eij is a function similar to the Kronecker delta

function which is 1 if i and j are both pyrimidines or both purines,

but 0 otherwise. The summation in the denominator concisely

computes purine frequency or pyrimidine frequency. A more

intuitive parameterization for F84 involves the overall substitution

rate per site m and the transition/transversion ratio r, which can

be easily estimated or specified. We can compute the transition

matrix PN from m and r using Equation 3 based on the following

relationship between (k,i) and (m,r):

k~
2pRpT r{ 2pApGz2pCpTð Þ

2pApG=pRz2pCpT=pYð Þ
m

1zr
, i~

1

2pRpY

m

1zr
:

To model functional turnover of aligned substrings along

functional phylogeny Tf, we additionally define a substitution

process over two characters (0 and 1) corresponding to presence or

absence of functionality. Now we use the single parameter JC69

model [26] for functional turnover due to its simplicity and

straightforward adaptability to an alphabet of size 2. The

transition probability along a tree branch of length b (which

represents the product of substitution rate m and evolution time t,

which are not identifiable independently,) is defined by:

PF ~
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We estimate the evolutionary parameters from training data based

on maximum likelihood, details are available in the Text S1.

Computing Complete- and Partial-Alignment Likelihood
A complete phylogenetic tree T ; {t, p, b, l} with internal

nodes {Vi; i = 1:K9} and leaf nodes {Vi; i = K9+1:K}, where K

denotes the total number of nodes (i.e., current and ancestral

species) instantiated in the tree and the node indexing follows a

breath-first traversal from the root, defines a joint probability

distribution of all-node configurations (i.e., the nucleotide contents

at an aligned site in all species instantiated in the tree), which can

be written as the following product of nt-substitution probabilities

along tree branches:

P V1, . . . ,VKð Þ~P V1ð Þ P
K

i~2
PN Vi Vpa ið Þ

��� �
, ð5Þ

where Vpa(i) denotes the parent-node of the node i in the tree, and

the substitution probability PN() is defined by Equation 3. For each

position l of the multiple alignment, computing the probability of

the entire column denoted by Al of aligned nucleotides from

species corresponding to the leaves of a phylogenetic tree T(l)

defined on position l, i.e., P(Al|T(l)), where Al correspond to an

instantiation of the leaf nodes {Vi; i = K9+1:K}, takes exponential

time if performed naively, since it involves the marginalization of

all the internal nodes in the tree, i.e.,

P Al T lð Þ��� 	
~
X
v1:K0

P V1:K 0~v1:K 0 ,VK 0z1:K~Alð Þ: ð6Þ

We use the Felsenstein pruning algorithm [30], which is a dynamic

programming method that computes the probability of a leaf-

configuration under a tree from the bottom up. At each node of

the tree, we store the probability of the subtree rooted at that node,

for each possible nucleotide at that node. At the leaves, only the

probability for the particular nucleotide instantiated in the

corresponding taxon is non-zero, and for all the other nucleotides,

it is zero. Unlike the naive algorithm, the pruning algorithm

requires an amount of time that is proportional to the number of

leaves in the tree.

We use a simple extension of this algorithm to compute the

probabilities of a partial-alignment A0l defined earlier under a

marginal phylogeny, which is required in the coupled-pruning

algorithm for CSMET, by considering only the leaves instantiated

in A0l (but not in A00l :Al\A
0
l ) that is under a subtree T9(l) that forms

the marginal phylogeny we are interested in. Specifically, let A00l
correspond to possible instantiations of the subset of nodes we

need to marginalized out. Since we already how to compute

P(Al|T(l)) via marginalization over internal nodes V1:K 0 , we simply

further this marginalization over leaf nodes V00 that corresponds to

taxa instantiated in A00l , i.e.,

P A0l T 0(l)
��� �

~
X
A00

l

P A0l ,A
00
l T (l)
��� �

~

X
A00

l

X
v1:K 0

P V1:K 0~v1:K 0 ,V~A00l ,V0~A0l
� �

,
ð7Þ

where V0:VK 0z1:K \V
00 denotes the leaves instantiated in A0l . This

amounts to replacing the leaf-instantiation step, which was

originally operated on all leaves in the Felsenstein pruning

algorithm, by a node-summation step over those leaves in V00. In

fact, in can be easily shown that this is equivalent to performing

the Felsenstein pruning only on the partial tree T9(l) that directly

shadows A0l , which is a smaller tree than the original T(l), and only

requires time O A0l
�� ��� �

.

