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(some material based on content by PR in Eric Xing’s 10-810 Carnegie Mellon class)
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Forces shaping observations

* Finite sample size : we cant sample the whole
population

 Sample bias : is our sample representative ?
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FiXing

* Fate of an allele in long run : evolutionary race
among alleles
— either dies out : “fixed” at O (known as loss)

— intermediate situation : “fixed” at intermediate
value, determined by equilibrium distribution of
stochastic process (known as equilibrium)

— wipes out all other alleles (becomes monoallelic) :
“fixed” at 1 (known as fixing)

LVEW AT EQUILIGQON, ALLE LES (ool o STILLLE
@DALLAS Firen 6o  LolT UNDSR ST



Mutation : a cursory look




Mutation models : how many alleles

* Bi—allelic model : Two alleles exist — a
mutation will change the allele from type A to
type B ( or a deleterious new allele which will

vanish )

 Multi— allelic model : Many alleles exist —
effect of mutation may be difficult to predict
without explicit model

* Infinite — allelic model : Every mutation
creates a new allele (convenient, not true)
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Mutation models : how many sites

Infinite sites model :
* Every mutation happens at a new locus

* Expected no of substitutions / site << 1

* Plausible assumption for low mutation rate,
short evolutionary history studies
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Mutation models : parameters

* Typical assumption : all mutations equally
likely to occur ( does not mean all mutations
equally likely to survive )
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Selection : a cursory look




Selection models : fitness

* Natural selection : Some changes are more
important for survival or lineage propagation
based on environmental and other factors :
fitness fn selects some traits over others




Selection models : phenotypic
selection

Disruptive Selection

* Impossible to enumerate (
aleph — 2 kinds ! ) m

» Difficult to parameterize ( curve  Stabilizing Selection

fitting ) /\

e Tricky to estimate ( how many Directional Selection
samples are enough depends QQ
on complexity of curve)
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Selection models: genomic
selection

* At the phenotypic level : various kinds of
selectional forces are at play

* At the genomic level : these translate to 3
basic kinds :

— Positive selection : Advantageous changes are
accelerated

— Negative / purifying selection : Deleterious
changes are discarded

— Neutral selection : Selection plays no part
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Facts about selection

* Any preference for one kind of change over
another (simple eg: transition vs transversion)

* Operates at every granularity: nucleotide,
codon, protein, etc

* Operates at both allelic and genotypic /
haplotypic level

* Operates at every resolution: population,
subspecies, species : one of the driving forces
of speciation
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A myth about selection

e Selection causes all but the fittest allele to

vanish = myth (but it potentially could !)
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Selectional models

* Genotype based model

— each genotype ai has a different selectional
coefficient si

\

facTor et BIASES PROPOAL SAMELING

* Can we incorporate our sampling bias into
selectional models ?
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How selection works
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Modelling selection

* Fitness = expected no of offspring in the next
generation

— for the neutral model with fixed population, all
genotypes have fitness =1

* Various models of fitness | AR Ao oo
— Dominant disease \v=s| \
— Recessive disease \ \ \ = S
— Heterozygous advantage -t | | -5
— Directed selection \ 5\ ~hs A =5
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Drift : a cursory look




Drift

e What is drift

— random, directionless fluctuations in allele
frequency from generation to generation

* |tis the act of randomly sampling a finite no of
alleles from the previous generation
— we don’t observe the whole population : can we

incorporate fluctuations / errors due to our finite
sample size into drift models ?
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Parameterizing drift

* Drift is a result of finite sampling

— sample size should be our parameter

 What is our sample size ?
— N individuals, 2N alleles
— Population size is fixed : sample size = 2N

— We will see later how to handle situations where
population size is not fixed
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Selection and drift
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Population size

* Smaller population

— greater chance of losing allele by
drift alone : may undo
evolutionary optimization by
removing advantageous allele
before selection can play a role

e Larger population

— lesser role of drift, greater role of
selection in variation reduction

— greater no of mutations if rate is
fixed
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Allele frequency

Population n=20
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Population bottleneck

e Loss of alleles

 Alleles driven to
irrecoverable

frequencies : .
absorbed to O Sl > ZZZ: I
3| o > | o > | on
 Founder / bottleneck Wikipedia

effects

@,DALLAS



In a world with only variation
reduction

* Sooner or later, all but one allele will go
extinct ( which one may not be predictable :
no stationary distribution )

* |f the population size is infinite, then drift will
have no role in the long term prospects of an
allele [ only the fittest allele will survive ]
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Static models

* Analyzing the allele frequencies at a particular
time snapshot ( one single generation’s allele
frequencies are modelled )

* Modelling allele diversity : how much diversity
can we expect in a population ?

