Molecular evolution

Pradipta Ray, BIOL 6385 / BMEN 6389

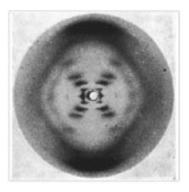
The University of Texas at Dallas

(some material based on content by PR in Eric Xing's 10-810 Carnegie Mellon class)

"The picture's pretty bleak, gentlemen.... The world's climates are changing, the mammals are taking over, and we all have a brain about the size of a walnut."

Far side, Larson

	ief early timeline	2
SYSTEMA PER REGNA TRIA NATURÆ, Successor CLASSES, ORDINES, GENERA, SPECIES, CUM CHARACTERING, LOGIS.	THE ORIGIN OF SPECIES BY HERS OF ANTREAL SELECTOR, Im The Present action of the Antream Alexa is in the Antrodole International Antream Alexa is an anti-	Saltationism
TOMUS I. EDITIO DECIDA, REFORMATA. Cam Priviligi Se Ke Misii Svitie. HOLMIÆ, HNPENSIS DIRGET. LAURENTII SALVII, 1778. 17735 : Linnaeus	LON DOS: JUIN NUERAY, ALMEXARIE STREET. JUIN VIERAY Nuero manual Nuero	Speciation is the result of abrupt large genetic changes
Classification of living (and non-living) things	Theory of evolution and natural selection	
A D D I T I Q N S. 463 T A B L E A U Servant à montrer l'origine des différens animeus.	40 Threads	Biometric school
Vera. Influsirea. Polypes, Radisirea. Insectes, Arachnides. Grastaces. Mollusques. Doissons. Roptiles. M. Amphibies. M. Cétacés. M. Ongulés.	Henry Marall Margard Margar	Continuous genetic variation underlies continuous phenome
1809: Lamarck First theory of transmutation of species	1865: Mendel Laws of Inheritance , rediscovered 1900	


Later chronological developments

- George Nuttal mixed sera and antisera from different species to determine "blood relationships":
 - More closely related species exhibit stronger crossreactions between sera and antisera
- Morgan and fruit flies
 - Chromosomes, laws of heredity and trait propagation, recombination and cross over

Double helix

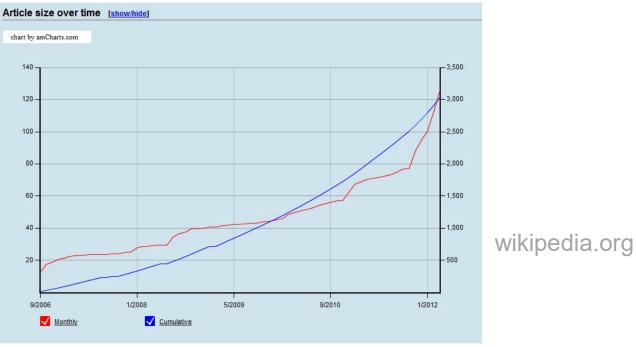
- In 1953, James Watson and Francis Crick proposed the double-helix model of DNA structure
 - Based on X ray diffraction performed by Rosalind
 Franklin
- Mechanism of genetic transfer revealed

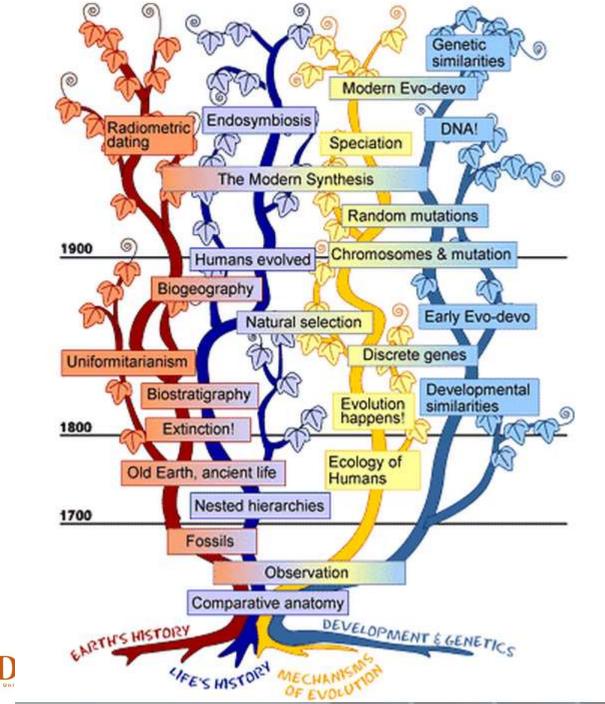
wikipedia.org

Human evolution

- Humans were thought to be monophylletic, and only distantly related to the great apes
- Sarich & Wilson (1967) cross reacted serum albumin between primates
 - Humans, gorilla and chimpanzee were genetically
 equidistant from the orang-utan