Computing the Block-Emission Probabilities
Under the CSMET model, to perform the forward-backward

algorithm for either motif prediction or unsupervised model

training, we need to compute the emission probability given each

functional state at every alignment site. This is nontrivial because a
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CSMET is defined on an alignment block containing whole motifs

across taxa rather than on a single alignment-column. We adopt a

‘‘block-approximation’’ scheme, where the emission probability of

each state at a sequence position, say, t, is defined on an alignment

block of length L started at t, i.e., P At zr
t

��� �
, where At;(A1(t),

A2(t),…, AL(t)), and Al(t) denotes the lth column in an alignment

block started from position t.

The conditional likelihood At given the nucleotide-evolutionary

trees T and Tb coupled by the annotation tree Ta under a

particular HMM state st is also hard to calculate directly, because

the leaves of the two nucleotide trees are connected by the leaves

of the annotation tree (Figure 2B). However, if the leaf-states of the

annotation tree are known, the probability components coming

from the two trees become conditionally independent and

factor out (see Equation 2). Recall that for a motif of length L,

the motif tree actually contains L site-specific trees, i.e.,

Tm: T (1)
m , . . . ,T (L)

m

� �
, and the the choice of these trees for every

site in the same row (i.e., taxon), say, at
i in the alignment block At,

is coupled by a common annotation state Zi
t. Hence, given an

annotation vector Zt for all rows of At, we actually calculate the

probability of two subset of the rows given two subtrees (i.e.,

marginal phylogenies) of the original phylogenetic trees for motif

and backgrounds, respectively (Figure 2B).

The subset A0t: ai(t) : s:t: Zi
t~1

� �
is constructed by simply

stacking the DNA bases of those taxon for which the annotation

variables indicate that they were generated from the motif tree.

The subtree T 0m is constructed by simply retaining the set of

nodes which correspond to the chosen subset, and the ancestors

thereof. Similarly we have A00t and T 0b. Hence, we obtain

P At Zt~zt,Tm,Tbjð Þ~P A0t T 0m
��� �

P A00t T 0b
��� �

~

P
L

l~1
P A0l(t) T 0m(l)

��� �
P A00l (t) T 0b

��� �
:

ð8Þ

The probability of a particular leaf-configuration of a tree, be it

a partial or complete nucleotide tree, or an annotation tree, can be

computed efficiently using the pruning algorithm. Thus for each

configuration of zt, we can readily compute P At Zt~zt,Tm,Tbjð Þ
and P zt Tf

�� ,Zr
t~zr

t

� �
. The block emission probability P At zr

t

��� �
under CSMET can be expressed as:

P At zr
t

��� �
~
P
zt

P At,zt zr
t

��� �
~
P
zt

P A0t ztð Þ T 0m ztð Þ
��� �

P A00t ztð Þ T 0b ztð Þ
��� �

P zt Ta,zr
t

��� �
,
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where we use A0t ztð Þ, A00t ztð Þ, T 0m ztð Þ and T 0b ztð Þ to make

explicit the dependence of the partial blocks and marginal trees on

functional indicator vector zt. We call this algorithm a coupled-

pruning algorithm.

Note that in this algorithm we need to sum over a total number

of 2M configurations of zt where M is the total number of taxa (i.e.,

rows) in matrix At. It is possible to reduce the computational

complexity using a full junction tree algorithm on CSMET, which

will turn the graphical model underlying CSMET into a clique

tree of width (i.e., maximum clique size) possibly smaller than M.