— should it depend on the mutation rate ?
— should it depend on the population size ?
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Chinese restaurant process :

modelling a diverse population

* Chinese restaurant process : infinite alleles :
static or dynamic model ? p, (5, - gy = LhesIP= 1!

n!
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Expected number of tables

* Relating allelic diversity with population size

'e+n+a)l'(+1) 6

ol (0 +n)T(0+a) o

* Looks at a particular snapshot in size, when
population =n

— Whether static or dynamic depends on your question : are you
modelling evolution of no of alleles ? Evolution of population in terms
of allele frequency ?
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Dynamic model : multiple
snapshots in time

* How do populations change at each table as
more members join, and as a function of the
number of tables ?

* Will the largest table will stay the largest after
a doubling of the population ?
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Standard dynamic pop genetic

models

* Allele frequency models (absolute or relative)
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Variations on the model

e 2 near-“absorbing states” :0and 1

- not truly absorbing if mutation can occur

e Continuous valued

— relative frequencies of alleles modelled

* Discrete valued

— Granularity of relative frequencies determined by population
* Discrete time : generations

— overlapping generations : eg human

— non overlapping generations : eg annual plants
[ why not use generations in phylogenies ? |

e Continuous time : brownian motion, diffusion process
@DALLAS



Standard pop genetic models

* Models may not necessarily be Markovian

* Imagine a situation where an individual’s
fecundity is bounded

— the next generation’s allele frequencies will also
depend on the history of the population, not just
the current allele frequencies
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Standard pop genetic models

e What should Markovian models look like ?
A F (D) pe(V)  AR(2D

5>—O—0—

D\SMUQ/‘ AV SRV VA vl Swmm

* Bayesian networks are a good way to visualize
the dependencies
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Standard pop genetic models

e What is observed ?
BE (D) =GR nNE (2D

5>—O—0—

|
b & b
P 0D L) (2)

— in the old days, phenotype ...
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Standard pop genetic models

e What is observed ?
e (D) Ae(V) AR (D

— WW—>@—
I L |

@ 2, b
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— these days, we observe both ...
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Standard pop genetic models

Pf(0) Z18D P2)

* Evolution is really operating at the level of
genotype / haplotype
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Standard pop'genetic models
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P (o) () P(2)
* Evolution is really operating at the level of
genotype / haplotype

e A2G models : census of alleles, but we need
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Beanbag model

Drift + selection
+ mutation
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+ mutation +
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Classic idealized pop models
* Wright — Fisher model :

— Mendelian inheritance
— no sexual selection (allele frequencies don’t differ in sexes) S

O
— no overlapping generations (in the most complicated \4&‘/\\@8

deviation from model, we use continuous time) PQQQ'DOV?‘/\;&&\Q
. 0 NV QO
— sexratio=1 %\é‘m‘?}/@ &
. . . J
— effective population = actual population s f(v“”g
fixed populati W %
— fixed population :
P p ¢t \
— no selection we g
— finite population (discrete valued stoch process)

* Other popular models may trade off such

oversimplification for less tractable inference
DALLAS



State space diagram under the
Wright - Fisher model

* More connectivity than a random walk

* Bi allelic state space for finite population
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Classic idealized pop models

e Other models : Moran model
— overlapping generations

— one or two individuals (depending on evolutionary
model) selected to reproduce by sampling

— new individual created and added to pool

— one individual is killed to retain constant
population
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State space diagram for the Moran
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Urn models of pop evolution

* George Polya { B

* Notion of sampling a non-
homogeneous population

wikipedia

e Variations on a theme

— Without replacement / with
replacement / with replacement
and duplication / new urn

DALLAS utatior .
Carnegie Foundation




Analogous action on urns

* Overlapping
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Analogous action on urns

e Mutation
— new color : infinite alleles model

— under no such assumption, the duplication merely
causes the ball to change color




Analogous action on urns

* Drift: Random fluctuations in frequency from
generation to generation : it is the act of the
random sampling

— how is death implicitly modelled in W F models ?




Analogous action on urns

* Selection : Sampling is disproportionate to no
of balls of each color

vV
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Analogous action on urns

* Population effects : the effects of a finite sized
jar




Which model should | choose ?

