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P A I N

A ligand-receptor interactome platform for discovery 
of pain mechanisms and therapeutic targets
Andi Wangzhou, Candler Paige, Sanjay V. Neerukonda, Dhananjay K. Naik, Moeno Kume,  
Eric T. David, Gregory Dussor, Pradipta R. Ray*, Theodore J. Price*

In the peripheral nervous system, ligand-receptor interactions between cells and neurons shape sensory experience, 
including pain. We set out to identify the potential interactions between sensory neurons and peripheral cell types 
implicated in disease-associated pain. Using mouse and human RNA sequencing datasets and computational 
analysis, we created interactome maps between dorsal root ganglion (DRG) sensory neurons and an array of normal 
cell types, as well as colitis-associated glial cells, rheumatoid arthritis–associated synovial macrophages, and 
pancreatic tumor tissue. These maps revealed a common correlation between the abundance of heparin-binding 
EGF-like growth factor (HBEGF) in peripheral cells with that of its receptor EGFR (a member of the ErbB family of 
receptors) in DRG neurons. Subsequently, we confirmed that increased abundance of HBEGF enhanced nociception 
in mice, likely acting on DRG neurons through ErbB family receptors. Collectively, these interactomes highlight 
ligand-receptor interactions that may lead to treatments for disease-associated pain and, furthermore, reflect the 
complexity of cell-to-neuron signaling in chronic pain states.

INTRODUCTION
Nociceptive sensory neurons are responsible for detecting changes 
in the environment through specific receptors and then transmitting 
this signal to the central nervous system by generation of action po-
tentials (1). These nociceptors innervate almost every tissue in the 
body, playing a critical role in detecting injury and/or pathology to 
skin, joints, bones, and visceral organs (2, 3). Although nociceptor 
function is needed to navigate environments safely (4) and to recover 
after injury (5), these cells can also create misery when they become 
persistently active (6–8). Nociceptor hyperexcitability and spontaneous 
activity are key contributors to many chronic pain states driven by 
inflammation, arthritis, nerve injury, cancer, or other pathologies 
(1, 2, 6–8). It is widely accepted that tissue injury is directly linked 
to changes in the activity of nociceptors that innervate that tissue (9). 
Relatively little is known about the factors that are released by cells 
within specific tissues and how these factors act on the nociceptors inner-
vating the tissue. Our goal was to catalog this potential “interactome” 
because such a resource can suggest identification of previously un-
known targets that could be manipulated to treat pain disorders.

RNA sequencing (RNA-seq) experiments have defined tissue-wide 
and cell-specific transcriptomes for much of the body in both mice 
(10–12) and humans (13, 14). Cell profiling experiments on normal 
and diseased tissues have identified key molecular players in an in-
creasing number of disease processes (15), including disorders with 
a strong pain component (16, 17). However, these studies mostly 
focus on gene expression within a specific tissue or across cell types 
in a tissue and do not characterize how multiple tissues may interact 
to promote disease. This type of cross-tissue interaction is especially 
critical to pain. Nociceptors express a wide variety of receptors that 
allow them to detect ligands that are produced in the tissues that they 
innervate (1–3). Tissue pathology frequently drives changes in gene 
expression resulting in de novo or enhanced expression of ligands 
(for example, cytokines and chemokines). Because many pathological 

tissue states produce enhanced nociception and pain (1, 5, 9), it is 
logical to assume that changes in ligand expression cause changes in 
signaling frequency or intensity through receptors expressed by 
nociceptors. These ligand-receptor interactions are candidates for 
drivers of pain states.

Here, we developed a computational framework that identified 
potential ligand-receptor–mediated interactions on a genome-wide 
scale (interactome) between target tissues and sensory neurons us-
ing publicly available RNA-seq datasets. We first used this tool to 
identify potential interactions between nociceptors in mouse dorsal 
root ganglia (DRGs) and other tissues or cell types. Then, we per-
formed three case studies to demonstrate the utility of this tool for 
identifying potential drivers of pain states. First, we used single-cell 
RNA-seq (scRNA-seq) data from colon-innervating nociceptors in 
the mouse (17) to explore how these neurons might interact with 
normal and inflamed enteric glial cells (18). Second, we examined 
how human DRG (hDRG) neurons (14, 19) may interact with macro-
phages taken from the joints of people with rheumatoid arthritis 
(RA) (16). Last, we assessed how pancreatic cancer (20) could drive 
ligand-receptor interactions with hDRG neurons, potentially provid-
ing new insight into tumor-neuron interactions in this notoriously 
painful disease. An intriguing theme emerging from these distinct 
interactomes is the prominence of corresponding ligands for the 
ErbB family of epidermal growth factor receptors (EGFRs) as possible 
mediators of interactions between diseased tissue and mouse and 
human nociceptors. This finding is consistent with recent preclinical 
and clinical findings suggesting efficacy of blocking ErbB family 
signaling for chronic pain (21–24). As RNA-seq resources continue 
to proliferate, our tool can be used to mine for potential signaling 
pathways and pharmacological targets in a data-driven manner based 
on high-throughput assay analyses.

RESULTS
Cell type–enriched interactomes for DRG nociceptors 
from 42 cell types in the Tabula Muris dataset
DRG neurons interact with nearly every tissue in the body and ex-
press an array of receptors that enable them to receive signals from 
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distinct cell types within these tissues (2, 3). To map these potential 
ligand-receptor interactions, we curated a database of ligand and 
receptor pairs across the genome, on the basis of the literature 
and curated bioinformatics databases (25–30). This led to the cre-
ation of a ligand-receptor pair interactome containing more than 
3000 interactions.

We first sought to examine ligand-receptor interactions between 
different classes of mouse sensory neurons and a diverse array of 
peripheral cell types under normal conditions. To do this, we used 
mouse DRG (mDRG) scRNA-seq data (12) and scRNA-seq datasets 
from tissues innervated by the DRG using the Tabula Muris project 
(10). Although many subtypes of sensory neurons have been identified 
(11, 12), for simplicity, we clustered these into three well-identified 
neuronal subpopulations: peptidergic (PEP) nociceptors; nonpepti-
dergic (NP) nociceptors; and neurofilament (NF)–positive, large- 
diameter, low-threshold mechanoreceptors (1–3). This predicted a 
broad interactome between 42 cell types found in 19 tissues, and 
PEP, NP, and NF sensory neurons from the DRG, and established a 
ligand-receptor interaction map for sensory neurons and the tissues 
they innervate or interact with in the mouse (data file S1). We ex-
tracted the pairs of ligand-receptor interactions for each of these cell 
types where the receptor was expressed in at least one type of sensory 
neuron (PEP, NP, or NF) and looked for enriched pharmacology- 
relevant Gene Ontology (GO) terms using the Enrichr analysis tool 
(31, 32), focusing on the top five GO terms for biological process 
(large-scale “biological programs” accomplished by several coordi-
nated molecular activities) and molecular function (molecule-level 
activities performed by gene products, for instance) (Fig. 1). For the 
biological process GO terms found for ligand genes, the “extracellular 
matrix organization” term appeared in the top five for all but one 
cell type and was ranked as the top one in 37 of the 42 cell types. 
This likely occurred because among the 894 ligand genes that we 
included in the interactome, many are secreted and 89 of them are 
among the 229 total genes classified under the biological process 
GO term “extracellular matrix organization.” This biases our dataset 
to show this particular GO term to be enriched. The GO terms of 
“positive regulation of cell proliferation,” “regulation of cell prolif-
eration,” “positive regulation of cell motility,” and “positive regula-
tion of cell migration” were also enriched in both nonimmune cell 
types and macrophages. For terms that were enriched specifically in 
immune cells, “cytokine-mediated signaling pathway” was enriched 
in most of the immune cell types, whereas “regulated exocytosis” 
and “cellular protein metabolic process” GO terms were specific to 
T cells and natural killer (NK) cells (Fig. 1). This shows that, for 
most cell types, extracellular matrix (ECM) and cell adhesion ligands 
represent the most abundant ligand-receptor interaction between 
these peripheral cells and sensory neurons. The exception was im-
mune cells, which our interactome predicts to primarily interact with 
sensory neurons through diffusible factors.