Sequencing explosion


- Real "explosion" of information on molecular evolution since the advent of PCR: (1983)
 - Nucleotide could now be sequenced based on PCR
 → cloning → chromatography / die based sequencing
- Can sequence DNA from samples thousands of years old (ancient DNA analysis : Neanderthal and Woolly Mammoth genome)


No of sequenced genomes

• Wikipedia article size of "List of sequenced eukaryotic genomes"

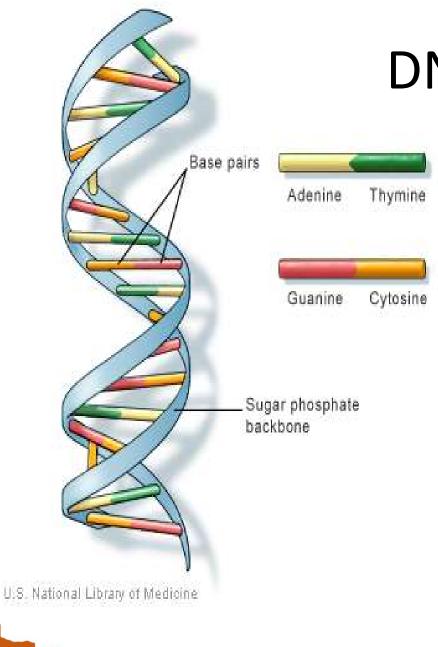
- Not a perfect correlation, but still ...

http://evolution.berkel ey.edu/evosite/

85, Computational Biology

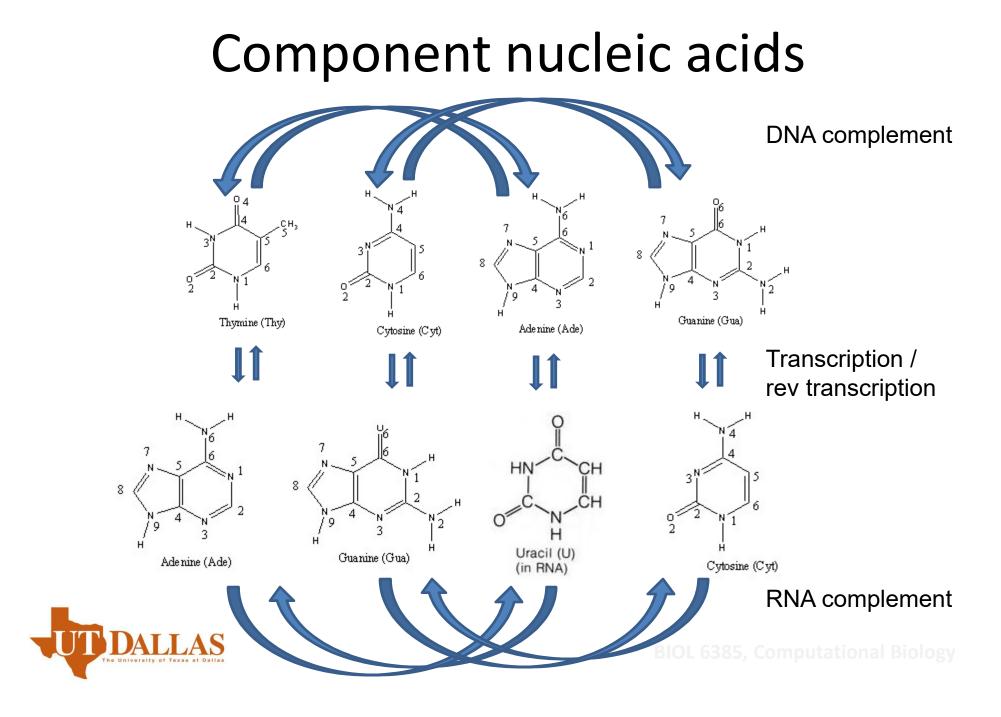
Natural selection

- Small discrete genetic changes causes organisms to be different at the individual level
- Natural selection : Some changes are more important for survival or lineage propagation based on environmental and other factors : fitness fn selects some traits over others