But this algorithm is complicated and breaks the modularity of the

tree-likelihood calculation by the coupled-pruning algorithm. In

typical comparative genomic analysis, we expect that M will not be

prohibitively large, so our algorithm may still be a convenient and

easy-to-implement alternative to the junction-tree algorithm. Also

this computation can be done off-line and in parallel.

Posterior Inference Under CSMET
Given the emission probabilities for each ancestral functional

state at each site, we use the forward-backward algorithm for

posterior decoding of the sequence of ancestral functional states

Zr
1:N along the input CRM alignment of length N. The procedure

is the same as in a standard HMM applied to a single sequence,

except that now the emission probability at each site, say with

index t, is defined by the CSMET probability over an alignment

block At at that position under an ancestral functional state Zr
t ,

rather than the conditional probability of a single nucleotide

observed at position t as in the standard HMM. The complexity of

this FB-algorithm is O(Nk2) where k denotes the total number of

functional states. In this paper, we only implemented a simple

HMM with one type motif allowed on either strand, so that k = 3.

We defer a more elaborate implementation that allows multiple

motifs and encodes sophisticated CRM architecture as in LOGOS

[33] to a future extension.

Given an estimate of Zr
1:N , we can infer the MAP estimates of

Zi
t—the functional annotation of every site t in every taxon i of the

alignment. Specifically, the posterior probability of a column of

functional states Zt under ancestral functional state zr
t can be

expressed as:

P Zt At,Z
r
t~zr

t

��� �
~

P Zt,At Zr
t ~zr

t

��� �

P At Zr
t ~zr

t

��� � ~

P At Ztjð ÞP Zt Zr
t

�� ~zr
t

� �

P At Zr
t

�� ~zr
t

� � :
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Recall that in the coupled-pruning algorithm, we can readily

compute all the three conditional probability terms in the above

equation.

Performing posterior inference allows us to make motif

predictions in two ways. A simple way is look at blocks in the

alignment at which the posterior inference produces ones, and

predict those to be motifs. Alternatively, we can also use the

inferred state of the alignment block together with the inferred

ancestral state to compute a probability score (as a heuristic) based

on the functional annotation tree. The score for the block is the

sum of probabilities of each block element being one.

Tree Estimation
Given blocks of aligned substrings {At} containing motif instances

in at least one of the aligned taxa, in principle we can estimate both

the annotation tree Tf ; {a, tf, bf} and the motif trees Tm ; {h, tm, bm,

lm} based on a maximum likelihood principle. But since in our case

most training CRM sequences do not have enough motif data to

warrant correct estimation of the motif and function tree, we use the

topology and branch lengths of a tree estimated by fastDNAml [36]

from the entire CRM sequence alignment (containing both motif

and background) as the common basis to build the Tf and Tm.

Specifically, fastDNAml estimates a maximum likelihood tree under

the F84 model from the entire CRM alignment; we then scale the

branch lengths of this tree to get the sets of branch lengths for Tf and

Tm by doing a simple linear search (see below) of the scaling

coefficient that maximize the likelihood of aligned motif sequences

and aligned annotation sequences, under the Tm and Tf (scaled based

on the coefficients) respectively.

For simplicity, we estimate the background tree Tb ; {h, tb, bb,

lb} separately from only aligned background sequences that are

completely orthologous (i.e., containing no motifs in any taxon).

For both motifs and background phylogenies, the Felsenstein

rate parameter m for the corresponding nucleotide substitution
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models must also be estimated from the training data. More

technically, note that for Tm the scaling coefficient b and the rate

parameter m form a product in the expression of the substitution

probability (see Equation 3) and are not identifiable independent-

ly. Thus we only need to estimate the compound rate parameter

m9 = mb. Ideally, the optimal value of the m9 should be obtained by

performing a gradient descent on the likelihood under the

corresponding phylogeny with respect to m9. However, due to

the phylogenetic tree probability terms involved in the likelihood

computation, there is no closed form expression for the gradient

that can be evaluated for a specific value of the compound rate

parameter to determine the direction to choose for optimization.