For receptor genes found in sensory neurons, the same five GO 
terms were enriched for molecular functions: “transmembrane re-
ceptor protein kinase activity,” “G protein-coupled receptor activity,” 
“transmembrane receptor protein tyrosine kinase activity,” “mitogen- 
activated protein (MAP) kinase kinase binding,” and “MAP kinase 
kinase kinase activity” (Fig. 1). The biological process GO terms were 
also consistent for sensory neuron receptors identified from this 
interactome. The same four GO terms were enriched for most of 
the cell types: “positive regulation of protein phosphorylation,” 
“positive regulation of MAPK cascade,” “negative regulation of cell 

communication”, and “regulation of MAPK cascade.” Two other GO 
terms, “negative regulation of signaling” and “positive regulation of 
ERK1 and ERK2 cascade,” were enriched in nonimmune cell types 
and macrophages or T cells and NK cells, respectively. This high-
lights the key role that MAPK (mitogen-activated protein kinase) 
signaling plays in transducing signals from cells throughout the 
body to signaling within sensory neurons. Because MAPK signaling 
in nociceptors plays a critical role in the generation of pain states 
(33–36), this suggests that ligand-receptor interactions between noci-
ceptors and most cell types found in the body could be capable of 
inducing hyperexcitability in nociceptors leading to persistent pain.

Although the interactome described above shows commonalities 
between ligand-receptor interactions between sensory neurons and 
a variety of tissues and cells found in the mouse, it does not reveal 
cell type–specific interaction points that may play important roles 
in normal physiology and/or pathology. To find these more specific 
interactions in an unbiased fashion, we performed iterative hier-
archical biclustering on cell types and genes based on gene expres-
sion levels using scrattch.hicat analysis (37). This analysis revealed 
18 classes of cell types (cell clusters A to R in Fig. 2A) and 25 gene 
coexpression modules expressed across subsets of those cell types 
(Fig. 2A). For each of these 25 gene modules, we then extracted all 
the ligand genes from our ligand-receptor database for each module 
and constructed an interactome with receptors expressed by differ-
ent classes of mouse sensory neurons (data file S2). We focused on 
two module interactomes enriched in immune cell types for graph-
ical representation: the macrophage- and leukocyte-enriched cluster, 
and the T cell– and NK cell–enriched cluster. We chose these on the 
basis of the key role that these immune cell types play in neuropathic 
pain models in male and/or female mice (38–43). The ligand-receptor 
interactomes emerging from this gene cluster enrichment analysis 
revealed distinct factors expressed by these immune cells that are 
known to play a role in neuropathic pain states. The macrophage 
and leukocyte cluster included Mmp9, Il1b, and Osm gene products 
signaling to their cognate receptors expressed by mouse nociceptors 
(Fig. 2B). Macrophage recruitment by tumor necrosis factor– 
(TNF-) induces matrix metalloproteinase MMP9 signaling, which 
then promotes neuropathic pain after peripheral nerve injury (44). 
Cytokines interleukin-1 (IL-1) and oncostatin M (OSM) have also 
been identified as important pain signaling molecules in previous 
studies in rodent pain models (45, 46) and in DRG samples from 
patients with neuropathic pain (19). The T cell and NK cell cluster 
not only showed expression of many genes associated with the TNF- 
superfamily, including Lta, Tnfsf14, and Tnfsf11, but also highlights 
the Ltbr gene, which is paired with several of these T cell– and NK 
cell–expressed ligands (Fig. 2C). This analysis also identified a spe-
cific interaction between T cells and sensory neurons driven by the 
action of interferon- (IFN-) through its receptors (IFNGR1 and 
IFNGR2) expressed on sensory neurons. IFN- had previously been 
shown to enhance glutamate release in excitatory synapses in spinal 
cord and contributes to persistent pain (47). Collectively, this previ-
ous work implicates these factors in persistent pain, but our analysis 
shows that these immune cells express these factors at baseline. This 
suggests that recruitment of these immune cells to the peripheral 
nerve may be a key factor in driving persistent pain rather than plas-
ticity in the transcriptomes of these cell types. This notion is sup-
ported by recent studies in rodent models (40, 41, 43) and patient 
transcriptional profiling (19). This cell type and gene module bi-
clustering approach reveals potential ligand-receptor interactions 
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for peripheral cell types with sensory neurons that can be further 
mined for identification of new pain targets.

Ligand-receptor interactions among cell types within 
the mDRG are identified from the mousebrain.org dataset
The interactomes described above map ligand-receptor pairs between 
sensory neurons and many other cell types found in target tissues 
for these neurons. The DRG is composed of many different cell types 

besides sensory neurons, including Schwann cells and satellite glial 
cells. These glial cells are known to contribute to acute and chronic 
pain states (48–50), but how they interact with sensory neurons has 
not been characterized thoroughly. Moreover, how sensory neurons 
may interact with these cells through release of transmitter sub-
stances is almost completely unexplored. To examine ligand-receptor 
interactions that might occur within the DRG, we constructed ligand- 
receptor interactomes between NP, PEP, and NF sensory neurons 
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Fig. 1. GO and interactome 
analysis of ligand and receptor 
gene expression reveals shared 
principles of cell-to-neuron sig-
naling across tissues. Interactome 
analysis was performed between 
all 42 peripheral cell types from 
the Tabula Muris project (10) and 
three types of sensory neurons 
(11, 12). Only interactions where 
ligands were detected in the cor-
responding cell type and receptors 
were detected in at least one of 
the three sensory neuron types 
were included for the GO term 
enrichment analysis. For the inter-
actions identified in each cell type, 
the corresponding ligand and re-
ceptor genes were separately 
analyzed with Enrichr for their en-
riched GO terms in both biological 
process and molecular function. 
The results of this analysis are shown 
in four different groups of columns. 
The five columns of color- and 
number-coded boxes within each 
of these four groups of columns 
represent the top five enriched 
GO terms in that group, ranked 
from left to right. Cell types are 
listed as rows and ordered by the 
cell type and gene biclustering, as 
described in Materials and Methods. 
N = 889 cells for NP-type DRG, 
126 cells for NF-type DRG, and 
565 cells for PEP-type DRG neurons; 
sample sizes for other cell types 
are provided in data file S7.
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Fig. 2. Potential cell type–specific ligand-receptor interactions with sensory neurons. (A to C) Iterative hierarchical biclustering was performed on genes and cell 
types from mouse scRNA-seq gene expression data in Tabula Muris (10) using scrattch.hicat (37). The 42 cell types grouped into 18 cell-type modules and 25 gene modules 
[labeled “A” to “R” and “1” to “25,” respectively, in (A), and listed in data file S2] were identified, and corresponding gene expression was displayed as a heatmap. Two of 
these gene modules, numbers 23 and 24—ligand genes enriched in macrophages and leukocytes [cell-type modules L and N; (B)] or in T cells and NK cells [cell-type 
modules O, P, and R; (C)], as outlined—are highlighted below, alongside DRG receptor expression heatmaps (12) and annotated with potential ligand-receptor interactomes. 
Gene categories as labeled are defined in the figure legend. For DRG neurons: N = 889 cells for NP, 126 cells for NF and 565 cells for PEP; sample sizes for other cell types 
provided in data file S7.
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and satellite glial cells and Schwann cells. We did this with scRNA-
seq data from the mousebrain.org dataset (12). In our first analysis 
of this interactome, it was clear that “cell adhesion molecule and 
extracellular matrix” categories dominated the ligand-receptor in-
teractions for these cell types (data file S3 and figs. S1 and S2). This 
is not unexpected, given the close proximity of these cells within the 
DRG and the obvious structural role that interactions between these 
cells play within the ganglion. The role of cell adhesion molecules 
and ECM molecules in chronic and neuropathic pain has been de-
scribed in the literature (51, 52). However, because we wanted to 
focus on interactions driven by diffusible transmitter substances within 
the DRG, we chose to remove these two categories from this analysis 
of intercellular ligand-receptor signaling within the mDRG. These 
categories are included in subsequent analyses.

When examining which neuronal ligands potentially signal to 
satellite glia and/or Schwann cell–expressed receptors, we made sev-
eral interesting observations (Fig. 3). First, growth factor interactions 
were the dominant category of interactions when considering neu-
ron to glial signaling, with 30 of the 133 interactions being between 
growth factors and their receptors. This is consistent with previous 
findings in the field (53–55). Second, we found indications of robust 
brain-derived neurotrophic factor (BDNF) signaling within the DRG.  
We noted that gene products of Bdnf, which was expressed by NP 
and PEP nociceptors, has potential interactions with satellite glia and 
Schwann cells through its traditional receptor tropomyosin/tyrosine 
receptor kinase B (TrkB, encoded by Ntrk2), as well as through discoidin 
domain-containing receptor 2 (DDR2, encoded by Ntrkr3r) and sortillin 
(encoded by Sort1). Last, we found that calcitonin gene- related peptide 
(CGRP, encoded by Calca), a signature peptide of PEP nociceptors, had 
an interaction with the amylin receptor activity modifying protein 2 
(RAMP2) in DRG glia cells. Although it is known that CGRP can signal 
through receptors containing the amylin subunit (56), there is no pre-
vious literature on CGRP signaling through this receptor in DRG glia.