* Depends on your need

— modelling Drosophila with overlapping
generations ( Moran model )

— modelling populations where non overlapping
generations are a good approximation (W —F
model : we will be studying this from now on )

— more complicated situations ( diffusion model :
we will study the basics of the diffusion process at
the end of the lecture )
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Bean bag models & deviations




Null model of population genetics
* Simplest dynamic model of allele frequencies

* Assumption : allele ( and thus genotype )
frequencies are in equilibrium

— no forces at work : drift, selection, mutation, etc

* Beanbag model : alleles only move around like
beans in a bean bag from gen to gen

— even without mutation or selection, can really
happen only in an infinite (v large) population
where drift doesn’t affect allele frequency

DALLAS




Genotype frequencies

 Why model genotype frequencies ?

— remember, traits determined by genotypes
selection acts on genotypes )

* Hardy Weinlberg equilibrium

..?.?.qu Aa 2pq Mpz

0.8

o\ /byt
0.4 \\ /

0.2 )/\
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Why ?

* Alleles segregate independently

* Even if you start with genotype frequencies not
at HWE, in one generation genotype frequencies
will be at HWE

* Allele frequencies are the same for both sexes (
no sexual selection ) : could allele frequencies be
different in the two genders at HWE ?
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Key properties

* Allele frequency is not affected by alleles
segregating into different genotypes

* For pure dominance models, allele
frequencies can be estimated from phenotype
frequencies
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Sex linked alleles

* p & g for heterogametic sex
e p"2, 2pq and g”*2 for homogametic sex

CENSYS -~ 2C, ﬁA) X, —> &
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HWE : multiple alleles
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Ewens sampling formula :
distributions over partitions

* Finite sample size

e Role of theta
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Space of allele frequencies

The simplex for 3 alleles




Corresponding genotype space

* Higher dimensional space : Aa

— choose 2 from k options,

with repeats (Wow M%7 )

e Under HWE :

— constrained space

VIPDALLAS



Test for HWE : categorical tests

* Measuring deV|at|ons in the simplex

AR [ aa | Pa

0BSERNED \ Tan | Naa \{\”w
e e [owralaton

ESTamnT $p

* Perform a categorical test : are the 2 rows
drawn from the same distribution ?

— eg chi square ( degrees of freedom = no of

Hpoafepptypes —no of slels)




So, we arent in HWE, ...

e what next?

* A categorical test only tells us whether the
population is under HWE, doesn’t tell us the
likelihood of observing a non-HWE equilibrium

* Without explicitly modelling the different kinds of
forces, we may put a prior over the space of
genotype frequencies, based on sampling or prior
knowledge
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Dirichlet distributions : non-HWE
equilibrium models

* For HWE violations, we want to move away
from the ( p"2, 2pqg, g2 ) parameterization

* “Pushing” the point on the simplex to a region
of the 5|mplex Dlrlchlet distrn

- 4
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Moving on from the bean-bag
model

 We want to model the evolutionary dynamics
of the allele frequencies

— population may not be in equilibrium : we may
want to characterize the trajectory such
populations take towards their long run
configurations

— even if it is in equilibrium, we may want to find
out the nature of forces ( mutation, drift, selection
) acting on it
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Simplest violation of the bean bag
model

* Allele populations remain in equilibrium if

sampling can be done faithfully at every
generation

* Finite populations

— finite sampling comes up with distribution with
errors wrt original population distribution
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Drift only models




Drift only model : long run

* No stationary distribution

— What is the probability that drift will fix one allele
and not the other : probability of fixation ?

— Proportional to the relative frequencies
— Remember gambler’s ruin and the randomye e oV £4_
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Drift only model: heterozygosity

* With no mutation, identity by descent

* Ht = Pr of picking two different alleles in the
population at time t

* For bi allelic model, Ho=2 xo (1 —xo)
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Variance in the sampling process
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Modelling more complex
directional change

* Under drift, expected value of change in allele
frequency in one generation =0

* However, empirically, we know that allele
frequencies show directed change : selection
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Selection only models




Selection only models

* N is assumed to be large : drift has little effect
e Usually variation decreasing force

* But, what happens if the heterozygous allele
has maximum fitness ?

