
Pair Hidden Markov Model 



Three kinds of pair HMMs 

(PHMMs) 
 

• PHMM for pairwise sequence alignment 
– BSA Chapter 4 

 

• PHMM for the analysis (e.g. gene prediction) on two 
aligned sequences (i.e. the pre-calculated pairwise 
alignments) 
– Twinscan 

 

• PHMM for simultaneously pairwise alignment and 
analysis 
– SLAM 



Pairwise sequence alignment 

Given two sequences over an alphabet (4 

nucleotides or 20 amino acids): 

ATGTTAT and ATCGTAC 

A T - G T T A T 

A T C G T - A C 

By inserting „-‟s and shifting two sequences, 

they can be aligned into a table of two rows 

with the same length: 



Scoring a pairwise alignment 

• Mismatches are penalized by –μ, indels 

are penalized by –σ, and matches are 

rewarded with +1, the resulting score is: 

 

     #matches – μ(#mismatches) – σ (#indels) 

A T - G T T A T 

A T C G T - A C 
5- μ -2σ 



Scoring Matrix: Example 
A R N K 

A 5 -2 -1 -1 

R - 7 -1 3 

N - - 7 0 

K - - - 6 

• Notice that although

R and K are different 

amino acids, they 

have a positive score. 

• Why? They are both

positively charged 

amino acids will not 

greatly change 

function of protein. 



Scoring matrices 

• Amino acid substitution matrices 

– PAM 

– BLOSUM 

 

• DNA substitution matrices 

– DNA is less conserved than protein 
sequences 

– Less effective to compare coding 
regions at nucleotide level 



Affine Gap Penalties 

• In nature, a series of k indels often come 

as a single event rather than a series of k 

single nucleotide events: 

Normal scoring would 

give the same score 

for both alignments 
This is more 

likely. 

This is less 

likely. 



Accounting for Gaps 

• Gaps- contiguous sequence of spaces in one of 
the rows 

 

• Score for a gap of length x is:  

                       -(ρ + σx) 

    where ρ >0 is the penalty for introducing a gap:  

                      gap opening penalty 

    ρ will be large relative to σ: 

                      gap extension penalty 

    because you do not want to add too much of a 
penalty for extending the gap. 



Affine Gap Penalties 

• Gap penalties: 

–    -ρ-σ  when there is 1 indel 

–  -ρ-2σ  when there are 2 indels 

–  -ρ-3σ  when there are 3 indels, etc.  

– -ρ- x·σ (-gap opening - x gap extensions) 

• Somehow reduced penalties (as 

compared to naive scoring) are given to 

runs of horizontal and vertical edges 



Alignment: a path in the Alignment 

Graph 

0 1 2 2 3 4 5 6 7 
  A T - G T T A T 
  A T C G T - A C 
0 1 2 3 4 5 5 6 7   
 
 
(0,0) , (1,1) , (2,2), (2,3), 
(3,4), (4,5), (5,5), (6,6), 
(7,7) 

- Corresponding path - 



Alignment as a Path in the Edit Graph 

Old Alignment 
   012234567 
x=  AT_GTTAT   
y=  ATCGT_AC 
   012345567   
 
 New Alignment 
   012234567 
x=  AT_GTTAT   
y=  ATCG_TAC 
   012344567 



Representing sequence 

alignment using pair HMM 
HMM for sequence alignment, which 

incorporates affine gap scores. 

“Hidden” States 
• Match (M) 

• Insertion in x (X) 

• insertion in y (Y) 

Observation Symbols 
• Match (M): {(a,b)| a,b in ∑ }. 

• Insertion in x (X): {(a,-)| a in ∑ }. 

• Insertion in y (Y): {(-,a)| a in ∑ }. 



Alignment: a path  a hidden state 

sequence 

A T - G T T A T 
A T C G T - A C 
 
M M Y M M X M M 



Representing sequence 

alignment using pair HMM 

M 

X 

Y 

-e 

-e 

-d 

-d 

S(XiYj) 

Emission probabilities: 

M: Pxi,yj

X: qxi

Y: qyj 

M 

X 

Y 

 

 

 

 

1- 

1- 

1-2 

Finite State Machine: 

M: (+1,+1)

X: (+1,0)

Y: (0,+1) 

S(XiYj) 

S(XiYj) 



Sequence alignment using pair HMM 

 

 

• Based on the HMM, each alignment of two 

DNA/protein sequences can be assigned with a 

probability score; 

• Each “observation symbol” of the HMM is an aligned 

pair of two letters, or of a letter and a gap. 