We then assessed DRG glial ligand signaling to neuronal recep-
tors. This interactome was more diverse and revealed an increased 
number of these interactions. There were 133 neuronal ligands inter-
actions with glial receptors; conversely, there were 199 glial ligand 
and neuronal receptor interactions. Whereas the classes of ligands 
coming from glia did not fall into one main category, 56 of the 
199 receptors for neurons were composed of G protein–coupled 
receptors (GPCRs), ion channels, or cytokine receptors (Fig. 4). A 
prominent ligand-receptor interaction emerging from this dataset 
was the broad expression of platelet-derived growth factor (PDGF) 
family genes in satellite glial cells and Schwann cells, gene products 
of which signal to a single neuronal receptor whose gene (Pdgfrb) ex-
pression is enriched in the NP class of nociceptors. Although PDGF is 
known to sensitize nociceptors leading to increased mechanical sensi-
tivity (57, 58), little work has been done on PDGF signaling within the 
DRG, making this an attractive target for further exploration. When 
comparing these two sets of data, it is notable that there was an enor-
mous variety in the interactions between glial ligands and neuronal 
receptors. Our data support previous findings in the literature regard-
ing neuronal signaling in the DRG while identifying potential new 
interactions that will need further investigation. In the mDRG, we 
find similar neuron–glia ligand–receptor interaction profiles for PEP 
and NP nociceptors but several differences between non-nociceptive 
NF neurons and nociceptors (Fig. 4). An example is Schwann cell– and 
satellite glial cell–derived PDGF signaling to one of its receptors, 
PDGFRB, which was exclusively found in NP neurons.

An interactome between enteric glia and colon-innervating 
nociceptors defines gut-neuron interactions 
in a colitis model
Thus far, we have described interactomes between peripheral tissues 
and DRG neurons, as well as within the DRG, by using sequencing 
experiments from naïve mice. Certain ligand-receptor interactions 
may not exist in this state and may only be revealed during pathology 
where those interactions play a critical role in promoting disease. 
This principle is the basis of the use of most drugs that are used 
to treat disease. To explore how the ligand-receptor interactome of 
DRG sensory neurons changes in a disease state, we examined how 
colonic enteric glial cells react and communicate with retrogradely 
labeled and single-cell sequenced sensory neurons innervating the 
colon (17) in the mouse 2,4-di-nitrobenzene sulfonic acid (DNBS) 
colitis model. We used an existing dataset of RiboTag RNA-seq of 
enteric glial cells in this colitis model (18), because this technique 
affords cellular specificity combined with an in vivo inflammatory 
disease model. An scRNA-seq dataset of retrogradely traced sensory 
neurons that innervate the colon was chosen because these cells make 
contact with enteric glia and are at least partially transcriptomically 
distinct from other DRG sensory neurons (17).

Transcriptomic changes in the DNBS-treated enteric glial dataset 
were evaluated first. Differential gene expression analysis was per-
formed between vehicle and DNBS-treated groups to identify genes 
with substantial differences in abundance. This gene list was then 
intersected with our interactome analysis against retrogradely traced, 
mouse colonic sensory neuron scRNA-seq data. The original study 
identified seven cell types from these retrogradely traced mouse co-
lonic sensory neurons. These cell types were defined by expression 
profiles (NP, PEP, and NF), and they were further defined by their 
anatomical location (either thoracolumbar and lumbosacral DRG, or 
lumbosacral only) (17). We separated these into five cell types that 
were found in both thoracolumbar and lumbosacral DRGs (hereafter 
and in the figure denoted as mixed populations; Fig. 5A) and two 
cell types that were only found in lumbosacral DRG (pelvic popula-
tions; Fig. 5A). The interactome between differentially expressed 
ligands in DNBS-treated enteric glia and paired receptors enriched 
in one of these seven cell types are presented (Fig. 5A and data file 
S4, sheet 1), with ligand-receptor pairs that did not show any DRG 
neuron enrichment for any of the seven cell types are shown in the 
Supplementary Materials (data file S4, sheet 2). We found that for 
17 of 22 interactions where the receptor gene was enriched in the 
two pelvic specific cell types, their ligand-pair gene expression was 
substantially decreased. In contrast, in 39 of 64 interactions where 
the receptor gene was enriched in mixed DRG cell types, their 
paired ligand gene expression was substantially increased. Under the 
premise that increased gene (and potentially protein) abundance 
leads to increased protein interactions, this shows that there is a 
potential difference in signaling between enteric glia and colonic 
sensory neurons wherein inflammation relatively specifically aug-
ments ligand-receptor interactions between mixed population afferents, 
whereas there is a tendency of decrease in interactions between 
enteric glia and pelvic afferents (Fig. 5B).

On the basis of the premise that elevated gene abundances could 
cause robust protein interactions and may be important for pelvic 
pain disorders, we looked more closely at this part of the interactome. 
Among increased ligand genes that signaled to DRG neurons in the 
mixed population, we found that Bdnf and Gdnf were prominent. 
BDNF signaling to TrkB is known to play an important role in pain 
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plasticity where it has primarily been studied in the context of BDNF 
release from primary afferents in the spinal cord (59, 60) but has 
also been linked to inflammatory visceral pain disorders (61–63). 
Glial cell line–derived neurotrophic factor (GDNF), which was linked 

to Gfra1 and Gfra2 expression, was also found to be increased in 
relative gene abundance in DNBS-treated enteric glial cells. Other 
studies have indicated that GDNF up-regulation in target tissues en-
hances nociception (64–66). ARTN (artemin), a ligand in the same 
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Fig. 3. Ligand-receptor interactions from neurons to glial cells within the DRG. Interactome analysis was performed to identify potential signaling connections be-
tween ligands expressed by DRG neurons [PEP-type (n = 565 cells), NP-type (n = 889 cells), and NF-type (n = 126 cells)] and the paired receptor expressed by DRG glial cells 
[satellite glia (n = 681 cells) and Schwann cells (n = 47 cells)] from the mouse scRNA-seq dataset by Zeisel et al. (12). Outermost circles indicate the generic class of the cells 
expressing the corresponding ligand or receptor genes. The middle layer shows the specific cell type that the gene is detected in, with the dots color-coded for cell type. 
The inner layer contains gene names, color-coded for their corresponding ligand or receptor categories. Connections are marked as lines between ligand genes and 
receptor genes, color-coded for the neuron-expressed ligand gene category.
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family as GDNF, was also found to be increased in gene expression 
and linked with Gfra1 and Gfra3 expression. This demonstrates a 
coordinated increased expression of neurotrophins in enteric glia 
that are likely to signal through pelvic and lumbosacral mechanisms 
to promote visceral pain (61–67).

Disease-promoting macrophages from patients with RA 
interact with hDRG through an EGFR-enriched pathway
The interactome analysis described above shows that we can identify 
ligand-receptor signaling pathways in a mouse model of visceral 

pain. However, discoveries 
made in mouse models are 
not always consistent with 
actual human disease states 
(68, 69). Therefore, we sought 
to assess whether this inter-
actome approach could be 
used to identify novel tar-
gets in human disease states. 
This requires availability of 
hDRG sequencing data and 
sequencing data from target 
tissues or cells from patients 
with chronic pain diseases. 
We chose to investigate how 
macrophages from RA pa-
tient synovium might com-
municate with cell types in 
the hDRG, especially human 
sensory neurons.