Therefore, to find an approximation to the optimal value of m9, we

perform a simple linear search in the space of m9 as follows:

for m0~m0minl to m0~m0maxl in steps of d do

L(m9) = Training motif likelihood under motif phylogeny

T with compound Felsenstein rate m9

end for

Choose m that gives maximum likelihood: m0best~
argmaxm0L m0ð Þ

m0minl and m0maxl are lower and upper bounds respectively on the

space of m9 that is searched, and are heuristically chosen based on

observation. The step d can be chosen to be as small as desired or

is allowable, since having a smaller d increases the number of

values of m9 that must be tested and hence increases computation,

but gives a more accurate optimum.

Estimation of HMM Parameters
For prediction of motifs and non-motifs on test sequences, we use

an HMM to find the highest probability state (i.e., motif or

background) at each site. The parameters for the HMM are the

initial probability vector p and the transition probability matrix B. In

the simplest scenario, when binding sites are to be searched for one

TF at a time, the basic HMM only needs to model transitions among

three different functional states: the background state (indicated by

0), the forward-motif state (indicated by 1) which indicates that the

current site is the start of a motif on the forward DNA strand, and a

reverse-motif state (indicated by 2) which indicates that the current

site is the end of a motif on the reverse-complementary strand.

Figure 13 shows the HMM corresponding to this scenario.

The initial probabilities are fixed by assuming that the HMM

always starts in the background state. Thus, p0 = 1 and p0 = p0 = 0.

For the transition matrix, we use the maximum likelihood

estimator for transition from state i to state j (which has probability

Bi,j), this is given by the count of the number of such events in the

training data divided by the total number of sites in state i. We

follow the no-strand-bias assumption, and allow equal transition

probabilities from the background state to both the forward-motif

and reverse-motif states. Also, in the case where we do not have

annotated training alignments, we can use the Baum-Welch

algorithm for unsupervised estimation of the transition probability

matrix.

Comparison of CSMET to Available Software
We compare CSMET with four other programs—PhyloGibbs,

EMnEM, PhyloHMM and Stubb.

PhyloGibbs is chosen as it is presently a state of the art in multi-

species motif detection [9] and it handles motif turnover.

PhyloGibbs is an unsupervised algorithm for de novo motif

detection, and it can also optionally run in supervised mode given

PWM for motif search. For a fair comparison, we run PhyloGibbs

by specifying the motif PWM based on a maximum likelihood

estimation from training data. We run PhyloGibbs with the default

set of parameters. We approximately specify the number of motifs

expected to be seen, as needed by PhyloGibbs, since the actual

number of conserved motifs can vary a lot in both our simulated

data and in real biological data.

EMnEM is chosen as it is another popular multi-species motif

detection algorithm based on a different phylogenetic model that

does not handle motif turnover and evolutionary-rate autocorre-

lation. EMnEM performs de novo motif detection, but also has a

supervised motif search mode, which we choose to operate on.

Again, we also approximately specify the number of motifs

expected to be seen, and run EMnEM with the default set of

parameters.

PhyloHMM is chosen since it is a direct analog of CSMET,

which assumes functional homogeniety across aligned sites.

Available PhyloHMM-based tools are implemented for detecting

genes [5] and conserved regions [23,24], but no PhyloHMM

implementations were available for motif finding. Hence, we

implemented our own in-house PhyloHMM for the purpose of

supervised motif detection.

Finally, Stubb is chosen as a representative single-species HMM

based motif finder to investigate the advantage of comparative-

genomic motif detection over traditional approaches that treat

each species independently. Stubb can be run both as a single

species or as an aligned two species model. Since we are interested

in comparing our performance with single species motif detector,

we use the single species mode. Also, it might not always be

apparent as to which two species to compare in order to get the

most meaningful contrast for separating functional sites and non-

functional sites. Stubb was run individually on all the aligned

sequences, with all the results collated for analysis.

Data Processing and Experimental Setup
The synthetic CRMs where true TFBS annotations are known

for evaluating CSMET are generated according to the scheme

outlined in Figure 4. Given each 1500 bp simulated multiple

alignment, we use 1000 bp for training, and the remaining 500 for

testing the performance of the trained models. Details of the

simulation procedure and the experimental setup are available in

the Supplemental Materials.

