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Forces shaping observations
• Finite sample size : we cant sample the whole 

population

• Sample bias : is our sample representative ?
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Fixing

• Fate of an allele in long run : evolutionary race 
among alleles
– either dies out : “fixed” at 0 (known as loss)
– intermediate situation : “fixed” at intermediate 

value, determined by equilibrium distribution of 
stochastic process (known as equilibrium)

– wipes out all other alleles (becomes monoallelic) : 
“fixed” at 1 (known as fixing)
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Mutation : a cursory look
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Mutation models : how many alleles

• Bi – allelic model : Two alleles exist – a 
mutation will change the allele from type A to 
type B ( or a deleterious new allele which will 
vanish )

• Multi – allelic model : Many alleles exist –
effect of mutation may be difficult to predict 
without explicit model

• Infinite – allelic model : Every mutation 
creates a new allele (convenient, not true)
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Mutation models : how many sites

Infinite sites model :
• Every mutation happens at a new locus

• Expected no of substitutions / site << 1

• Plausible assumption for low mutation rate, 
short evolutionary history studies
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Mutation models : parameters

• Typical assumption : all mutations equally 
likely to occur ( does not mean all mutations 
equally likely to survive )
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Selection : a cursory look
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Selection models : fitness

• Natural selection : Some changes are more 
important for survival or lineage propagation 
based on environmental and other factors : 
fitness fn selects some traits over others

http://evolution.berkel
ey.edu/evosite/
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Selection models : phenotypic 
selection

• Impossible to enumerate ( 
aleph – 2 kinds ! )

• Difficult to parameterize ( curve 
fitting )

• Tricky to estimate ( how many 
samples are enough depends 
on complexity of curve)

Wikipedia
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Selection models: genomic 
selection

• At the phenotypic level : various kinds of 
selectional forces are at play

• At the genomic level : these translate to 3 
basic kinds :
– Positive selection : Advantageous changes are 

accelerated
– Negative / purifying selection : Deleterious 

changes are discarded
– Neutral selection : Selection plays no part
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Facts about selection
• Any preference for one kind of change over 

another (simple eg: transition vs transversion)
• Operates at every granularity: nucleotide, 

codon, protein, etc
• Operates at both allelic and genotypic / 

haplotypic level
• Operates at every resolution: population, 

subspecies, species : one of the driving forces 
of speciation
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A myth about selection

• Selection causes all but the fittest allele to 
vanish = myth (but it potentially could ! )

• Think HKY 85 model:
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Selectional models

• Genotype based model
– each genotype ai has a different selectional 

coefficient si

• Can we incorporate our sampling bias into 
selectional models ?
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How selection works

Pearson Prentice Hall
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Modelling selection

• Fitness = expected no of offspring in the next 
generation
– for the neutral model with fixed population, all 

genotypes have fitness = 1

• Various models of fitness
– Dominant disease
– Recessive disease
– Heterozygous advantage
– Directed selection
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Drift : a cursory look
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Drift

• What is drift
– random, directionless fluctuations in allele 

frequency from generation to generation

• It is the act of randomly sampling a finite no of 
alleles from the previous generation
– we don’t observe the whole population : can we 

incorporate fluctuations / errors due to our finite 
sample size into drift models ?



BIOL 6385, Computational Biology

Parameterizing drift

• Drift is a result of finite sampling
– sample size should be our parameter

• What is our sample size ?
– N individuals, 2N alleles
– Population size is fixed : sample size = 2N 
– We will see later how to handle situations where 

population size is not fixed
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Selection and drift

• Directional pressure :
– based on advantageous or deleterious allele

• Under only selection and drift : 
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Population size
• Smaller population

– greater chance of losing allele by 
drift alone : may undo 
evolutionary optimization by 
removing advantageous allele 
before selection can play a role

• Larger population
– lesser role of drift, greater role of 

selection in variation reduction
– greater no of mutations if rate is 

fixed W
ik

ip
ed

ia

Simulation under only drift
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Population bottleneck
• Loss of alleles

• Alleles driven to 
irrecoverable 
frequencies : 
absorbed to 0

• Founder / bottleneck 
effects

Wikipedia
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In a world with only variation 
reduction

• Sooner or later, all but one allele will go 
extinct ( which one may not be predictable : 
no stationary distribution )

• If the population size is infinite, then drift will 
have no role in the long term prospects of an 
allele [ only the fittest allele will survive ]
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Static models

• Analyzing the allele frequencies at a particular 
time snapshot ( one single generation’s allele 
frequencies are modelled )

• Modelling allele diversity : how much diversity 
can we expect in a population ?
– should it depend on the mutation rate ?
– should it depend on the population size ?
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Chinese restaurant process : 
modelling a diverse population  

• Chinese restaurant process : infinite alleles : 
static or dynamic model ?

byu.edu
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Expected number of tables

• Relating allelic diversity with population size

• Looks at a particular snapshot in size, when 
population = n
– Whether static or dynamic depends on your question : are you 

modelling evolution of no of alleles ? Evolution of population in terms 
of allele frequency ? 
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Dynamic model : multiple 
snapshots in time

• How do populations change at each table as 
more members join , and as a function of the 
number of tables ?