A previously published scRNA-seq study of synovial tissue from 
patients with RA and osteoarthritis (OA) identified four specific 
subtypes of macrophages within the joints of patients with either of 
these diseases (16). A total of 12 patients with RA (7 females and 
5 males) and 2 patients with OA (both male) were enrolled in the 
study by Kuo et al. (16). To find macrophage-driven interactions 
with hDRG neurons that are potentially responsible for promoting 
pain in RA, we contrasted the RA-enriched macrophage cell types 
with the OA-enriched macrophage cell types. Ligand genes that 
were highly expressed in the RA macrophages compared with the 
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Peptidergic neurons

Glial ligands
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Fig. 4. Ligand-receptor interac-
tions from glial cells to neurons 
within the DRG. Interactome anal-
ysis was performed to identify 
potential signaling connections be-
tween ligands expressed by glial 
cells [satellite glia (n = 681 cells) and 
Schwann cells (n = 47 cells)] and 
the paired receptor expressed by 
DRG neurons [PEP-type (n = 565 cells), 
NP-type (n = 889 cells), and NF-type 
(n = 126 cells)] from the mouse 
scRNA-seq dataset by Zeisel et al. 
(12). Outermost circles indicate the 
generic class of the cells expressing 
corresponding ligand or receptor 
genes. The middle layer shows the 
specific cell type that the gene is 
detected in, with the dots color- 
coded for cell type. The inner layer 
contains gene names, color-coded 
for the corresponding ligand or re-
ceptor categories. Connections are 
marked as lines between ligand 
genes and receptor genes, color- 
coded for the neuron-expressed 
receptor gene category.
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OA macrophages were selected and then filtered by whether their 
receptor genes were detected in hDRG RNA-seq data (14, 19), re-
sulting in RA-enriched ligand-receptor pairs (Fig. 6). OA-enriched 
interactions—which include pathways related to bone regeneration—
are in the Supplementary Materials (data file S5). Of the 20 RA- 
enriched ligand-encoding genes, four of them—HBEGF, EREG, DCN, 
and HSP90AA1—encode proteins that signal through EGFR. This 
suggests that ErbB family receptors may play a key role in promoting 
persistent pain in patients with RA. Increased expression of ErbB 

family–related ligands and receptors is seen in patients with RA. For 
instance, ErbB family pathway changes are triggered by increased 
abundance of amphiregulin and epiregulin (EREG) in patients with 
RA (70), whereas experiments in mice have shown the develop-
ment of cytokine-induced arthritis can be suppressed with local 
blockade of these ligands in the joint (71). The importance of the 
ErbB family pathway in chronic pain has been previously noted in 
the literature, but not in the context of RA pain. For instance, 
EREG- mediated EGFR activation causes pain sensitization through 
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Fig. 5. Differential expression and 
interactome analysis of ligands in 
enteric glia and of receptors in 
colonic-projecting sensory neurons 
reveal potential drivers of visceral 
pain. (A) Differential expression of 
ligand-encoding genes in RiboTag 
RNA-seq of enteric glial cells from 
mice treated with saline or DNBS 
(N = 3 each) (18) and gene expression 
of corresponding receptor-encoding 
genes in scRNA-seq of DRG sensory 
neurons (314 cells) (17), grouped by 
type as indicated. Ligand-receptor 
pairs between the enteric glia and 
colon-innervating neurons are con-
nected between the plots, wherein 
red (above the dashed line in the 
plot, left) indicates ligand expression 
was increased in enteric glial cells 
after DNBS treatment, and blue indi-
cates a decrease. Ligand and receptor 
genes are labeled with color-coded 
category labels, defined in the 
figure legend. Cell types prefixed 
with “p” denote populations primarily 
from lumbosacral (pelvic) DRG, 
whereas those prefixed with “m” 
denote populations sampled from 
a mixture of thoracolumbar and 
lumbosacral DRG. (B) Table enumer-
ating the number of glia-expressed 
ligands—those that were up-regulated 
and, separately, down-regulated in 
DNBS-treated animals—that corre-
sponded to receptors in the indicated 
grouped subtypes of DRG neurons.  on July 28, 2021

http://stke.sciencem
ag.org/

D
ow

nloaded from
 

http://stke.sciencemag.org/


Wangzhou et al., Sci. Signal. 14, eabe1648 (2021)     16 March 2021

S C I E N C E  S I G N A L I N G  |  R E S E A R C H  R E S O U R C E

9 of 21

phosphatidyl inositol 3-kinase–AKT–mechanistic target of rapa-
mycin pathways in inflammatory pain models (23) and EGFR inhi-
bition with gefitinib reduces opioid tolerance and hyperalgesia 

(72). Moreover, ErbB receptor family inhibitors have been used 
successfully for the treatment of neuropathic pain in patients (22, 24). 
RA treatment has been transformed by the use of TNF-–targeting 
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Fig. 6. DRG receptor–associated ligand expression in synovial joint macrophages identifies potential drivers of persistent pain in RA. Differential expression of 
ligand-encoding genes in synovial macrophages isolated from patients with RA (394 cells) and those isolated from patients with OA (139 cells), based on human scRNA-
seq data from Kuo et al. (16). Only ligand genes with higher expression level in RA macrophages compared with OA macrophages are shown. Gene expression level in 
RPMs for each cell is shown (RA macrophages in blue; OA macrophages in orange) with the solid line as the mean and error bars representing SEM. Corresponding recep-
tor genes detected in hDRG (N = 3 from individual organ donors) are noted under each ligand gene. Corresponding ligand or receptor categories are color-coded and 
labeled for each ligand or receptor gene as shown in the legend.
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biologics, but chronic pain remains a persistent problem for patients 
with RA (73, 74). With previous findings showing ErbB family 
inhibitors can be used to treat RA in mouse models (71, 75), we 
propose that inhibitors of the ErbB receptor family could poten-
tially be repurposed to treat inflammation and RA pain at the 
same time.

Pancreatic cancer cells suppress inhibitory and enhance 
excitatory signaling to hDRG neurons
Pancreatic cancer involves cancer-driven mutational changes and 
large-scale transcriptional reprogramming. It is often associated with 
severe pain, and many patients are resistant to pharmacological pain 
treatment of any kind, requiring neurolytic treatments (76, 77). A 
better understanding of how cells from pancreatic cancerous tissue 
signal to DRG neurons could lead to identification of therapies that 
can alleviate pancreatic cancer pain.

We used a bulk RNA-seq dataset of pancreatic cancer tissue 
where we could control for individual differences in transcriptomes 
by having matched cancer and noncancer pancreatic samples from 
each of four patients (two females and two males) in the The Cancer 
Genome Atlas (TCGA) database (20). These four patients had stage 
II tumors (one of them in stage IIa and the other three in stage IIb). 
According to the definition of pancreatic cancer stages by the 
American Cancer Society, stage IIb pancreatic cancer has spread to 
no more than three nearby lymph nodes and may be considered as 
unresectable by physicians (www.cancer.org/cancer/pancreatic-cancer/
detection-diagnosis-staging/staging.html). Over 80% of these patients 
with unresectable pancreatic cancer experience pain (78, 79). Ligands 
that systematically increased or decreased in abundance in cancer 
samples across all four patients were used for the interactome anal-
ysis. These interactions were then filtered by whether their receptor 
genes were detected in hDRG RNA-seq data (19). Among 41 ligand- 
receptor pairs identified (Figs. 7 and 8 and further detailed in data 
file S6), we noted that genes of certain mediators that are well-
known pain suppressing ligands showed decreased expression in 
cancerous tissue compared with healthy tissue. These included 
the endogenous opioid ligand proopiomelanocortin and the anti- 
inflammatory cytokine IL-10. On the other hand, the expression of 
many pain-promoting and/or inflammatory ligand-encoding genes 
was increased, including SHH, TGFA, and TFF1. These findings 
suggest that a central problem in pancreatic cancer pain may be a 
loss of balance between pain-suppressing and pain-promoting signal 
transduction that is found within the normal pancreas. Four of these 
41 ligand-encoding genes—CEACAM1, FGF1, TFF1, and TGFA—
encode proteins known to signal through EGFR, suggesting (as 
above in RA) that the ErbB receptor family may play a role in driv-
ing pain in the context of pancreatic cancer. Although the corre-
sponding ligands of ErbB receptor family members have been 
previously studied in the context of cancer (where EGFR and ErbB2 
are known targets), they have not been widely studied in the context 
of pain. In addition, ErbB receptor family inhibitors have been 
shown to provide pain relief in previous cancer clinical trials (80). 
This may occur because of inhibition of tumor-to-nociceptor signal-
ing or as tumor shrinkage decreases pressure on nearby nerves, like 
the celiac plexus.