— variation increasing force : if variation is thought
of as degree of heterozygosity of the population

* How to model changing allele frequencies ?
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P&flﬂ/ ‘YA
* I[mportant notion : mean fitness of population
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Change in allele frequencies
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Adding to the mix

* So far, we have modelled how existing alleles
compete with each other over generations

 But how do these different alleles get created
?

* Modelling the primary driving force of
polymorphism : mutations
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Mutation only models




Frequency of mutation

e Mutation rate : no of de novo mutations as a
fraction of the total population

M o TUFC:/\/L,
(o cnan of oplakon w i wrHen
ofrs L qen = M
after n aon = | — (l’/‘”rz

* Does this really happen ?
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Mutation only models

* May not be very interesting to look at long run
probabilities : no drift or selection to balance
allele frequencies at equilibrium : no drift or
selection to drive them to loss or fixing

* |nstead, more realistic models will try to
model mutation in a setting where alleles are
lost due to drift or selection
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Drift — mutation models




Fixation prob of neutral mutation

* |nitial prob of novel mutation=1/(2N) ( no
two mutations are same under infinite alleles
model )

* Remember drift only models : the probability
of fixing this mutation would be its starting

relative frequency =1/ (2N} \N(«:A\Zigié e

* Under infinite sites model, fixation rate of any

new mutation (from a generatlogh

X.,
R
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Mutation with drift : neutral model
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Problems !

* Can we estimate N (population) if we know
mutation rate and heterozygosity
— heterozygosity : sample population
— mutation rate = substitution rate ( why ? later ... )

 We get wrong answers for N using well
established data sets for humans ( we get N =
6000 ) and Drosophila ( we get N = 200,000 )

— why ? Real populations may not be following W —
F model
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Effective population size

* Ne may be much less than N
* How to estimate Ne

- Variance in no of offspring

- Fluctuating population baf wraVr
- Gender skew il — (affecred °)
e ND W ) wnkela
N, = 4NN pop botilened
N NT

S (AN N . NO AR
DALILAS S| LS WAY TO u{gc,K_.S\ukuLAtiU




What is Ne anyway ?

* |tis the population of an ideal W-F model that
would approximate the population dynamics
of the current population under study.
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Gender imbalance

populati

* For organisms with matria

and effective
on

rchal or patriarchal

clans, the approximation should be different

Graph for 4*(100-x)*x/(x+100-x)
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N versus Ne




Mutation — selection models




Continuous allele frequencies

* From now on, we will consider that allele
frequencies can be modelled as continuous

* We can now take derivatives wrt the allele
frequency |
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Rate of change of allele
frequencies

* As N is assumed to be large, allele frequencies

can be modelled as continuous. Derivatives
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Rate of change of allele
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Selection — mutation balanced

model
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Selection — mutation balanced
model

* Balancing of allele frequency by mutation and
selection

— Why is drift not considered here ?

Swalhg,
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Working this out for other models

e Can be worked out for other sets of selection

coefficients
— eg, another model
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Drift — mutation — selection models

VIPDALLAS



Continuous-valued, continuous-
time stochastic processes

e Continuous valued, continuous time processes :

— discontinuous in time/jump : sample paths discont

e TN‘/V/*J\/”/V_/V/

? 4

— many notions of continuous in time : Sample —
continuous : all sample paths almost surely
continuous (eg diffusion process)
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Qs{?@ Diffusion process
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Diffusion process
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Diffusion process
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Modelling the diffusion process

* We are now dealing with densities, not
probabilities

* So far, preference for one kind of change over
another was exclusively modelled through
selection
— now for each kind of mutation (A =» B ), we have

a mutation rate ( may not be agnostic to nature of
change)
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Modelling the diffusion process

e Model mutation rates
e Model selection co efficients

e Model the functions of mean and variance of
the rate of change of the alleles

W, t) & VIOX L)

— additional parameters may be needed ( eg.
1 . . ?
@DAL\/La&ance contributed by selection ? )



Equilibrium frequencies : adaptive
mutation
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Fixation prob : adaptive mutation
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Fixation prob of adaptive mutation
NNg o S T (Sx, D) e MWih
\fg & (87\\ %&gl 2% D) e NpdA PN CE

s ,uu/sfu&ﬂ‘“\s x W N g
o Mgy ~ & U“)\ISL =

4 H
S

= = %

ANQS e CWB _A\NQS"L

QENEM R U\'Q'LB = C. - € *_’D

g TELGRAOTIN =
OUL \n 9 5" bounoaey « (o) = o w D) \

’H\C,TDKO -avesn_
 DALLAS w) = — T

-3 -\




Rate of evolution
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e Rate of evolution = Rate of observed mutations