Our biological dataset was created based on the motif database

in [38,39], from which we chose to predict TFBS of TF which

have at least 10 or more biologically validated training instances.

The five TFs which met this requirement were Bicoid, Caudal,

Kruppel, Knirps and Hunchback motifs. Motif finding was

performed on 14 CRMs listed in Table 1 which contained

instances for these 5 binding sites. The multiple sequence

alignment corresponding to the CRMs were obtained by using

the UCSC Genome Browser pre-compiled alignments [40]. The
Figure 13. A 3-state HMM for a single motif.
doi:10.1371/journal.pcbi.1000090.g013
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sequence corresponding to willistoni was left out due to poor

alignment quality and missing contigs. Flanking regions of

1000 bp on each side of the CRMs were also analyzed. For each

CRM alignment, we use the motifs identified in melanogaster as

references to mark all alignment blocks that contain at least one

instance of motifs among the 11 taxa to be analyzed. As a result

our benchmark is biased toward melanogaster, because annotations

in other taxa are not available to mark motifs that are present in

other Drosophila taxa but not in melanogaster. The melanogaster CRMs

contain both biologically validated motifs and computationally

identified but plausible motifs, as documented in [38,39].

To train the CSMET, we manually annotated the functional

states (i.e., Zt) across all taxa in all alignment blocks (i.e., At)

containing the melanogaster motif. We employ a 1 versus K21 cross-

validation scheme for testing on each motif type, where K is the

total number of CRMs where a motif type is present. Specifically,

for each motif type we trained all programs on K21 out of the K

CRMs hosting the motif, and tested on the remaining one, and we

iterated this until all K CRMs had been tested. Recall that the test

accuracy is assessed only for reported motifs in melanogaster, but not

on those manually annotated ones in other taxa.

To avoid overfitting the motif and functional phylogenies of

CSMET under limited training data, for all our experiments, we

used a single phylogenetic tree estimated from the entire training

sequence alignment dataset as the un-scaled version of the motif

and functional trees. We assumed that the Tf’s of every type of

motif share the same topology and branch lengths, but different

equilibriums. Thus, Tf can be fitted from a concatenation of motif-

instance alignments of all types of motifs. For the motif sequence

phylogenies, we enforced the trees at every site in the same motif

have the same topology, branch length, and the Felsenstein total

substitution rate, but different equilibriums. A second tree was

estimated on background sites only, and was used as the

background phylogeny.

To handle real data which contains gaps and other complex-

ities, it is necessary to change some settings of the competing

software from their defaults to ensure proper behavior. EMnEM

was run with default parameters, but with the threshold set to

0.999 to reduce false positives; as for the suggested threshold of

0.5, virtually every location was being classified as a motif.

PhyloGibbs was run with default parameters, but for handling

gaps, the modes of using the full alignment, as well as using partial

alignments were tried, and the pre-estimated phylogeny on all

species for the entire sequence was given to it. PhyloHMM was

run naively using posterior decoding. Stubb was run with default

settings with a slightly reduced threshold of 6.0. At the suggested

threshold of 10.0 for a window size of 500, Stubb predicts no true

positives.

Evaluation
We base our evaluation of every program on three commonly

used evaluation metrics - precision, recall and the F1 score (i.e., the

harmonic mean) based on precision and recall [37]. The precision

is defined as the ratio of number of true predicted positives over

number of all predicted instances; and recall is defined as the

number of true predicted positives to the number of all positives in

the gold-standard annotation. (By this choice of evaluation score

we avoided trivial specificity measure due to very large number of

both predicted and true negatives.) We also allow a little leeway in

the prediction of the motif location—a predicted hit falling within

a tolerance window of size 5bp on either side of the actual starting

location of the motif is also counted as a correct hit. When an

algorithm fails to make any predictions, both precision and recall

are taken to be zero. F1 score in such cases is also taken to be zero.