HBEGF stimulates mDRG neurons and causes pain in vivo
Our results suggest a potential role of ErbB receptor family in many 
types of pain, but the only corresponding ligand that has been 

confirmed to cause pain in vivo is EREG (23). To the best of our 
knowledge, heparin-binding epidermal growth factor (HBEGF) has 
never been assessed for pronociceptive actions, but our datasets 
suggest a possible role in several pain states. We applied HBEGF 
(10 ng/ml) to mDRG neurons from male and female mice and ob-
served a Ca2+ signal in ~30% of neurons (Fig. 9, A and B). This ef-
fect was completely blocked by the ErbB family antagonist lapatinib 
(6 nM) (Fig. 9, C and D). Lapatinib blocks receptor kinase activity 
for both EGFR and ERBB2 (81). To examine the effect of HBEGF in 
peripheral tissues innervated by sensory nerve endings, we injected 
HBEGF (50 ng) into the paw of mice to test for mechanical sensitivity 
and grimacing. Male Institute of Cancer Research (ICR) and female 
C57BL/6 mice were used to test sex and strain differences. In male mice, 
we observed mechanical hypersensitivity (Fig. 9E) and a trend to-
ward increased grimacing (Fig. 9F). In female mice, HBEGF also caused 
mechanical hypersensitivity (Fig. 9G) and grimacing at 1 hour after 
injection (Fig.  9H). Examining pooled data from male and female 
mice revealed a strong effect on mechanical hypersensitivity lasting 
for at least 24 hours (Fig. 9I) and a significant effect on grimacing at 
1 hour after injection (Fig. 9J). Because responses were qualitatively 
similar between the two groups of mice, it is unlikely that there are 
major sex or strain differences in HBEGF responses in mice. We 
conclude that like EREG, HBEGF is an ErbB receptor family agonist 
that causes pain in vivo, likely through a direct action on ErbB2 re-
ceptors expressed by DRG nociceptors.

DISCUSSION
We have created an interactome identification framework for the 
examination of how specific subtypes of cells in the body interact 
with sensory neurons that innervate the target tissues where these 
cells reside. This resource can be used to mine interactions between 
sensory neurons and many of the cell types found in the bodies of 
mice. Many of these ligand-receptor interactions are generic; how-
ever, an unexpectedly large number of them show specificity. For 
instance, T cells and NK cells appear to use lymphotoxin alpha (Lta) 
to lymphotoxin beta receptor (Ltbr) as a unique mechanism to signal 
to nociceptors. Our work also elucidates how ligand-receptor inter-
actions can potentially change in chronic pain disease states such as 
RA and pancreatic cancer. Our database and computational frame-
work can be useful for identifying new targets for disease treatment 
(for example, HBEGF acting on ErbB receptors). We anticipate that 
continuing advances in sequencing techniques (82), such as spatial 
transcriptomics (83), and their application to human disease tissues 
will enable targeted therapeutic discoveries using this interactome 
framework.

One of the key findings emerging from our work is the complexity 
of the potential ligand-receptor interactions that are found in these 
interactomes. Pain is widely acknowledged to be a complex disease, 
but most pain therapeutic development focuses on a single factor, such 
as nerve growth factor (NGF) or CGRP sequestering antibodies, or 
receptor or enzyme antagonists (84). Some of these approaches, for 
instance, NGF (85) and CGRP (86) targeting, have been effective in 
the clinic. However, not all patients respond to these therapeutics 
and even when patients do respond, these therapies are not cures. 
Our work shows that chronic pain disease states are accompanied 
by complex changes in ligands produced in diseased tissues and that 
many of these ligands have considerable potential to have an action 
on the nociceptors that innervate that tissue. This likely means that 
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multiple ligand-receptor interactions need to be simultaneously 
targeted to effectively treat chronic pain states. Of course, this is not 
a new concept, but our work starts to provide a toolkit to quantify 

these ligand-receptor interactions and design therapeutic strategies 
that have an increased chance of success. Continuing to develop 
transcriptomic maps of human tissues, at the bulk and single-cell 
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level, including in disease states, will ultimately be needed to achieve this 
goal. Such efforts are well under way and the technology to do such stud-
ies at the individual patient level are rapidly becoming available (82).

Another key finding is the degree to which ECM and cell adhe-
sion molecules govern ligand-receptor interactions between periph-
eral cells and sensory neurons. These interactions dominated our 
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Fig. 8. DRG receptor–associated ligand expression in normal and malignant pancreatic tissue from humans, part II. Additional data from the interactome analysis 
on normal and malignant pancreatic tissue with hDRG, performed and analyzed as described in Fig. 7, continued here in alphabetical order.
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Fig. 9. HBEGF excites mDRG neurons and causes pain in vivo. (A to D) Intracellular Ca2+ concentration in mouse male and female DRG neurons in response to HBEGF [(A), 
analyzed in (B)] or HBEGF with the EGFR antagonist lapatinib [(C), analyzed in (D)]. N = 306 and 595 neurons, respectively. (E to J) Mechanical sensitivity to von Frey filaments, as 
inferred from paw withdrawal thresholds and grimacing, in male ICR mice (E and F) and female C57BL/6 mice (G and H) 1 hour after hind paw injection with saline or 50 ng of 
HBEGF. Pooled data for all male and female are displayed in (I) and (J). n = 5 to 11 mice each, as noted in the figure. *P < 0.05, **P < 0.01, and ****P < 0.001 by two-way ANOVA with 
Bonferroni posttest, or t test for effect size. Sample sizes are shown in the figure. Horizontal bars or boxes represent the mean, and error bars represent SEM. BL, baseline.

 on July 28, 2021
http://stke.sciencem

ag.org/
D

ow
nloaded from

 

http://stke.sciencemag.org/


Wangzhou et al., Sci. Signal. 14, eabe1648 (2021)     16 March 2021

S C I E N C E  S I G N A L I N G  |  R E S E A R C H  R E S O U R C E

14 of 21

ligand-receptor interactomes, and many of these interactions have 
not been studied at all in the context of sensory neurobiology. Several 
studies in the past decade have pointed out the key role that ECM 
molecules play in the development of chronic pain states (51, 87, 88), 
but, again, these studies have only focused on a small number of the 
many interactions that were apparent in our interactomes. These 
ECM and adhesion molecule interactions may also play a critical 
role in recruitment and proliferation of immune cells to peripheral 
nerves and the DRG after nerve injury. Insofar as these neuroimmune 
interactions in the periphery are emerging as key players in nerve 
regeneration (41) and neuropathic pain (40, 89), gaining a better 
understanding of how this occurs will yield new insight into disease 
states. Therefore, this is almost certainly an area that is ripe for fur-
ther exploration from the perspective of fundamental neurobiology 
knowledge and therapeutic target discovery.

A theme emerging from our interactomes built using sequencing 
data from human disease was the involvement of ErbB family re-
ceptors and their corresponding ligands. Previous studies have im-
plicated the pathway associated with this family of receptors with 
chronic pain, but to our knowledge, HBEGF has not been specifically 
studied in this context. Genetic associations studies link the ErbB 
family of receptors and the ligand EREG (encoded by the EREG gene) 
to chronic temporomandibular joint pain (23). Animal pain models 
suggest that ErbB family activation by EREG promotes inflammatory 
and neuropathic pain and that ErbB receptor family signaling is 
critical for pain-promoting effects of opioids (23, 72). Last, several 
clinical trials have been done with inhibitors that target ErbB family 
receptors for neuropathic pain, and some of these have been positive 
(21, 22, 24). Our results point to a diversity of ligands specific to the 
ErbB family of receptors that are increased in abundance in painful 
tissues such as joints of people with RA and in pancreatic cancer. 
These ligands were distinct in these clinical cohorts and did not in-
clude EREG, whose ortholog is reported to be unique among ErbB 
receptor ligands in sensitizing nociceptors in mice (23). Some of them 
did include HBEGF, and we show here using mice that HBEGF can 
activate mDRG neurons in an ErbB receptor family–dependent 
fashion to cause pain in vivo. In mice, DRG neurons do not appar-
ently express Egfr, but both PEP and NP nociceptors express Erbb2 
(12). HBEGF induced Ca2+ transients in mDRG neurons that were 
completely blocked by lapatinib, which inhibits both EGFR and 
ErbB2. It is very likely that pain-promoting effects of HBEGF in mice 
are mediated by ErbB2. In hDRG, however, both EGFR and ERBB2 
genes are expressed (14, 90), suggesting a potential species difference. 
Another consideration is that different ErbB family ligands have dif-
ferential signaling bias when activating ErbB receptors in neurons, 
as shown by Martin and colleagues (23). It is likely necessary to study 
the effects of ErbB family ligands on human nociceptors because 
several published reports have demonstrated important differences 
between rodent and human nociceptors (19, 91–93). Nevertheless, 
our findings are promising from the perspective of broadening study 
of ErbB family receptor inhibitors for different chronic pain condi-
tions. Our work highlights HBEGF, in addition to EREG, as EGFR 
agonists that may be involved in pathological pain.