= Rate of mutation X rate of
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Paradigms of selection

* 3regimes : based on value of Ne X s
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Neutral Theory

* Motoo Kimura (1968)

* Very large fraction of fixed mutations (both
within and between species) are the result of
truly random processes (drift) and not of

directed selection
— previously, it was thought natural selection main driver of

fixed mutations

— do not confuse neutral theory with neutral model ( which
is any model of evolution under no / neutral selection )

@ DALLAS



Neutral Theory

 Functional sites : Most mutations deleterious
and immediately removed by negative
selectiorsvsT RATE = JAueuteas

e -ve correlation betw functional significance
and substitution rate : more functionally
significant = more types of mutations likely
to be deleterious / more types of mutations
less likely to be fixed =2 lower neutral
mutation rate & lower substitution rate

@DALLAS AUore fyeq = /U‘N@T@M-/Me>



Explanation of molecular clock

* Neutral mutation rate is expected to be
constant across species and lineage

e Completely random mutations would accrue
linearly over time

— Branch length = Expected no of substitutions =
Substitution rate X time = Neutral mutation rate X

time = constant X time

@ DALLAS



Evidence

* For neutral theory : Functionally important
sites show lower substitution rates wrt
functionally unimportant sites

* For neutral theory : molecular clock

* Against neutral theory : Only accounts for
strongly deleterious and neutral mutations.
Evidence exists of weakly deleterious
mutations.

@ DALLAS



Selectionist — neutralist debate

* Ohta : Nearly — neutral theory
— strongly deleterious alleles get wiped out

— weakly deleterious alleles get fixed under
mutation — selection balance
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ldentifying neutrality

* Biggest challenge in using neutral theory :
which changes are neutral ?

* Question to address : which phenotypes are
affected on which natural selection can act ?

@DALLAS



A complicated situation

 What about mutations in transcription factor
binding site ?
— If the change increases binding affinity ?
— If the change decreases binding affinity ?
— If it causes no (negligible) change ?

* Difficult to say due to compensatory binding
sites nearby : difficult to quantify from binding
alone : expression levels of genes need to be

observed : still may not be enough
@DALLAS



A less complicated situation :

codons
* Simple situation : coding region : silent
mutations ( which do not change the coded
amino acid ) are termed neutral

* Other changes are deemed non — neutral

* For a MSA, no. and nature of mutations need
to be figured out on the tree relating the
sequences ( or averaged over trees )

@ DALLAS



Codon table

* Synonymous & non synonymous mutations

____ﬂ__f-“’____ Seconed Position __"‘*———_________
U c A G
code | Amino Acid | code | Amino Acid | code | Amino Acid | code | Amino Acid
(1T ucu | vau UGy u
1 phe } tyr CYS
uuc | uce i | uac UGE [
/ uua | i Uch (7Y STOP UGA | STOP A
uuG | UcG UaAG STOP UGG trp G \'\
cuu | ccu CAU i CGU u
. cuc | gy cce pro | CAC CGC i c <
I cua | CCA | CAA g CGA A 2
7 CUG | cCG ca | O GG 6 | S
R AuU | ACU | AU AGU u E
- —— 1 —— asn ser =
= AUC ibe ACT ARG AGC c | &
i - thr i 3
AUA | ACA AR AGA A
I lys arg
\ AUG| met | ace | ANG | | AGG | -
Guu | GCU | Gau S8 GGU u
euc | GCC il | GAC GGC = C
GUA GCA | Gaa GGA A
- —_— glu
\ GUG | GCG | caa GGG a |




Detecting selection in codons

* Goalis to identify regions in genes where rate
of amino acid change (rate of non
synonymous mutation) is greater or lesser
than the rate of neutral (synonymous)
mutation.

@DALLAS



dN / dS

 dN = no of non synonymous changes, dS = no
of synonymous changes

e Ratio: >, =, <1 :positive, neutral or negative
selection

* How to put probabilities on such hard
constraints ?