• Will the largest table will stay the largest after 
a doubling of the population ?
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Standard dynamic pop genetic 
models

• Allele frequency models (absolute or relative)
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Variations on the model
• 2 near-“absorbing states”  : 0 and 1 

- not truly absorbing if mutation can occur

• Continuous valued
– relative frequencies of alleles modelled

• Discrete valued
– Granularity of relative frequencies determined by population

• Discrete time : generations
– overlapping generations : eg human
– non overlapping generations : eg annual plants
[ why not use generations in phylogenies ? ]

• Continuous time : brownian motion, diffusion process
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Standard pop genetic models

• Models may not necessarily be Markovian

• Imagine a situation where an individual’s 
fecundity is bounded
– the next generation’s allele frequencies will also 

depend on the history of the population, not just 
the current allele frequencies
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Standard pop genetic models

• What should Markovian models look like ?

• Bayesian networks are a good way to visualize 
the dependencies
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Standard pop genetic models

• What is observed ?

– in the old days, phenotype …
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Standard pop genetic models

• What is observed ?

– these days, we observe both …
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Standard pop genetic models

• Evolution is really operating at the level of 
genotype / haplotype 
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Standard pop genetic models

• Evolution is really operating at the level of 
genotype / haplotype 

• A2G models : census of alleles, but we need  
genotype
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Drift

Drift  + selection

Drift + mutation

Drift  + selection 
+ mutation

Drift  + selection 
+ mutation + 

migration

+ recombination

Beanbag model
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Classic idealized pop models
• Wright – Fisher model :

– Mendelian inheritance
– no sexual selection (allele frequencies don’t differ in sexes)
– no overlapping generations (in the most complicated 

deviation from model, we use continuous time)
– sex ratio = 1
– effective population = actual population
– fixed population
– no selection
– finite population (discrete valued stoch process) 

• Other popular models may trade off such 
oversimplification for less tractable inference
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State space diagram under the 
Wright - Fisher model

• More connectivity than a random walk

• Bi allelic state space for finite population
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Classic idealized pop models

• Other models : Moran model
– overlapping generations
– one or two individuals (depending on evolutionary 

model) selected to reproduce by sampling
– new individual created and added to pool
– one individual is killed to retain constant 

population
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State space diagram for the Moran 
model
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Urn models of pop evolution

• George Polya
• Notion of sampling a non-

homogeneous population 
• Variations on a theme

– Without replacement / with 
replacement /  with replacement 
and duplication / new urn

wikipedia

Carnegie Foundation
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Analogous action on urns

• Overlapping / non overlapping generations
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Analogous action on urns

• Mutation
– new color : infinite alleles model
– under no such assumption, the duplication merely 

causes the ball to change color
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Analogous action on urns
• Drift: Random fluctuations in frequency from 

generation to generation : it is the act of the 
random sampling
– how is death implicitly modelled in W F models ?
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Analogous action on urns

• Selection : Sampling is disproportionate to no 
of balls of each color
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Analogous action on urns

• Population effects : the effects of a finite sized 
jar 
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Which model should I choose ?

• Depends on your need
– modelling Drosophila with overlapping 

generations ( Moran model )
– modelling populations where non overlapping 

generations are a good approximation ( W – F 
model : we will be studying this from now on )

– more complicated situations ( diffusion model : 
we will study the basics of the diffusion process at 
the end of the lecture )
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Bean bag models & deviations
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Null model of population genetics
• Simplest dynamic model of allele frequencies
• Assumption : allele ( and thus genotype ) 

frequencies are in equilibrium
– no forces at work : drift, selection, mutation, etc

• Beanbag model : alleles only move around like 
beans in a bean bag from gen to gen
– even without mutation or selection, can really 

happen only in an infinite (v large) population 
where drift doesn’t affect allele frequency
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Genotype frequencies

• Why model genotype frequencies ?
– remember, traits determined by genotypes ( 

selection acts on genotypes )

• Hardy Weinberg equilibrium
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Why ?