For simulation-based evaluation, since the ground-truth of motif

locations is known in all taxa, the numbers of true and false

predictions are counted over motif instances in all taxa. For each

experiment, we report summary statistics of performance scores

over all 50 alignments for each algorithm.

Supporting Information

Text S1 Supplementary material for methods.

Found at: doi:10.1371/journal.pcbi.1000090.s001 (1.40 MB PDF)
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1 Materials and Methods

1.1 The Molecular and Functional Substitution Model

We use the Felsenstein 1984 model (F84) (1), which is similar to the Hasegawa - Kishino - Yano’s 1985 model
(HKY85) (2) and widely used in the phylogenetic inference and footprinting literature (1; 4), for nucleotide
substitution in our motif and background phylogeny. Formally, F84 is a five-parameter model, based on
a stationary distribution π ≡ [πA, πT , πG, πC ]′ (which constitutes three free parameters as the equilibrium
frequencies sum to 1) and the additional parameters κ and ι which impose the transition/transversion bias.
Using concise notation for the purine frequency πR = πA + πG and pyrimidine frequency πY = πT + πC , the
instantaneous rate matrix can be written as:

QN =


∗ (1 + κ/πY )ιπC ιπA ιπG

(1 + κ/πY )ιπT ∗ ιπA ιπG
ιπT ιπC ∗ (1 + κ/πR)ιπG
ιπT ιπC (1 + κ/πR)ιπA ∗

 (1)

Since rows of the instantaneous rate matrix must sum to zero, the starred elements of the matrix are
determined from the other 3 elements of the row, and not shown for clarity. According to the continuous-
time Markov process theory, the corresponding nucleotide-substitution probability matrix over a period of
time t is given by PN (t) = eQN t. To apply this model to a motif or a background phylogeny, we set the
stationary distribution π to be the empirical nucleotide-frequency in the corresponding sequence entity that
the phylogeny is defined on (e.g., for phylogeny T (l)

m defined on site l of a motif, we let π ≡ θl, the l-th
column of the PWM of the motif), and the nucleotide-substitution probability from an internal node c to
its descendant c′ along a tree branch of length b can be expressed as follows:

PN (Vc′ = j|Vc = i, β) = e−(κ+ι)βδij + e−ιβ(1− e−κβ)
( πj∑

h(πhεjh)
)
εij + (1− e−ιβ)πj , (2)
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where i and j denote nucleotides, δij represents the Kronecker delta function, and εij is a function similar
to the Kronecker delta function which is 1 if i and j are both pyrimidines or both purines, but 0 otherwise.
The summation in the denominator concisely computes πR or πY .

A less concise, but more intuitive parameterization involves the overall substitution rate per site µ and the
transition/transversion ratio ρ, which can be easily estimated or specified. We can compute the transition
matrix PN from µ and ρ using Eq. (2) based on the following relationship between (κ, ι) and (µ, ρ):

κ =
2πRπT ρ− (2πAπG + 2πCπT )

(2πAπG/πR + 2πCπT /πY )
µ

1 + ρ
, ι =

1
2πRπY

µ

1 + ρ
.

To model functional turnover of aligned substrings along functional phylogeny Tf , we additionally define
a substitution process over two characters (0 and 1) corresponding to presence or absence of functionality.
Now we use the Jukes-Cantor 1969 model (JC69) (3) for functional turnover due to its simplicity and
straightforward adaptability to an alphabet of size 2. The JC69 model is a single parameter model, using
an instantaneous substitution rate µ which is confounded with the time variable. The instantaneous rate
matrix under JC 69 is:

QF =
(
−µ µ
µ −µ

)
. (3)

And the transition probability along a tree branch of length β (which now represents the product of substi-
tution rate µ and evolution time t, which are not identifiable independently,) is defined by:

PF =
(

1
2 + 1

2e
−2β 1

2 −
1
2e
−2β

1
2 −

1
2e
−2β 1

2 + 1
2e
−2β

)
. (4)

From Eqs. (2) and (4), we can see that the likelihood of aligned nucleotides and functional states can be
expressed as a function of the evolutionary parameters, based on which a maximum likelihood estimation of
these parameters can be obtained from training data. Figure 1 outlines the procedure of maximum likelihood
training of CSMET.