• The Markov chain of hidden states should represent a 

scoring scheme reflecting an evolutionary model. 

• Transition and emission probabilities define the 

probability of each aligned pair of sequences.  

• Given two input sequences, we look for an alignment 

of these two sequences of maximum probability. 



Transitions and Emission Probabilities 

ε 

 

0 1- ε 

0 ε 1- ε 

δ δ 1-2δ 

M X 

X 

M 

Y 

Y 

Emission Probabilities 

• Match: (a,b) with pab – only from M states 

• Insertion in x: (a,-) with qa – only from X state 

• Insertion in y: (-,a).with qa -  only from Y state. 

Transitions probabilities 

(note the forbidden ones). 

δ = probability for 1st gap 

ε = probability for extending 

gap. 



Scoring alignments 

• For each pair of sequences x  (of length m) and y (of 

length n), there are many alignments of x and y, each 

corresponds to a different state sequence (with the 

length between max{m,n} and m+n). 

• Given the transmission and emission probabilities, 

each alignment has a defined score – the product of the 

corresponding probabilities. 

• An alignment is “most probable”, if it maximizes this 

score.  



Finding the most probable 

alignment 
Let vM(i,j) be the probability of the most probable 

alignment of x(1..i) and y(1..j), which ends with a 
match (state M). Similarly, vX(i,j) and vY(i,j), the 
probabilities of the most probable alignment of 
x(1..i) and y(1..j), which ends with states X or Y, 
respectively. 
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Most probable alignment 

Similar argument for vX(i,j) and   vY(i,j), the 

probabilities of the most probable alignment of 

x(1..i) and y(1..j), which ends with an insertion 

to x or y, are: 
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Adding termination probabilities 

For this, an END state is added, 

with  transition probability τ 

from any other state to END. 

This assumes expected 

sequence length of 1/ τ. 

M X Y END 

M 
1-2δ -

τ 
δ δ τ 

X 1-ε -τ ε   τ 

Y 
1-ε -τ 

 
ε τ 

END 1 

Different alignments of x and y may have different lengths. To 

get a coherent probabilistic model we need to define a 

probability distribution over sequences of different lengths. 

The last transition in each 

alignment is to the END 

state, with probability τ 



Representing sequence 

alignment using pair HMM 

M 

X 

Y 
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Begin 

End 
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The log-odds scoring function 

• We wish to know if the alignment score is above or 

below the score of random alignment of sequences 

with the same length.  

– Model comparison 

 

• We need to model random sequence alignment by 

HMM, with end state. This model assigns probability 

to each pair of sequences x and y of arbitrary lengths m 

and n. 
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HMM for a random sequence alignment 

X Y END 

X 1- η η 0 

Y 0 1- η η 

END 0 0 1 

 The transition probabilities for the 

random model, with termination 

probability η: 

(x is the start state) 
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The emission probability for a is qa. 

Thus the probability of x (of length n) 

and y (of length m) being random is: 

And the corresponding score is: 



HMM for random sequence 

alignment 



Markov Chains for “Random” and 

“Model” 

X Y END 

X 1- η η 

Y 1- η η 

EN

D 
1 

M X Y END 

M 1-2δ -τ δ δ τ 

X 1-ε -τ ε   τ 

Y 
1-ε -τ 

 
ε τ 

END 1 

“Model” 

“Random” 



Combining models in the log-odds 

scoring function 

In order to compare the M score to the R score of sequences x 

and y, we can find an optimal M score, and then subtract 

from it the R score. 

 This is insufficient when we look for local alignments, where 

the optimal substrings in the alignment are not known in 

advance. A better way:  

1. Define a log-odds scoring function which keeps track of 

the difference Match-Random scores of the partial strings 

during the alignment.  

2. At the end add to the score (logτ – 2logη) to compensate 

for the end transitions in both models. 