• Alleles segregate independently

• Even if you start with genotype frequencies not 
at HWE, in one generation genotype frequencies 
will be at HWE

• Allele frequencies are the same for both sexes ( 
no sexual selection ) : could allele frequencies be 
different in the two genders at HWE ?
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Key properties

• Allele frequency is not affected by alleles 
segregating into different genotypes

• For pure dominance models, allele 
frequencies can be estimated from phenotype 
frequencies
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Sex linked alleles

• p & q for heterogametic sex
• p^2, 2pq and q^2 for homogametic sex
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HWE : multiple alleles
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Ewens sampling formula : 
distributions over partitions

• Finite sample size

• Role of theta
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Space of allele frequencies

The simplex for 3 alleles
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Corresponding genotype space

• Higher dimensional space :
– choose 2 from k options, 

with repeats

• Under HWE :
– constrained space
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Test for HWE : categorical tests

• Measuring deviations in the simplex

• Perform a categorical test : are the 2 rows 
drawn from the same distribution ?
– eg chi square ( degrees of freedom = no of 

genotypes – no of alleles )
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So, we arent in HWE, …
• what next?

• A categorical test only tells us whether the 
population is under HWE, doesn’t tell us the 
likelihood of observing a non-HWE equilibrium

• Without explicitly modelling the different kinds of 
forces, we may put a prior over the space of 
genotype frequencies, based on sampling or prior 
knowledge
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Dirichlet distributions : non-HWE 
equilibrium models

• For HWE violations, we want to move away 
from the ( p^2, 2pq, q^2 ) parameterization

• “Pushing” the point on the simplex to a region 
of the simplex : Dirichlet distrn

wikipedia
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Moving on from the bean-bag 
model

• We want to model the evolutionary dynamics 
of the allele frequencies
– population may not be in equilibrium : we may 

want to characterize the trajectory such 
populations take towards their long run 
configurations

– even if it is in equilibrium, we may want to find 
out the nature of forces ( mutation, drift, selection 
) acting on it
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Simplest violation of the bean bag 
model

• Allele populations remain in equilibrium if 
sampling can be done faithfully at every 
generation

• Finite populations
– finite sampling comes up with distribution with 

errors wrt original population distribution
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Drift only models
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Drift only model : long run

• No stationary distribution
– What is the probability that drift will fix one allele 

and not the other : probability of fixation ?
– Proportional to the relative frequencies
– Remember gambler’s ruin and the random

walk 



BIOL 6385, Computational Biology

Drift only model: heterozygosity

• With no mutation, identity by descent
• Ht = Pr of picking two different alleles in the 

population at time t
• For bi allelic model, H0 = 2 x0 ( 1 – x0 )
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Variance in the sampling process
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Modelling more complex 
directional change

• Under drift, expected value of change in allele 
frequency in one generation = 0

• However, empirically, we know that allele 
frequencies show directed change : selection
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Selection only models
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Selection only models
• N is assumed to be large : drift has little effect
• Usually variation decreasing force

• But, what happens if the heterozygous allele 
has maximum fitness ?
– variation increasing force : if variation is thought 

of as degree of heterozygosity of the population

• How to model changing allele frequencies ?
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Selection only models

• Important notion : mean fitness of population
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Change in allele frequencies
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Adding to the mix

• So far, we have modelled how existing alleles 
compete with each other over generations

• But how do these different alleles get created 
?

• Modelling the primary driving force of 
polymorphism : mutations
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Mutation only models
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Frequency of mutation

• Mutation rate :  no of de novo mutations as a 
fraction of the total population

• Does this really happen ? 
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Mutation only models

• May not be very interesting to look at long run 
probabilities : no drift or selection to balance 
allele frequencies at equilibrium : no drift or 
selection to drive them to loss or fixing

• Instead, more realistic models will try to 
model mutation in a setting where alleles are 
lost due to drift or selection
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Drift – mutation models
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Fixation prob of neutral mutation

• Initial prob of novel mutation = 1 / (2N) ( no 
two mutations are same under infinite alleles 
model )

• Remember drift only models : the probability 
of fixing this mutation would be its starting 
relative frequency = 1 / (2N)

• Under infinite sites model, fixation rate of any 
new mutation (from a generation) :
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Mutation with drift : neutral model
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Problems ! 

• Can we estimate N (population) if we know 
mutation rate and heterozygosity 
– heterozygosity : sample population
– mutation rate = substitution rate ( why ? later … )

• We get wrong answers for N using well 
established data sets for humans ( we get N = 
6000 ) and Drosophila ( we get N = 200,000 )
– why ? Real populations may not be following W –

F model
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Effective population size

• Ne may be much less than N
• How to estimate Ne

- Variance in no of offspring

- Fluctuating population 

- Gender skew 
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What is Ne anyway ?