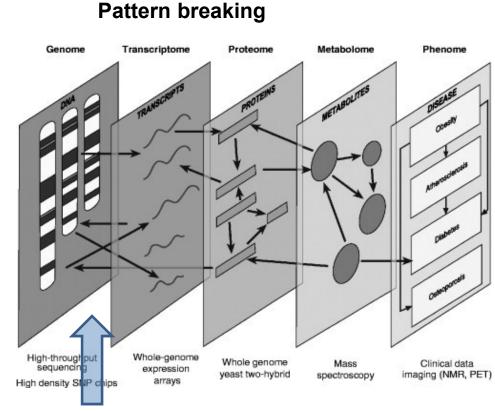


http://evolution.berkel

Speciation

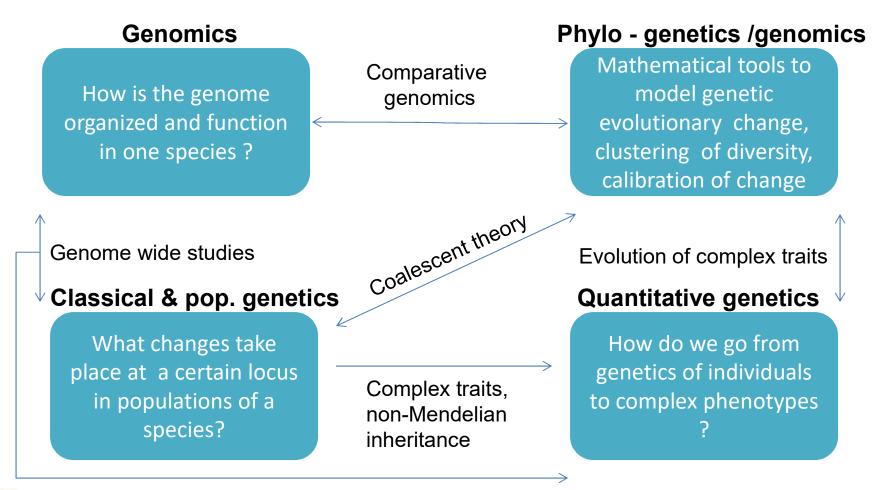

- Differences in accumulated genetic changes in sub-populations can cause them to become reproductively isolated : causing speciation
- Can be influenced by different kinds of environmental factors
 - physical isolation of populations due to geological events
 - quickly changing environment (eg extinction of another species) changing the nature of selectional forces
 - faster mutation rate due to positive selection or environmental factors like radiation

DNA

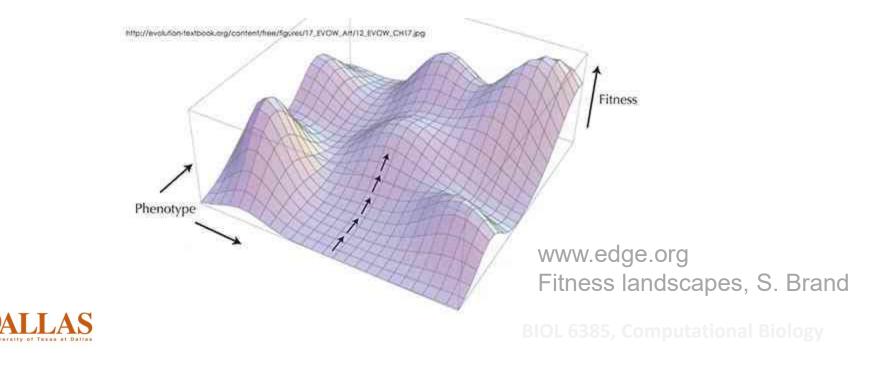

- Genetic material arranged in several double stranded chromosomes in the nucleus of each cell
- Combined genetic material is called the genome

