Pair Hidden Markov Model

Three kinds of pair HMMs (PHMMs)

- PHMM for pairwise sequence alignment
- BSA Chapter 4
- PHMM for the analysis (e.g. gene prediction) on two aligned sequences (i.e. the pre-calculated pairwise alignments)
- Twinscan
- PHMM for simultaneously pairwise alignment and analysis
- SLAM

Pairwise sequence alignment

Given two sequences over an alphabet (4 nucleotides or 20 amino acids):

ATGTTAT and ATCGTAC
By inserting '-'s and shifting two sequences, they can be aligned into a table of two rows with the same length:

$$
\begin{aligned}
& A T-G T T A T \\
& A T C G T-A C
\end{aligned}
$$

Scoring a pairwise alignment

- Mismatches are penalized by $-\mu$, indels are penalized by $-\sigma$, and matches are rewarded with +1 , the resulting score is:
\#matches $-\mu(\# m i s m a t c h e s)-\sigma$ (\#indels)

$$
\begin{array}{llllll}
\text { A } T-G T T A T & 5-\mu-2 \sigma \\
\text { ATCGT-A } C
\end{array}
$$

Scoring Matrix: Example

	A	R	N	R
A	5	-2	-1	-1
R	-	7	-1	3
N	-	-	7	0
K	-	-	-	6

AKRANR positively charged amino acids \rightarrow will not

KAAANK
$-1+(-1)+(-2)+5+7+3=11$
Notice that although
R and K are different amino acids, they have a positive score.

- Why? They are both greatly change function of protein.

Scoring matrices

- Amino acid substitution matrices
-PAM
-BLOSUM
- DNA substitution matrices
-DNA is less conserved than protein sequences
-Less effective to compare coding regions at nucleotide level

Affine Gap Penalties

- In nature, a series of k indels often come as a single event rather than a series of k single nucleotide events:

ATA__GC
ATATTGC

Normal scoring would
This is more likely.
give the same score for both alignments for likely.

ATAG_GC
AT_GTGC

Accounting for Gaps

- Gaps- contiguous sequence of spaces in one of the rows
- Score for a gap of length x is:

$$
-(\rho+\sigma x)
$$

where $\rho>0$ is the penalty for introducing a gap:
gap opening penalty
ρ will be large relative to σ :
gap extension penalty
because you do not want to add too much of a penalty for extending the gap.

Affine Gap Penalties

- Gap penalties:
- $-\rho-\sigma$ when there is 1 indel
$--\rho-2 \sigma$ when there are 2 indels
$--\rho-3 \sigma$ when there are 3 indels, etc.
$-\rho-x \cdot \sigma$ (-gap opening - x gap extensions)
- Somehow reduced penalties (as compared to naive scoring) are given to runs of horizontal and vertical edges

Alignment: a path in the Alignment Graph

$$
\left.\begin{array}{lllllllll}
0 & 1 & 2 & 2 & 3 & 4 & 5 & 6 & 7 \\
& \text { A } & \mathrm{T} & - & \mathrm{G} & \mathrm{~T} & \mathrm{~T} & \mathrm{~A} & \mathrm{~T} \\
& \mathrm{~A} & \mathrm{~T} & \mathrm{C} & \mathrm{G} & \mathrm{~T} & - & \mathrm{A} & \mathrm{C} \\
0 & 1 & 2 & 3 & 4 & 5 & 5 & 6 & 7
\end{array}\right] \begin{aligned}
& \text { Corresponding path - } \\
& \text { (0,0), }(1,1),(2,2),(2,3), \\
& (7,4),(4,5),(5,5),(6,6),
\end{aligned}
$$

Alignment as a Path in the Edit Graph

Old Alignment 012234567
X= AT_GTTAT
$\mathrm{y}=\mathrm{ATCGT}$ _AC
012345567
New Alignment 012234567
x= AT_GTTAT
$y=$ ATCG_TAC
012344567

Representing sequence alignment using pair HMM

HMM for sequence alignment, which incorporates affine gap scores.