• It is the population of an ideal W-F model that 
would approximate the population dynamics
of the current population under study.
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Gender imbalance and effective 
population

• For organisms with matriarchal or patriarchal 
clans, the approximation should be different
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N versus Ne



BIOL 6385, Computational Biology

Mutation – selection models
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Continuous allele frequencies

• From now on, we will consider that allele 
frequencies can be modelled as continuous

• We can now take derivatives wrt the allele 
frequency !
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Rate of change of allele 
frequencies

• As N is assumed to be large, allele frequencies 
can be modelled as continuous. Derivatives 
wrt x can be taken :
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Rate of change of allele 
frequencies
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Selection – mutation balanced 
model
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Selection – mutation balanced 
model

• Balancing of allele frequency by mutation and 
selection
– Why is drift not considered here ?
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Working this out for other models

• Can be worked out for other sets of selection 
coefficients
– eg, another model
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Drift – mutation – selection  models



BIOL 6385, Computational Biology

Continuous-valued, continuous-
time stochastic processes

• Continuous valued, continuous time processes :
– discontinuous in time/jump : sample paths discont

– many notions of continuous in time : Sample –
continuous : all sample paths almost surely
continuous (eg diffusion process)
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Diffusion process
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Diffusion process
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Diffusion process
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Modelling the diffusion process
• We are now dealing with densities, not 

probabilities

• So far, preference for one kind of change over 
another was exclusively modelled through 
selection
– now for each kind of mutation ( A  B ) , we have 

a mutation rate ( may not be agnostic to nature of 
change )
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Modelling the diffusion process

• Model mutation rates

• Model selection co efficients

• Model the functions of mean and variance of 
the rate of change of the alleles

– additional parameters may be needed ( eg. 
variance contributed by selection ? ) 
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Equilibrium frequencies : adaptive 
mutation
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Fixation prob : adaptive mutation

• Diffusion process
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Fixation prob of adaptive mutation
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Rate of evolution

• Rate of evolution = Rate of observed mutations
= Rate of mutation X rate of          

fixation                                
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Paradigms of selection

• 3 regimes : based on value of Ne X s   
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Neutral Theory

• Motoo Kimura (1968) 
• Very large fraction of fixed mutations (both 

within and between species) are the result of 
truly random processes (drift) and not of 
directed selection
– previously, it was thought natural selection main driver of 

fixed mutations
– do not confuse neutral theory with neutral model ( which 

is any model of evolution under no / neutral selection )
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Neutral Theory

• Functional sites : Most mutations deleterious 
and immediately removed by negative 
selection

• -ve correlation betw functional significance 
and substitution rate : more functionally 
significant more types of mutations likely 
to be deleterious / more types of mutations 
less likely to be fixed  lower neutral 
mutation rate & lower substitution rate
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Explanation of molecular clock

• Neutral mutation rate is expected to be 
constant across species and lineage

• Completely random mutations would accrue 
linearly over time
– Branch length = Expected no of substitutions = 

Substitution rate X time = Neutral mutation rate X 
time = constant X time
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Evidence

• For neutral theory : Functionally important 
sites show lower substitution rates wrt 
functionally unimportant sites

• For neutral theory : molecular clock
• Against neutral theory : Only accounts for 

strongly deleterious and neutral mutations. 
Evidence exists of weakly deleterious 
mutations.
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Selectionist – neutralist debate
• Ohta : Nearly – neutral theory

– strongly deleterious alleles get wiped out
– weakly deleterious alleles get fixed under 

mutation – selection balance
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Identifying neutrality

• Biggest challenge in using neutral theory : 
which changes are neutral ?

• Question to address : which phenotypes are 
affected on which natural selection can act ?
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A complicated situation
• What about mutations in transcription factor 

binding site ?
– If the change increases binding affinity ?
– If the change decreases binding affinity ?
– If it causes no (negligible) change ?