The log-odds scoring function 

)log(

],[)log(

],[)log(

],[)log(

maxlog],[ 

































 12

111

111

1121

b
Y

X

M

yx

yxM

jiV

jiV

jiV

qq

p
jiV

ji

ji

And at the end add to the score (logτ – 2logη). 
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(assuming that letters at insertions/deletions are selected by the random model) 



A Pair HMM For Local Alignment 



Full Probability Of The Two Sequences 

• HMMs allow for calculating the probability that 

a given pair of sequences are related 

according to the HMM by any alignment 

• This is achieved by summing over all 

alignments 



P(x,y)  P(x,y,)
alignment





Full Probability Of The Two Sequences 

• The way to calculate the sum is by using 

the forward algorithm 

• fk(i,j) : the combined probability of all 

alignments up to (i,j) that end in state k 



Forward Algorithm For Pair HMMs 

P(x,y) 



Full Probability Of The Two Sequences 

• P(x,y) gives the likelihood that x and y are 

related by some unspecified alignment, as 

opposed to being unrelated 

• If there is an unambiguous best alignment, 

P(x,y) will be “dominated” by the single hidden 

state seuence corresponding to that alignment  



How correct is the alignment 

• Define a posterior distribution P(s|x,y) over all 

alignments given a pair of sequences x and y  

),(

),,(
),|(

yxP

syxP
yxsP 

Probability that the optimal scoring alignment is correct: 



P( * | x,y) 
P(x,y, *)

P(x,y)

vE (n,m)

f E (n,m)

Viterbi algorithm 

Forward algorithm 



• Usually the probability that the optimal 

scoring alignment is correct, is extremely 

small! 

• Reason: there are many small variants of the 

best alignment that have nearly the same 

score.  



The Posterior Probability That 

Two Residues Are Aligned 

• If the probability of any single complete path 

being entirely correct is small, can we say 

something about the local accuracy of an 

alignment? 

• It is useful to be able to give a reliability 

measure for each part of an alignment 



The posterior probability that 

two residues are aligned 

• The idea is: 

– calculate the probability of all the alignments that 

pass through a specified matched pair of residues 

(xi,yj) 

– Compare this value with the full probability of all 

alignments of the pair of sequences  

– If the ratio is close to 1, then the match is highly 

reliable 

– If the ratio is close to 0, then the match is unreliable 



The posterior probability that 

two residues are aligned 

• Notation: xiyj denotes that xi is aligned to yj 

• We are interested in P(xiyj|x,y) 

• We have  

 

• P(x,y) is computed using the forward algorithm 

• P(x,y,xiyj): the first term in computed by the forward 
algorithm, and the second is computed by the 
backward algorithm (=bM(i,j) in the backward 
algorithm) 

 



P(xiy j | x,y) 
P(x,y,xiy j )

P(x,y)



P(x,y,xiy j )  P(x1 i,y1 j,xiy j )P(xi1 n,y j1 m | xiy j )



Backward Algorithm For Pair HMMs 



Pair HMM for gene finding 

(Twinscan) 

• Twinscan is an augmented version of the 

GHMM used in Genscan. 



Genscan 

Model 

• Genscan considers the 

following: 

– Promoter signals 

– Polyadenylation signals 

– Splice signals 

– Probability of coding 

and non-coding DNA 

– Gene, exon and intron 

length 

Chris Burge and Samuel Karlin, Prediction of Complete Gene 

Structures in Human Genomic DNA, JMB. (1997) 268, 78-94 



Twinscan Algorithm 

1. Align the two sequences (eg. from human and 

mouse); 

2. The similar hidden states as Genscan; 

3. New “alphabet” for observation symbols: 4 x 3 = 

12 symbols:  

 = { A-, A:, A|, C-, C:, C|, G-, G:, G|, U-, U:, U| }  

Mark each base as gap ( - ), mismatch ( : ), match ( | ) 

  

  



Twinscan Algorithm 

Run Viterbi using emissions ek(b), where b  { A-, A:, 
A|, …, T| } 

 

Note: 

 

Emission distributions ek(b) estimated from the 
alignment of real gene pairs from human/mouse 

 

eI(x|) < eE(x|): matches favored in exons 

eI(x-) > eE(x-): gaps (and mismatches) favored in  
      introns 



Example 

Human:  ACGGCGACUGUGCACGU 

Mouse:  ACUGUGAC GUGCACUU 

Align:  ||:|:|||-||||||:| 

 

Input to Twinscan HMM: 
A| C| G: G| C: G| A| C| U- G| U| G| C| A| C| G: U| 

 

Recall,  eE(A|) > eI(A|) 

   eE(A-) < eI(A-) 

Likely exon 



HMMs for simultaneous alignment and 

gene finding (SLAM) 

5’ 3’ 

Exon1 Exon2 Exon3 
Intron1 Intron2 

CNS CNS CNS 

[human] 

[mouse] 

Exon = coding 
Intron = non-coding 

CNS = conserved non-coding 



Generalized Pair HMMs 



Generalized Pair HMMs (SLAM) 



Gapped alignment 



Measuring Performance  