-"Ome"s

Stability increases across environment, condition, cell type, organism, etc

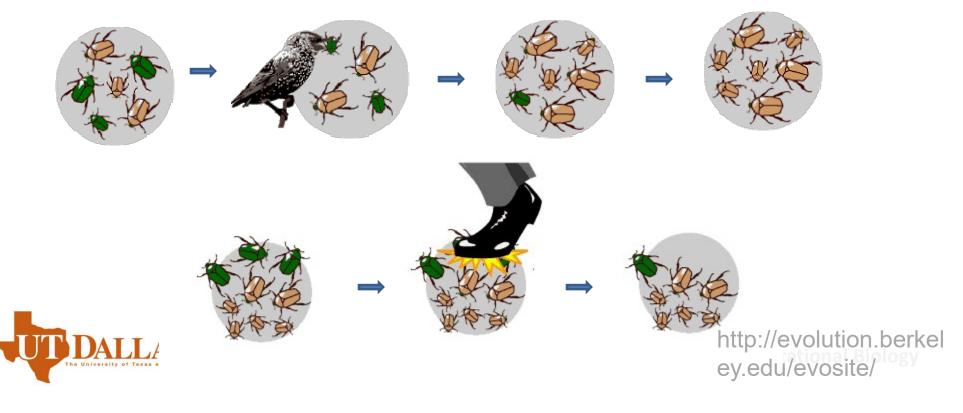

- Study of evolution
 - how the genome changes over generations & species
 - how such changes affect successive "ome"s

Another layer : **epigenome** : inherited traits which cannot be fully explained by the genome Farber & Lusis, Adv in Genetics, Vol 60


Broad fields of study

Evolution as an optimization process

- Gaming the "fitness function"
- Risks of over playing the system
- Reversibility of evolution ?

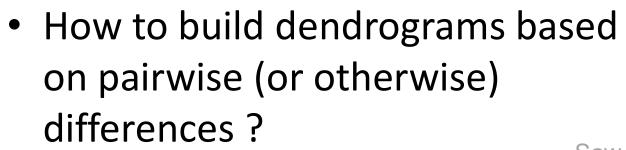

Phylogenetics

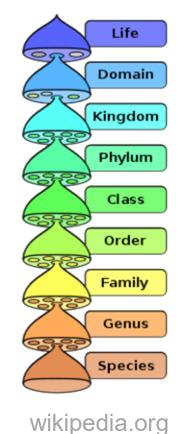
- How single nucleotides and other genomic entities change over time
 - Substitution matrices
- Cluster a group of genes or organisms based on their similarity to each other [alignment answers a related question]
- Analyze the nature of such changes
- Calibrate the rate of change

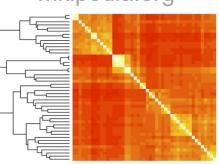
Evolution as a stochastic process

 Forces of optimization (selection) compete with completely random forces to shape our genomes

Substitution


- What are the rates at which nucleotides / AAs / codons change into each other ?
- Can we calculate the probability of an A turning into a G over a time period of t?
- What kind of assumptions can we make about such stochastic processes ?

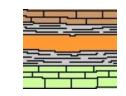



library.caltech.edu

Systematics

 Cladistics / taxonomy : do organisms / genomic entities (like duplicated genes) grouped together based on genomic similarity reflect shared evolutionary history ?

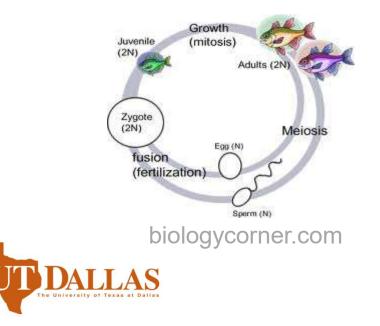
Saw et al, Stand Gen Sci 6:1


Nature of genomic changes

- Are the changes just random (neutral) ? Are they based on selectional forces acting on the genome ? How to quantify ?
- Neutral Theory (Kimura) : Vast majority of changes are neutral

Calibration of genomic changes

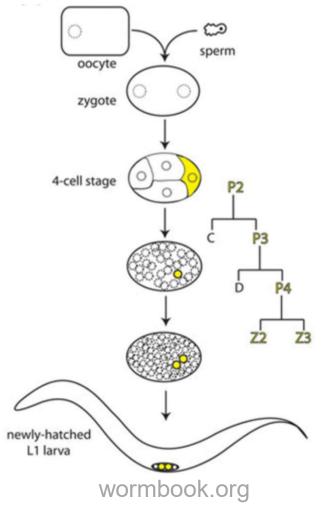
- Controversial assumption in evolutionary theory
 - Mutations (typically mostly neutral ones) in some genomic sequences and proteins take place at regular clock-like intervals
 - Can be calibrated against fossil record : using stratigraphy, radiocarbon dating, molecular clock