— distribution of (dN — dS) for gold standard sets of

neutral and non neutral sites
@DALLAS



An examp|e

Nonsynonymous Synonymous
Arg Gln Val Arg Gln Val
AGA CAA GTA AGA CAA GTA
* A — G Mutation *
CAG CGA GTA AGA CAG GTA
Arg Arg Val Arg Gln Val

@DALLAS G McVean, Oxford Uni



Counting dN & dS

* Another example :

cCan CAR  GTA  CAR RGHK

cka CXA GTA CaG ROA
5 N S
i{i - \, < )
AS L
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Counting dN & dS over a tree

* MSA
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Word of warning

e Remember, a mode of selection over a set of
sites does not guarantee that the same mode
of selection will operate on a subset of the

sites |
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McDonald — Kreitman test

* Synthesis : species and population genetic
- models : test for ancient selectional forces
; * Between species and within species dN & dS
S —compared by categorical tests
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Notion behind the MK test

* Deleterious mutations may persist in populations for
a few generations due to drift, very unlikely to
become fixed.

— contribute to polymorphism, but not divergence.

* Advantageous / adaptive mutations become fixed in
populations pretty fast : contribute little to
polymorphism, appear as fixed differences between
species.

 Compare no of fixed to polymorphic differences for
synonymous and nonsynonymous mutations
deviations from the neutral theory can be detected

@ DALLAS



So, what can we do with these
tools ?

* Given initial allele frequency, and selectional
coefficients and mutation rates

— predict probability of fixation and / or equilibrium
frequencies

* Given allele frequencies in equilibrium

— estimate heterozygosity and other notions of genetic
variability and estimate effective population size, mutation
rates, selection coefficients

* Given alleles and model of change for a set of loci,

@Iﬂﬁﬂi@ the nature and degree of selection



More complications

* Genetic hitchhiking
* Modelling multiple loci
* Models of recombination

— linkage between loci

e Polymorphism as a function of recombination
rates

@DALLAS



What if ...

* We are less interested in the evolutionary
parameters

 More interested in the genealogy ?

J@DALLAS



Coalescent theory

e Purely historical, not predictive
* Retrospective, may be generative

John Kingman

* Genealogical tree to MRCA

e (Bad) analogy in phylogenetics
tree reconstruction

‘@DALLAS
Isaac Newton Institute




Coalescent theory

e Visualization of the coalescent :

http://www.ucl.ac.uk/tcga/presentations/TCG
Augss/TCGA MW Seminar4d.ppt

* Deriving the coalescent :

http://bio.classes.ucsc.edu/biol107/Class%20p
dfs/WO5 lectureld.pdf

VIPDALLAS




A few uses: genetic fingerprinting

* Pick a set of loci s.t. no of allelic configurations
(genotypic or haplotypic) approaches the no
of individuals in the population

— Not enough selection, and sufficiently high rate of
mutation that it is conserved across individuals (
effective population is same for all alleles )

@ DALLAS



A few uses: reconstructing ancestry

Paternal and maternal lineages : avoid
confounding recombination

— paternal : Y chromosome

— maternal : mtDNA (mitochondrial eve)

Distinguishing divergence from gene flow

 Admixture components : relative
contributions of founder populations
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That’s all, folks |

More reading (on the website) [==

Comparing different methods :

Phylogenetic vs pop genetic
Historic vs predictive
ML vs Bayesian

etc s | Gt “10[5 in evolution

Which one to use ? Larson, The Far Side

w The University of Texas at Dallas




Summary

* Population genetics: Toolkit for understanding a more fine-grained evolutionary
picture, merges evolutionary theory with quantitative genetics ( population
genomics : whole genome view )

* Evolutionary process : cooking pot, alleles : ingredients, drift, mutation,
selection, recombination, population structure and migration,
stochasticity : recipe

* Changes in allele frequencies : outcome of the process !

e Often, the goal is to observe the outcome and make evidence-driven
guesses about missing pieces of the recipe
— GENEALOGY ESTIMATION AND INFERENCE: identifying evolutionary

relationships between individuals and using such relationships for inference:
estimating allele genealogy, coalescents, pedigree based inference

— POPULATION GENETICS: evolutionary forces: mutation rates, selectional
model, recombination rate, demography: migratory model, population size

— ASSOCIATION STUDIES (CLASSICAL GENETICS) : genotype — phenotype
relationships: phenotype-associated loci, epistasis model, quantitative trait
models

DALLAS




(Some) things we didn’t cover

* Gene tree — species tree reconciliations

* Violating W-F models in additional ways : Inbreeding,
migration, ancestry & demographic models

 Modelling multi locus dynamics : recombination

* Quantitative genetics

@DALLAS
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