There are some key limitations to our work. The first is that most 
of the interactomes presented are not precisely matched for the in-
nervation of the target tissue. The exception is the colonic sensory 
neuron to enteric glia interactome. Future work will focus on build-
ing additional interactomes where the target cell types are matched 
to the subsets of nociceptors that specifically innervate those cells 

and, if possible, taken from samples with the same pathophysiological 
state. This will have important implications for more precise target 
identification. The second is that single-cell resolution is not yet 
available for the hDRG, so the human disease–based interactomes 
should be interpreted with some caution. Our bulk-sequencing data 
affords a broad view of possible interactions between target tissues 
and hDRG neurons, but single-cell sequencing on hDRG neurons 
would improve confidence in targets emerging from these types of 
experiments. A third limitation is in gaps in the ligand-receptor in-
teractome. Although we have made a concerted effort to include as 
many enzyme-derived small-molecule interactions as we can in this 
database, it is not comprehensive. There are also many ligand-receptor 
interactions that are not yet known, and these are necessarily not part 
of our interactome. Therefore, although our work elucidates many 
aspects of ligand-receptor interactions that are potentially involved in 
driving painful disease states, it cannot be viewed as a comprehensive 
resource. Last, although gene expression of ligands and receptors 
may predict signaling, posttranscriptional and posttranslational 
regulation—as well as mRNA and protein transport or localization—
can modulate the degree and viability of such protein interactions. 
For candidate signaling pathways, interventional studies need to be 
performed to validate the predicted interactome. Our mouse HBEGF 
study provides a roadmap in how such studies may be designed. 
Nonetheless, our findings create a resource that may be built upon 
with further validation work and rapid advances in sequencing and 
other technologies. From this, we envision that new therapeutic tar-
gets specific to various chronic pain disorders may be identified.

MATERIALS AND METHODS
Mouse RNA-seq resources
The Tabula Muris dataset (10) contains scRNA-seq data generated 
by two methods: Smart-seq2 sequencing of specific cells using a 
fluorescence-activated cell sorting (FACS) method and a microfluidic 
emulsion method. The scRNA-seq data generated by the FACS 
method includes more tissue types and greater sensitivity (higher 
number of genes detected per cell); therefore, we used that data for 
our analysis. From all cell types identified in the Tabula Muris dataset, 
we selected cells from tissues that are strongly innervated by DRG 
neurons and identified 42 component cell types likely to interact 
directly with DRG-derived nerve endings and used these in our 
analysis. Details of the tissues and cell types found in the Tabula 
Muris dataset and which ones we chose for analysis in this work are 
located in data file S7.

scRNA-seq data from the mDRG (12) were used to generate the 
transcriptome profile of individual cell types within DRG. Expression 
values and metadata for each subpopulation of component cells pro-
vided in databases (L5_All.agg.loom) created by the original publication 
were used in our analysis. NFs (NF1 to NF3), NP neurons (NP1 to Np6), 
PEP neurons (PEP1 to PEP8), satellite glial cells (SATG1 to SATG2), 
and Schwann cells (SCHW) cell types from DRG tissue were selected 
for analysis. These were further grouped as described in Results.

Previously published RiboTag RNA-seq data of enteric glial cells 
from colon tissue were used (18). In this study, colonic inflammation 
was used to study how the active translatome of enteric glia changes 
with inflammation. The RiboTag procedure driven by Sox10-cre was 
used to generate enteric glia translatomes in vehicle-treated and 
colonic inflammation conditions. In turn, this was used to generate 
the interactome between colonic sensory neurons (details below) 
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and enteric glia. Raw sequencing data were provided by the authors 
of the original paper, mapped to gencode vM16 mouse genome 
annotation (94), and quantified using STAR 2.6.1c (95, 96). Read 
counts per gene per sample were provided as output by STAR and 
suitably normalized and used in downstream analysis.

Previously published scRNA-seq data of mDRG neurons retro-
gradely traced from colon (17) were used in the interactome analysis 
for colonic inflammation. Read counts per gene per cell, as well as 
cell-type labels (based on clustering) and gene marker information 
for cell types, were provided by the authors.

Human RNA-seq resources
hDRG tissue samples, previously sequenced using bulk RNA-seq and 
analyzed by our laboratory (14, 19), were used for quantifying the 
transcriptome profile of hDRG. Normalized read counts per gene 
[as transcripts per million (TPMs)] reported in those papers were 
used in the analysis here.

We analyzed data from Kuo et al. (16), who obtained scRNA-seq 
data from 940 human synovial CD14+ cells, enriched in macrophages, 
isolated from patients with RA and OA, to build the RA- and 
OA-associated interactomes. The original scRNA-seq data provided 
as read counts per gene per cell in the original publication and 
clustering-based cell-type labels for each cell were used. On the basis 
of the study by Kuo et al. (16), one cell cluster was enriched in RA 
samples when compared with OA samples (RA-enriched macrophages). 
Conversely, a second cluster was enriched in patients with OA when 
compared with patients with RA (OA-enriched macrophages). These 
two cell types were picked for the interactome analysis to compare 
macrophages from patients with RA versus macrophages from 
patients with OA.

Pancreatic cancer tissue bulk RNA-seq data were acquired from 
the TCGA database (20). Samples from individuals that had matched 
healthy and cancerous pancreatic tissue were used for analysis in 
this paper. There was a total of four pairs of samples in the TCGA 
pancreatic cancer database that fit the criteria, and all pairs were used. 
The TCGA database provides normalized read counts per gene [as 
fragments per kilobase per million mapped fragments (FPKMs)], 
which was used for downstream analysis.

Reference annotation for receptor and ligand pairs
Ramilowski et al. (25) identified 2557 pairs of ligand-receptor inter-
actions that were used as the basis for generating the full database of 
ligand-receptor pairs used here. To curate a more complete list of 
ligand- and receptor-like interactions, we manually curated and in-
cremented this database as follows: Additional genes whose products 
are ligands and receptors were identified from gene annotation data-
bases, like the Human Genome Organization (HUGO) (28) and AmiGO 
(30) databases, as well as the literature. Their corresponding signal-
ing interaction partners were identified from the literature and an 
existing database (27).

It is to be noted that not all ligand-receptor pair interactions are 
directly encoded in the genome, so we added enzymes that are known 
to synthesize ligands to the ligand database and paired these with 
receptors for the synthesized ligand. Some interactions between pro-
teins found at the surface of cells do not have a clear ligand-receptor 
relationship, for instance, in some ECM and cell adhesion protein 
interactions. In these cases, if one of the pair was expressed in the 
DRG (transcriptionally), the corresponding gene was included in the 
receptor database, and its interacting protein partner’s gene name 

was included in the ligand database. The COMPARTMENTS database 
(26) and literature was additionally used to filter out ligand-side pro-
teins that are not known to be secreted or localized in the ECM.

Gene annotations for cell adhesion molecules, GPCR, growth 
factor, ion channels, neuropeptides, nuclear receptors, and receptor 
kinases obtained from the literature, the human HUGO (28), and 
human and mouse AMIGO (30) databases were used to additionally 
populate our database on top of the protein interaction lists by 
Ramilowski et al. (25). A total of 3098 pairs of ligand-receptor inter-
actions are used in our interactome analysis (entire list shown in 
data file S8).

Gene relative abundance normalization
RNA-seq read counts per gene are typically normalized for gene 
length and whole-transcriptome coverage to quantify relative abun-
dance of transcripts for each gene. We used several different normal-
ization strategies on the basis of the public availability of read counts 
and normalized data, and what was the most appropriate normal-
ization in the context of the analysis. Although there is some hetero-
geneity in normalization procedures across RNA-seq datasets that 
we analyzed, within each dataset, normalization was performed 
consistently using a single approach.