"Hidden" States

- Match (M)
- Insertion in $x(X)$
- insertion in $y(Y)$

Observation Symbols

- Match (M): $\{(a, b) \mid a, b$ in $\Sigma\}$.
- Insertion in $x(X):\{(a,-) \mid$ a in $\Sigma\}$.
- Insertion in $y(Y):\{(-, a) \mid a$ in $\Sigma\}$.

Alignment: a path \rightarrow a hidden state sequence

$$
\begin{array}{lllll}
A T-G T T A T \\
A & T & G T-A C
\end{array}
$$

M M Y M M X M M

Representing sequence alignment using pair HMM

Finite State Machine:
$\mathrm{M}:(+1,+1)$
$X:(+1,0)$
Y: $(0,+1)$

Emission probabilities:
$\mathrm{M}: \mathrm{P}_{\mathrm{xi,yj}}$
$X: q_{x i}$
$Y: q_{y j}$

Sequence alignment using pair HMM

- Based on the HMM, each alignment of two DNA/protein sequences can be assigned with a probability score;
- Each "observation symbol" of the HMM is an aligned pair of two letters, or of a letter and a gap.
- The Markov chain of hidden states should represent a scoring scheme reflecting an evolutionary model.
- Transition and emission probabilities define the probability of each aligned pair of sequences.
- Given two input sequences, we look for an alignment of these two sequences of maximum probability.

Transitions and Emission Probabilities

Transitions probabilities (note the forbidden ones).

- δ = probability for $1^{\text {st }}$ gap
- $\varepsilon=$ probability for extending gap.

Emission Probabilities

- Match: (a, b) with $p_{a b}$ - only from M states
- Insertion in $x:(a,-)$ with q_{a} - only from X state
- Insertion in $y:(-, a)$. with q_{a} - only from Y state.

Scoring alignments

- For each pair of sequences x (of length m) and y (of length n), there are many alignments of x and y, each corresponds to a different state sequence (with the length between $\max \{m, n\}$ and $m+n$).
- Given the transmission and emission probabilities, each alignment has a defined score - the product of the corresponding probabilities.
- An alignment is "most probable", if it maximizes this score.

Finding the most probable alignment

Let $v^{M}(i, j)$ be the probability of the most probable alignment of $x(1 . . i)$ and $y(1 . . j)$, which ends with a match (state M). Similarly, $v^{X}(i, j)$ and $v^{Y}(i, j)$, the probabilities of the most probable alignment of $x(1 . . i)$ and $y(1 . . j)$, which ends with states X or Y , respectively.

$$
v^{M}[i, j]=p_{x_{i} y_{j}} \max \left(\begin{array}{l}
(1-2 \delta) v^{M}(i-1, j-1) \\
(1-\varepsilon) v^{X}(i-1, j-1) \\
(1-\varepsilon) v^{Y}(i-1, j-1)
\end{array}\right)
$$

Most probable alignment

Similar argument for $v^{X}(i, j)$ and $v^{Y}(i, j)$, the probabilities of the most probable alignment of $x(1 . . i)$ and $y(1 . . j)$, which ends with an insertion to x or y, are:

$$
\begin{aligned}
& v^{X}[i, j]=q_{x_{i}} \max \binom{\delta v^{M}(i-1, j)}{\varepsilon v^{X}(i-1, j)} \\
& v^{Y}[i, j]=q_{y_{j}} \max \binom{\delta v^{M}(i, j-1)}{\varepsilon v^{Y}(i, j-1)}
\end{aligned}
$$

Adding termination probabilities

Different alignments of \boldsymbol{x} and \boldsymbol{y} may have different lengths. To get a coherent probabilistic model we need to define a probability distribution over sequences of different lengths.

For this, an END state is added, with transition probability τ from any other state to END. This assumes expected sequence length of $1 / \tau$.