1.2 Multi-specific CRM simulation and experimental setup

The synthetic CRMs where true TFBS annotations are known for evaluating CSMET are generated as fol-
lows. First, the simulator stochastically samples the evolutionary trees of motif, background, and functional-
annotation, Tm, Tb and Tf , from the prior distributions (recall that each tree is a three-tuple including the
stationary distribution, the tree topology, and the branch lengths). The Felsenstein transition/transversion
coefficient can in principle be also sampled, but for simplicity and biological validity we pre-specify it to
be 2. Then it simulates motif instances, background sequences, and functionality states (that determine
motif turnover) in different taxa from their respective evolutionary trees under certain substitution rates.
It can also simulate motifs with changing substitution rates according to a scheduling along a sequence,
or in random order. Then it uses the global HMM to generate positional organization of the motifs and
backgrounds in the CRM. Finally these building blocks are put together to synthesize an artificial CRM.
This simulator can be used to simulate realistic multi-specific CRMs resulting from various nontrivial evolu-
tionary dynamics. It is useful in its own right for consistency/robustness analysis of motif evolution models
and performance evaluation of comparative genomic motif-finding programs.

We performed three sets of simulation experiments based on simulated datasets. In each case, we generate
a data set of CRM alignments from the simulator that is simulating a pre-specified coupled functional and
molecular evolution processes unknown to the programs used in the test phase. Each data set contains 50
simulated alignments, each of which is 1500 basepairs in length and includes 10 taxa whose divergence is
controlled by the topologies and the branch lengths of the functional and molecular phylogenies being used.
Each alignment contains instances of a single type of motif, whose length is set to be 8-bp. The parameters
of the generative model used for the simulations are chosen to be representative of such parameters estimated
from real biological data.

The density of motif instances is subject to a systematic adjustment for each data set over a wide range
to generate problems of different degrees of difficulty.

The experiment for evaluating performance of CSMET under varying TFBS turnover rates was performed
by using a different annotation tree for each experimental point. An initial benchmark evolutionary tree
was chosen with branch lengths and topology based on estimation from actual nucleotide alignments on 11

2



Figure 1: A schematic diagram of CSMET training. For the functional phylogeny, motif-instance alignments were generated by
concatenating columns of indicators of motif presence/loss along the sequence alignment; and the scaling factor was fitted using
the common topology. For the motif phylogeny, the nt-alignment of only each attendant site was generated by concatenating all
columns of aligned nucleotides from that site and the corresponding multinomial estimated from them; the common topology
was used for all sites. The motif specific mutation rate and scaling factor were estimated using the common topology from
aligned nucleotides corresponding to all motif sites. For the background phylogeny, all segments of inter-motif sequences and
flanking regions of CRMs were used.
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aligned fly species. All parameters of the Jukes Cantor model based evolutionary tree were kept fixed across
experimental data points, except for the fact that the branch lengths were scaled by a constant factor at each
data point with respect to the initially chosen tree. The scaling factors correspondingly used for the data
points were respectively: 1.50, 2.00, 2.50, 3.00, and 3.50. With increasing branch lengths, the amount of
turnover per site in the simulated data increases - for a scaling factor tending to infinity the turnover model
becomes random and approximates 50% For our data points, the estimated turnover rates corresponding to
the chosen scaling factors were : 25%, 30%, 32%, 34% and 36%.

The simulated sequences with non-uniform TFBS turnover rates were generated by allowing the anno-
tation tree scaling factor to vary for each motif block inside every simulated sequence. The scaling factor
for each instance of a generated motif was equiprobably picked from the values of 1.00, 1.50, 2.00 and 2.50 .
The corresponding turnover rates were 20%, 25%, 30% and 32%.

Given each 1500bp multiple alignment, we use 1000 bp for training, and the remaining 500 for testing
the performance of the trained models. We base our evaluation of every program on three commonly used
evaluation metrics - precision, recall and the F1 score (i.e., the harmonic mean) based on precision and
recall (5).
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