• Difficult to say due to compensatory binding 
sites nearby : difficult to quantify from binding 
alone : expression levels of genes need to be 
observed : still may not be enough
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A less complicated situation : 
codons

• Simple situation : coding region : silent 
mutations ( which do not change the coded 
amino acid ) are termed neutral

• Other changes are deemed non – neutral

• For a MSA, no. and nature of mutations need 
to be figured out on the tree relating the 
sequences ( or averaged over trees ) 
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Codon table

• Synonymous & non synonymous mutations
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Detecting selection in codons

• Goal is to identify regions in genes where rate 
of amino acid change (rate of non 
synonymous mutation) is greater or lesser 
than the rate of neutral (synonymous) 
mutation.
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dN / dS

• dN = no of non synonymous changes, dS = no 
of synonymous changes

• Ratio : > , = , < 1 : positive, neutral or negative 
selection

• How to put probabilities on such hard 
constraints ? 
– distribution of (dN – dS) for gold standard sets of 

neutral and non neutral sites
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An example

G McVean, Oxford Uni
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Counting  dN & dS

• Another example : 
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Counting dN & dS over a tree

• MSA 
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Word of warning

• Remember, a mode of selection over a set of 
sites does not guarantee that the same mode 
of selection will operate on a subset of the 
sites !
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McDonald – Kreitman test

• Synthesis : species and population genetic 
models : test for ancient selectional forces

• Between species and within species dN & dS 
compared by categorical tests

Fixed Polymor
phic

Synony
mous Ds Ps

Nonsyn
onymou
s

Dn Pn

Dn/Pn >> Ds/Ps
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Notion behind the MK test
• Deleterious mutations may persist in populations for 

a few generations due to drift, very unlikely to 
become fixed.
– contribute to polymorphism, but not divergence. 

• Advantageous / adaptive mutations become fixed in 
populations pretty fast : contribute little to 
polymorphism, appear as fixed differences between 
species. 

• Compare no of fixed to polymorphic differences for 
synonymous and nonsynonymous mutations 
deviations from the neutral theory can be detected
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So, what can we do with these 
tools ?

• Given initial allele frequency, and selectional 
coefficients and mutation rates
– predict probability of fixation and / or equilibrium 

frequencies

• Given allele frequencies in equilibrium
– estimate heterozygosity and other notions of genetic 

variability and estimate effective population size, mutation 
rates, selection coefficients

• Given alleles and model of change for a set of loci, 
predict the nature and degree of selection
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More complications

• Genetic hitchhiking
• Modelling multiple loci
• Models of recombination

– linkage between loci

• Polymorphism as a function of recombination 
rates
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What if …

• We are less interested in the evolutionary 
parameters

• More interested in the genealogy ?
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Coalescent theory

• Purely historical, not predictive
• Retrospective, may be generative

• Genealogical tree to MRCA

• (Bad) analogy in phylogenetics: :
tree reconstruction

John Kingman

Isaac Newton Institute
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Coalescent theory

• Visualization of the coalescent : 
http://www.ucl.ac.uk/tcga/presentations/TCG
Augss/TCGA_MW_Seminar4.ppt

• Deriving the coalescent : 
http://bio.classes.ucsc.edu/bio107/Class%20p
dfs/W05_lecture14.pdf
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A few uses: genetic fingerprinting

• Pick a set of loci s.t. no of allelic configurations 
(genotypic or haplotypic) approaches the no 
of individuals in the population

– Not enough selection, and sufficiently high rate of 
mutation that it is conserved across individuals ( 
effective population is same for all alleles )
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A few uses: reconstructing ancestry
• Paternal and maternal lineages : avoid 

confounding recombination
– paternal : Y chromosome
– maternal : mtDNA (mitochondrial eve)

• Distinguishing divergence from gene flow
• Admixture components : relative 

contributions of founder populations

Dodecad
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That’s all, folks !

More reading (on the website)

Comparing different methods :
Phylogenetic vs pop genetic
Historic vs predictive
ML vs Bayesian

etc …
Which one to use ? Larson, The Far Side
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Summary
• Population genetics: Toolkit for understanding a more fine-grained evolutionary 

picture, merges evolutionary theory with quantitative genetics ( population 
genomics : whole genome view )

• Evolutionary process : cooking pot, alleles : ingredients, drift, mutation, 
selection, recombination, population structure and migration, 
stochasticity : recipe

• Changes in allele frequencies : outcome of the process !
• Often, the goal is to observe the outcome and make evidence-driven 

guesses about missing pieces of the recipe 
– GENEALOGY ESTIMATION AND INFERENCE: identifying evolutionary 

relationships between individuals and using such relationships for inference: 
estimating allele genealogy, coalescents, pedigree based inference

– POPULATION GENETICS: evolutionary forces: mutation rates, selectional
model, recombination rate, demography: migratory model, population size

– ASSOCIATION STUDIES (CLASSICAL GENETICS) : genotype – phenotype 
relationships: phenotype-associated loci, epistasis model, quantitative trait 
models
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(Some) things we didn’t cover
• Gene tree – species tree reconciliations

• Violating W-F models in additional ways : Inbreeding, 
migration, ancestry & demographic models

• Modelling multi locus dynamics : recombination

• Quantitative genetics
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