The last transition in each alignment is to the END state, with probability τ

M	M	X	Y	END
	$1-2 \delta-$ τ	δ	δ	τ
X	$1-\varepsilon-\tau$	ε		τ
Y	$1-\varepsilon-\tau$		ε	τ
END				1

Representing sequence alignment using pair HMM

The log-odds scoring function

- We wish to know if the alignment score is above or below the score of random alignment of sequences with the same length.
- Model comparison
- We need to model random sequence alignment by HMM, with end state. This model assigns probability to each pair of sequences x and y of arbitrary lengths m and n.

HMM for a random sequence alignment

The transition probabilities for the random model, with termination probability η :
(x is the start state)
The emission probability for a is q_{a} Thus the probability of x (of length n)
 and y (of length m) being random is:

$$
p(x, y \mid \text { Random })=\eta^{2}(1-\eta)^{n+m} \prod_{i=1}^{n} q_{x_{i}} \prod_{j=1}^{m} q_{y_{j}}
$$

And the corresponding score is:

$$
\log p(x, y \mid \text { Random })=2 \log \eta+(n+m) \log (1-\eta)+\sum_{i=1}^{n} \log q_{x_{i}}+\sum_{i=1}^{m} \log q_{y_{i}}
$$

HMM for random sequence alignment

Markov Chains for "Random" and "Model"

Combining models in the log-odds scoring function

In order to compare the M score to the R score of sequences x and y, we can find an optimal M score, and then subtract from it the R score.
This is insufficient when we look for local alignments, where the optimal substrings in the alignment are not known in advance. A better way:

1. Define a log-odds scoring function which keeps track of the difference Match-Random scores of the partial strings during the alignment.
2. At the end add to the score $(\log \tau-2 \log \eta)$ to compensate for the end transitions in both models.

The log-odds scoring function

(assuming that letters at insertions/deletions are selected by the random model)

$$
\begin{gathered}
V^{M}[i, j]=\log \frac{p_{x_{i} y_{j}}}{q_{x_{i}} q_{y_{j}}}+\max \left(\begin{array}{c}
\log (1-2 \delta-\tau)+V^{M}[i-1, j-1] \\
\log (1-\varepsilon-\tau)+V^{X}[i-1, j-1] \\
\log (1-\varepsilon-\tau)+V^{Y}[i-1, j-1]_{b}
\end{array}\right)-2 \log (1-\eta) \\
V^{X}[i, j]=\mathbf{m a x}\binom{\log \delta+V^{M}[i-1, j]}{\log \varepsilon+V^{X}[i-1, j]}-\log (1-\eta) \\
V^{Y}[i, j]=\mathbf{m a x}\binom{\log \delta+V^{M}[i, j-1]}{\log \varepsilon+V^{Y}[i, j-1]}-\log (1-\eta)
\end{gathered}
$$

And at the end add to the score $(\log \tau-2 \log \eta)$.

A Pair HMM For Local Alignment

Full Probability Of The Two Sequences

- HMMs allow for calculating the probability that a given pair of sequences are related according to the HMM by any alignment
- This is achieved by summing over all alignments

$$
P(x, y)=\sum_{\text {alignment } \pi} P(x, y, \pi)
$$

Full Probability Of The Two Sequences

- The way to calculate the sum is by using the forward algorithm
- $f^{k}(i, j)$: the combined probability of all alignments up to (i, j) that end in state k

Forward Algorithm For Pair HMMs

Initialization:

$$
\begin{aligned}
& f^{M}(0,0)=1 . f^{X}(0,0)=f^{Y}(0,0)=0 . \\
& \text { All } f^{*}(i,-1), f^{*}(-1, j) \text { are set to } 0 .
\end{aligned}
$$

Recursion:

$$
\begin{aligned}
& f^{M}(i, j)= p_{x_{i} y_{j}}\left[(1-2 \delta-\tau) f^{M}(i-1, j-1)+\right. \\
&\left.(1-\varepsilon-\tau)\left(f^{X}(i-1, j-1)+f^{Y}(i-1, j-1)\right)\right] . \\
& f^{X}(i, j)= q_{x_{i}}\left[\delta f^{M}(i-1, j)+\varepsilon f^{X}(i-1, j)\right] . \\
& f^{Y}(i, j)=q_{y_{j}}\left[\delta f^{M}(i, j-1)+\varepsilon f^{Y}(i, j-1)\right] .
\end{aligned}
$$

Termination:
$\mathrm{P}(\mathrm{X}, \mathrm{y}) \xrightarrow{\text { Termination: }} f^{E}(n, m)=\tau\left[f^{M}(n, m)+f^{X}(n, m)+f^{Y}(n, m)\right]$.