Gene abundances for the human pancreatic cancer samples in 
FPKM (obtained from the TCGA website) and RNA-seq data for 
hDRG samples in TPMs (obtained from the original paper) were used 
for downstream analysis. However, some of the RNA-seq datasets 
used in this paper were obtained as read counts per gene per sample 
(for bulk RNA-seq) or per cell (for scRNA-seq); thus, we normalized 
these using standard approaches (97). Because we did not explicitly 
compare expression levels across different genes, normalization by 
gene length was not performed as it does not influence our analysis. 
We calculated reads per million mapped reads (RPMs) for bulk RNA- 
seq and for scRNA-seq datasets that had lower transcriptome coverage, 
and upper-decile normalized RPM (udRPM) was used to normalize 
sequencing depth while accounting for coverage differences across 
multiple samples in low–sequencing depth situations (like scRNA-seq). 
RPM and udRPM of a gene were calculated with the following formulas

   RPM  gene   =   
 R  gene   ×  10   6 

 ─ 
 ∑ gene    R   gene   

    

where Rgene stands for the read counts for a specific gene and ∑geneRgene 
stands for the read count sum of all genes.

   udRPM  gene   =   
 RPM  gene    ──────────────────────────    90th percentile of  RPM  gene   within the sample    

Interactome identification
Interactomes were predicted for ordered pairs of relevant tissues or 
cell types. On the basis of the biological context, we identified ligand- 
to-receptor signaling from one tissue or cell type to the other 
(unidirectional) or from each tissue or cell type to the other 
(bidirectional). The first step in building the interactome was to 
overlay ligand-encoding gene expression levels in all samples, cells 
in the tissue, or cell type wherein we investigate the upstream compo-
nent of the signaling, and to similarly overlay the receptor-encoding 
gene expression levels in the tissue or cell type wherein we investi-
gate the downstream component. Depending on the data available 
and the question being asked in each of our case studies, the 
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interactions were then ranked on the basis of ligand-side or receptor- 
side criteria (like degree of differential expression and specificity of 
expression in that tissue or cell type) and filtered out if the gene 
expression was not consistently detectable across biological repli-
cates. Our approach uses gene expression levels as a surrogate for 
protein abundance levels, because of the difficulty of generating high- 
throughput and high signal-to-noise ratio protein abundance data.

Identification of cell type–restricted gene expression 
patterns in mouse scRNA-seq datasets
The Tabula Muris dataset was specifically analyzed to identify gene 
coexpression modules that were not expressed ubiquitously across 
all 42 relevant cell types in the database but restricted to a subset of 
them. To identify gene modules that were enriched in different cell 
types, a cell and gene biclustering was performed on the udRPM per 
gene per cell-type matrix generated in the for the 42 cell types. The 
scrattch.hicat package from the Allen Institute (37) was used to gen-
erate clusters to identify gene modules.

The udRPM matrix was first multiplied by 1000 (to limit the ef-
fect of adding a smoothing factor), and 1 was added to each element 
of the matrix before it was log2-tranformed. Such a log-transformed 
matrix is an approximation of the qualitative expression patterns of 
different genes across all 42 cell types.

We performed hierarchical clustering through a top-down ap-
proach, identifying a total of 8189 genes that were generically ex-
pressed across all preidentified cell types in the first round, which 
were labeled as ubiquitously expressed and set aside from the cluster-
ing. In the next round of clustering, another 5117 genes were iden-
tified to have low to no expression across all cell types and were 
excluded from the analysis. Distinct clusters of cell types and gene 
modules were identified in the final round of clustering, and genes 
from these coexpression modules that were restricted in expression 
to a subset of the cell types were used to characterize a “cell type–
enriched” interactome. The parameters for each round of clustering 
are listed in data file S9.

Criteria for a gene to be considered detectable in a 
given cell type
Ligands and/or receptors were filtered in some of the interactomes 
for our case studies on the basis of whether reads were consistently 
detectable in biological replicates for one (or more) groups. Because 
scRNA-seq data usually have low sequencing depth per cell, trinariza-
tion scores were used to estimate whether a gene is expressed in a 
particular cell type. Briefly, the trinarization score, described previ-
ously by Zeisel et al. (12), is a formulation of the posterior probability 
whether a gene is detected in a cell type. The parameters used here 
in the calculation of the trinarization score were f = 0.05,  = 1.5, and 
 = 2. Genes with probability P > 0.95 were considered expressed.

Criteria for identifying differential expression of gene 
relative abundance
In addition, ligand and receptor genes are ranked by degree of differ-
ential expression in interactomes of some of our case studies. Although 
traditional statistical hypothesis testing is the norm for identifying 
differential expression, in experimental setups involving limited rep-
lication, differential expression analysis can be performed using re-
lated statistics like the strictly standardized mean difference (SSMD) 
or Bhattacharyya distance, which take both between and within group 
variance into account when ranking genes by differential expression.

The SSMD (98, 99) was used to characterize the difference in 
means of two groups, controlled by within-group variability, and 
was used to estimate effect size between two different groups under 
comparison, using the following formula

  SSMD =   
   p   −    q   ─ 

 √ 
_

   q  2   +   p  2    
    

where in a particular gene, for two groups p and q, 2 stands for the 
variance, and  stands for mean of the gene expression levels across 
libraries for each group in question (represented by a subscript).

The Bhattacharyya distance (90, 100) was used to calculate the 
similarity of the probability distributions of scRNA-seq data from 
two different conditions using the following formula. The related 
Bhattacharyya coefficient (derived from the Bhattacharyya distance 
DB) was used to calculate the amount of overlap in the area under 
the curve of the two sample distributions being compared

    D  B  (p, q ) =   1 ─ 4   ln (     1 ─ 4   (     
  p  2  

 ─ 
  q  2  

   +   
  q  2  

 ─ 
  p  2  

   + 2 )   )   +   1 ─ 4   (     
 (   p   −    q  )   2 

 ─ 
  q  2   +   p  2  

   )     

In this formula, D stands for distance, p and q stand for gene 
expression level across all cells in the first condition and second 
condition respectively,  stands for SD, and  stands for mean. Genes 
with a distance > 0.3 between two conditions of scRNA-seq were 
considered differentially expressed.

Interactome analysis methodological details for case studies
For analysis of the publicly available mouse scRNA-seq datasets, 
interactome analysis was performed between 42 cell types in tissues 
innervated by the DRG identified in the Tabula Muris dataset (10) 
and three broad classes of mDRG sensory neurons (top-level sub-
populations of PEP, NP, and NF neurons, obtained by merging all 
subcategories under them on the basis of hierarchical clustering) 
from the mDRG scRNA-seq study by Zeisel et al. (12). For each of 
the 42 Tabula Muris cell types and the three mDRG subpopulations 
from mousebrain.org, individual cells in these subcategories were 
pooled, and summed per-gene read counts were normalized to 
udRPM to obtain a single value for each gene’s relative expression 
in each cell type.

In addition, on the basis of the biclustering of genes and cell types 
of the Tabula Muris dataset, 25 coexpression modules were identi-
fied that showed restricted expression across 18 classes of cell types 
over the 42 constituent cell types in Tabula Muris. Interactome 
analysis was then performed for each of the 42 Tabula Maris cell 
types to each of the three mouse sensory neuronal cell types. Last, 
interactomes were built using the set of genes present in the 25 gene 
coexpression modules having cell type–restricted expression in 
Tabula Muris to the three sensory neuronal subpopulations.

Interactomes were then filtered by the receptor gene expression 
level in DRG sensory neurons. Ligand-receptor interactions with re-
ceptor expression level < 0.001 udRPM across all three types of sen-
sory neurons (PEP, NF, and NP) were excluded from the results.

GO term analysis was performed on the ligand and receptor 
genes for the individual interactomes using Enrichr (31, 32), and 
the top five (ranked by adjusted P value) GO terms for GO biologi-
cal process and GO molecular function were collected and shown. 
Data sheets are presented in data file S1, and results are visualized 
in Fig. 1.
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Bidirectional interactome between different cell types 
within the mDRG
scRNA-seq mouse neuronal and glial subpopulations in the DRG 
scRNA-seq data (12) were further pooled into five main groups on 
the basis of how similar their expression profiles were: NF, NP, and 
PEP sensory neurons; satellite glial cells (SATG); and Schwann cells 
(SCHW). The mean of the normalized expression values across the 
related subpopulations was used for the expression level of each 
merged group, and udRPMs were calculated. These were then used 
as the transcriptome profile of different cell types from the mDRG.

Interactome analysis on mDRG cell clusters was performed in 
two separate directions: ligands from neuronal cells (NF, NP, and 
PEP) signaling to receptors on glial cells (SCHW and SATG), and 
vice versa. All identified ligand-receptor interactions were filtered 
by whether the ligands and receptors were both expressed at the 
mRNA level in at least one source cell type. The trinarization score 
was calculated to determine whether a gene was to be considered 
expressed in a certain cell type (score > 0.95). Circle plots were 
generated to present these interactions using the Circos program 
(Figs. 3 and 4) (101), wherein each identified ligand and receptor 
interaction is represented on the plot. To better present how certain 
groups of ligands or receptors may interact with each other, the 
ligand-encoding and receptor-encoding genes on the circle plots 
were ordered by hierarchical biclustering (Euclidean distance, aver-
age distance between elements of two clusters used as representative 
distance between those clusters) of the ligand- and receptor-encoding 
genes based on their interactions with each other. In addition, each 
gene was identified as expressed in NF, NP, PEP, SATG, or SCHW 
and marked as such on the plot.