Full Probability Of The Two Sequences

- $P(x, y)$ gives the likelihood that x and y are related by some unspecified alignment, as opposed to being unrelated
- If there is an unambiguous best alignment, $P(x, y)$ will be "dominated" by the single hidden state seuence corresponding to that alignment

How correct is the alignment

- Define a posterior distribution $P(s / x, y)$ over all alignments given a pair of sequences x and y

$$
P(s \mid x, y)=\frac{P(x, y, s)}{P(x, y)}
$$

Probability that the optimal scoring alignment is correct:

$$
P\left(\pi^{*} \mid x, y\right)=\frac{P\left(x, y, \pi^{*}\right)}{P(x, y)}=\frac{v^{E}(n, m)}{f^{E}(n, m)} \text { Forward algorithm }
$$

- Usually the probability that the optimal scoring alignment is correct, is extremely small!
- Reason: there are many small variants of the best alignment that have nearly the same score.

The Posterior Probability That Two Residues Are Aligned

- If the probability of any single complete path being entirely correct is small, can we say something about the local accuracy of an alignment?
- It is useful to be able to give a reliability measure for each part of an alignment

The posterior probability that two residues are aligned

- The idea is:
- calculate the probability of all the alignments that pass through a specified matched pair of residues $\left(x_{i}, y_{j}\right)$
- Compare this value with the full probability of all alignments of the pair of sequences
- If the ratio is close to 1 , then the match is highly reliable
- If the ratio is close to 0 , then the match is unreliable

The posterior probability that two residues are aligned

- Notation: $x_{i} \diamond y_{j}$ denotes that x_{i} is aligned to y_{j}
- We are interested in $P\left(x_{i} \diamond y_{j} \mid x, y\right)$
- We have $P\left(x_{i} \diamond y_{j} \mid x, y\right)=\frac{P\left(x, y, x_{i} \diamond y_{j}\right)}{P(x, y)}$

$$
\left.\left.P\left(x, y, x_{i}\right\rangle_{j}\right)=P\left(x_{1 \ldots i}, y_{1 \ldots j}, x_{i}\right\rangle y_{j}\right) P\left(x_{i+1 \ldots n}, y_{j+1 \ldots m}\left|x_{i}\right\rangle y_{j}\right)
$$

- $P(x, y)$ is computed using the forward algorithm
- $\left.P\left(x, y, x_{i}\right\rangle y_{j}\right)$: the first term in computed by the forward algorithm, and the second is computed by the backward algorithm $\left(=b^{M}(i, j)\right.$ in the backward algorithm)

Backward Algorithm For Pair HMMs

Initialization:

$$
b^{M}(n, m)=b^{X}(n, m)=b^{Y}(n, m)=\tau
$$

All $b^{*}(i, m+1), b^{*}(n+1, j)$ are set to 0 .
Recursion: $i=n, \ldots, 1, j=m, \ldots, 1$ (except (n, m));

$$
\begin{aligned}
b^{M}(i, j)= & (1-2 \delta-\tau) p_{x_{i+1} y_{j+1}} b^{M}(i+1, j+1)+ \\
& \delta\left[q_{x_{i+1}} b^{X}(i+1, j)+q_{y_{j+1}} b^{Y}(i, j+1)\right] \\
b^{X}(i, j)= & (1-\varepsilon-\tau) p_{x_{i+1} y_{j+1}} b^{M}(i+1, j+1)+\varepsilon q_{x_{i+1}} b^{X}(i+1, j) \\
b^{Y}(i, j)= & (1-\varepsilon-\tau) p_{x_{i+1} y_{j+1}} b^{M}(i+1, j+1)+\varepsilon q_{y_{j+1}} b^{Y}(i+1, j)
\end{aligned}
$$

Pair HMM for gene finding (Twinscan)

- Twinscan is an augmented version of the GHMM used in Genscan.