Interactome between retrogradely traced colonic sensory 
neurons and enteric glial cells in a colitis model
For the transcriptome of retrogradely traced colonic sensory neurons 
(17), reads from all cells of the same cell type were pooled together 
to generate the gene expression level per cell type (as RPM). The 
interactome was then generated between these seven cell types and 
enteric glial cells after vehicle or DNBS treatment (18). Ligand- 
receptor interactions were filtered by the following criteria: Ligand 
genes were required to be consistently expressed (>0.01 RPM) in 
enteric glial cells across all replicates in at least one condition (vehicle- 
or DNBS-treated); ligand-encoding genes were considered to be al-
tered by treatment when the ∣SSMD∣ >∣SSMD∣ + 1.2∣SSMD∣; and 
last, receptor-encoding genes with trinarization score > 0.95. Puta-
tive interactions where the receptor genes were enriched in specific 
populations of colonic afferents are shown in Fig. 5. All ligand- 
receptor interactions are provided in data file S4.

Interactome between macrophages enriched in human RA 
synovial tissue versus OA, and hDRG
The interactome was generated between RA- or OA-enriched macro-
phages (16) and hDRG (14). Predicted ligand-receptor interactions 
were filtered by the following criteria: (i) Ligand-encoding genes 
were required to be considered expressed in either RA-enriched 
macrophages or OA-enriched macrophages using the trinarization 
score > 0.95; (ii) ligand-encoding genes were considered substantially 
differentially expressed between RA-enriched macrophages and 
OA-enriched macrophages, using Bhattacharyya distance > 0.3; and 
(iii) receptor genes were required to be consistently expressed (>0.1 
TPM) in all three hDRG samples. Interactions where the ligand 

genes were highly expressed in RA-enriched macrophages are pre-
sented in Fig. 6; the interactions with ligand-encoding genes highly 
expressed in OA-enriched macrophages are provided in sheets 1 and 
2 of data file S5.

Interactome between human pancreatic cancer 
tissue and hDRG
The interactome was generated between four paired healthy and 
cancer tissue samples from patients with pancreatic cancer (TCGA) 
and hDRG samples (14). Ligand-receptor interactions were filtered 
by the following criteria: (i) Ligand genes were considered signifi-
cantly increased in pancreatic cancer samples versus healthy sam-
ples by statistical testing (paired Student’s t test, P < 0.05). Because 
the low sample size (four pairs) does not allow us to stringently per-
form multiple testing P value correction, an additional criterion was 
imposed that direction of change in ligand gene abundance had to 
be consistent for all four pairs of samples. (ii) Receptor genes were 
required to be consistently expressed (>0.1 TPM) in all three hDRG 
samples. All interactions that met the filtering criteria are presented 
in Figs. 7 and 8.

Animals
All animal protocols were approved by the University of Texas at 
Dallas Institutional Animal Care and Use Committee and were con-
sistent with the National Institutes of Health guide. Mice were kept 
on a 12-hour light-dark cycle with food and water provided ad 
libitum. Both C57BL/6 and ICR mice were bred at The University of 
Texas at Dallas.

Experimental reagents
Recombinant human HBEGF (259-HE) was purchased from R&D 
Systems and reconstituted to 50 g/ml in 0.1% bovine serum albumin. 
For hind paw injections, stock HBEGF was diluted in 0.9% saline to 
5 ng/l. Hind paw injections (10 l) were done with a 30-gauge 
needle (305106, BD Biosciences) and glass gastight syringe (80901, 
Hamilton Co.).

Behavioral methods
Male ICR mice and female C57BL/6 mice (7 to 9 weeks old) were 
used for behavioral experiments, and experimenters were blinded 
to treatment. Mice were habituated to acrylic (behavior boxes 11.4 cm 
by 7.6 cm by 7.6 cm) with a wire mesh bottom (1 cm2) before exper-
iments. Hind paw mechanical withdrawal thresholds were deter-
mined using calibrated von Frey filaments (Stoelting Co.) and the 
up-down method (102). As a measure of spontaneous pain, mouse 
grimace scale (MGS) scores were determined by observation of fa-
cial action units as described by Langford et al. (103). Facial action 
unit intensity ratings were averaged to yield a MGS score for each 
mouse at each time point.

DRG cultures
The neuronal cultures used in the calcium imaging, DRGs were dis-
sected from adult male and female C57BL/6 mice and suspended in 
Hanks’ balanced salt solution without calcium or magnesium be-
fore culturing. The DRGs were then enzymatically digested using 
collagenase A and collagenase D (each 1 mg/ml, from Roche) with 
papain (30 U/ml) for 20 min at 37°C. Following this, ganglion was 
suspended and triturated in 1 ml of Hanks’ balanced salt solution. 
The solution was passed through a 70-m cell strainer for the 

 on July 28, 2021
http://stke.sciencem

ag.org/
D

ow
nloaded from

 

http://stke.sciencemag.org/


Wangzhou et al., Sci. Signal. 14, eabe1648 (2021)     16 March 2021

S C I E N C E  S I G N A L I N G  |  R E S E A R C H  R E S O U R C E

18 of 21

removal of debris. The cells were then resuspended in Dulbecco’s 
modified Eagle’s medium/F12/GlutaMAX (Gibco) culture media 
nourished with 10% fetal bovine serum (SH30088.03, Hyclone) and 
1% penicillin/streptomycin (15070-063, Gibco). Cells were plated on 
precoated poly-d-lysine dishes (P35GC-1.5-10-C, MatTek), which 
were additionally coated with laminin (L2020, Sigma-Aldrich). The 
plated cells were then kept undisturbed in an incubator for 2 hours 
to allow them to adhere. The cells were then supplemented with the 
same culture media as described above but with the addition of NGF 
(10 ng/ml; 01-125, Millipore) and 5-fluoro-2′-deoxyuridine (3 g/ml) + 
uridine (7 g/ml) (FRD + U; Sigma-Aldrich). Last, the cells were 
kept in an incubator with 5% CO2 and maintained at 37°C for 48 hours 
before use.

Ca2+ imaging
The cultures prepared and plated as described previously remained 
undisturbed in the incubator for 48 hours after plating. Cells were 
then loaded with Fura-2 AM (1 g/l;108964-32-5, Life Technologies) 
for 1 hour. In the case of the experiments performed with the 
lapatinib (6 nM; 6811, Tocris), the cells were incubated in the drug 
30 min before loading with Fura-2 AM. After the incubation period, 
the Fura-2 AM solution was replaced with normal bath solution 
(135 mM NaCl, 5 mM KCl, 10 mM Hepes, 1 M CaCl2, 1 M MgCl2, 
and 2 M glucose, adjusted to pH 7.4 with N-methyl-glucamine, the 
osmolarity of 300 ± 5 mOsm). After a 30-min incubation in the bath, 
the cells were then treated with solution of HBEGF (10 ng/ml) for 
10 min (104). The recordings were done using an Olympus IX73 
inverted microscope at ×40 magnification and the MetaFluor 
Fluorescence Ratio Imaging Software. The cells that exhibited a 
20% ratiometric change (340 nm/380 nm) in Ca2+ levels when sub-
jected to KCl treatment were classified as neurons. From there, the 
neurons that exhibited a 40% ratiometric change in response to 
HBEGF treatment were considered as responsive.

Statistical analysis
Computational analysis was performed using MATLAB and MS 
Excel, and plots were made using MATLAB and GraphPad Prism. 
Identification of differentially expressed genes were performed us-
ing SSMDs and the Bhattacharyya distance. Presence or absence of 
gene expression in specific cell populations was estimated using the 
trinarization score, by estimating the posterior distribution using a 
 prior on Bernoulli trials (outcome determined by whether or not 
a gene is detected in individual cells of the population). Details of 
RNA-seq quantification and testing are present in the associated 
methods section. Differences in time series for Ca2+ concentration 
were tested using the chi-square test. For testing behavioral responses 
at different times, two-way analysis of variance (ANOVA) (for dif-
ferent times and treatment regimes) was performed, with Bonferroni 
posttest correction. Differences in effect size were tested using t tests.
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