Genscan Model

- Genscan considers the following:
- Promoter signals
- Polyadenylation signals
- Splice signals
- Probability of coding and non-coding DNA
- Gene, exon and intron length

Twinscan Algorithm

1. Align the two sequences (eg. from human and mouse);
2. The similar hidden states as Genscan;
3. New "alphabet" for observation symbols: $4 \times 3=$ 12 symbols:
$\Sigma=\left\{A_{-}, A:, A|, C-, C:, ~ C|, G-, G:, G|, U-, U:, ~ U|\right\}$
Mark each base as gap (-), mismatch (:), match (|)

Twinscan Algorithm

Run Viterbi using emissions $e_{k}(b)$, where $b \in\{A-, A$:, $\mathrm{A}|, \ldots, \mathrm{T}|\}$

Note:

Emission distributions $\mathrm{e}_{\mathrm{k}}(\mathrm{b})$ estimated from the alignment of real gene pairs from human/mouse
$e_{l}(x \mid)<e_{E}(x \mid)$: matches favored in exons $e_{\|}(x-)>e_{E}(x-)$: gaps (and mismatches) favored in introns

Example

Human: ACGGCGACUGUGCACGU
Mouse: ACUGUGAC GUGCACUU
Align :

Input to Twinscan HMM:
A| C| G: G| C: G| A| C| U- G| U| G| C| A| C| G: U|
Recall, $\quad e_{E}(A \mid)>e_{I}(A \mid)$

$$
e_{E}(A-)<e_{I}(A-)
$$

Likely exon

HMMs for simultaneous alignment and gene finding (SLAM)

Exon = coding
CNS = conserved non-coding
Intron = non-coding

Generalized Pair HMMs

Generalized Pair HMMs (SLAM)

Gapped alignment

Measuring Performance

Testax	Nuelextion level			Exan kevel				
	SN	SP	AC	SN	SP	$(\mathrm{SN}+\mathrm{SP}) / 2$	ME	WE
The rasEITA Fent								
moseita	0.855	0.978	0.949	0.83	0.529	0×31	0043	0.047
SPP-1	0.940	0.920	0.940	0.700	0.760	0.76	0.120	0.040
STAM	0.851	0 Es	0.980	0.783	0.755	0.76	0as	0.057
TTHIMSCAN.	0.90	6.941	0.940	0.85	0.824	0 SH	0.045	0.081
THITSCAII	0.854	0588	0.923	0.85	0.767	05\%	0 m 4	0.118
GENTSCAN	0.975	0.78	0 GE	0.817	0.770	6.783	0057	0.107
Hreca.								
SLAM	0.852	0 ST	0.554	0.727	0.5×3	068	0000	0.833
THIMSCAM.P	0.976	Q229	0.89	0.773	0.531	0.652	000	0.312
THITSCAN	W999	Wrail	Wrif	W291	W.17s	Wrest	060	0.707
STP-2	0.60	OnST	0619	0.40	0.173	0.291	0001	0.506
(HETISCATI	0.832	Orsi	0.796	0.545	0.235	0×20	007	$0.5 \times$
Exastin								
SLIM	0.876	0.ES1	0.926	0.502	0.85	0×31	0.121	0.08
THIMSCAN.p	0.942	0.850	0.945	0.879	0.85	0×4	0006	0.058
THIHSCAN	0 MgS	OFS7	0.953	0.885	0.886	0×31	0.110	0.120
SEP-2	0.755	0.48	0.573	0.503	0.90	0.291	0.352	0.017
GEITSCATI	0.947	0.76	0.52	0.85	0.731	0.783	0.121	0.231