Asexual reproduction


- Children are clones of parents
- Genetic diversity
 - errors during cloning (mutation)
 - lateral gene transfer
 - conjugation direct transfer of genetic material between individuals
 - transformation uptake of exogenous DNA
 - transduction transfer of genetic material between individuals through 3rd party (like virus)

Sexual reproduction

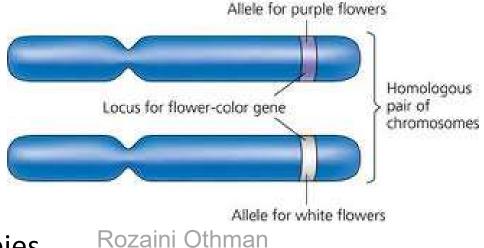
- Individual has 2 copies of each chromosome : one from each parent (homologous chr)
- 2 genders : haploid, diploid and ploidy reduction
- Other complicated mechanisms



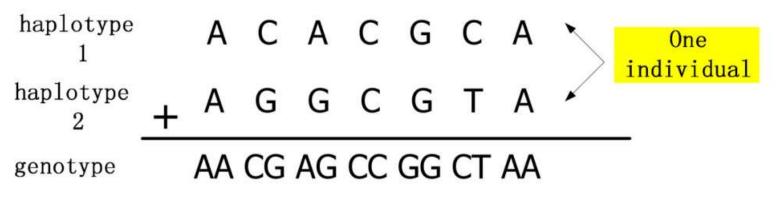
Haplo-Diploid Sex Determination in Bees

Germ line and soma

- DNA needed for homeostasis, metabolism, producing offspring
- Composition of DNA can change : changes to DNA in the germ line are transmitted to offspring
- Non-germ line evolution : evolution of cancer



Alleles


- One of many variants of a genetic locus
- Organism, wrt an allele :
 - hemizygous : only one copy of chromosome
 - homozygous : both copies have same allele
 - heterozygous : copies
 have different alleles

Haplotype vs genotype

 When we know the allelic composition of multiple alleles in an individual, can we partially reconstruct the chromosomes ?

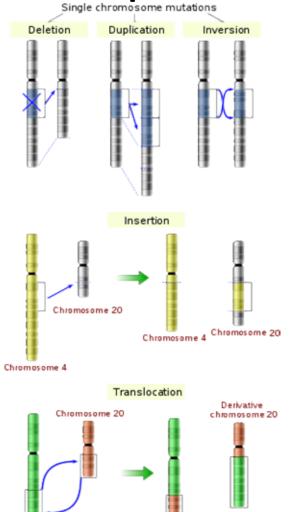
Zhou and Wang BMC Bioinformatics 2007 8:484

Added aspects of sexual reproduction

- Sexual selection : gender specific selective forces on top of existing environmental selective forces (co – evolution)
- Sex determination : Sex chromosome

		Male	Female
	Sex chromosome (pair config)	ХҮ	XX
	Sex chromosome (pair config)	WW	ZW
DALL	Haplodiploidy (total no of chr)	Ν	2N

Changing nucleotide composition

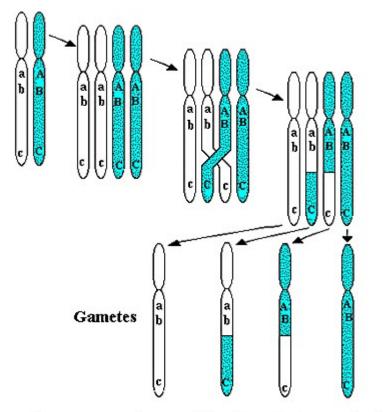

Point mutation

Translocation

Insertion

Duplication

Deletion


Derivative chromosome 4

Chromosome 4

wikipedia.org

Recombination

Crossing-over and recombination during meiosis

Okay, lets get to the math !

Substitution models

- At the simplest level, we study how a single nucleotide changes over time
- We build genome wide models of evolution in a bottom – up manner based on this.
- Alternatively, directly model evolution of higher granularity genomic units (like codons).

Stochastic process

• Formulation : set of indexed random variables

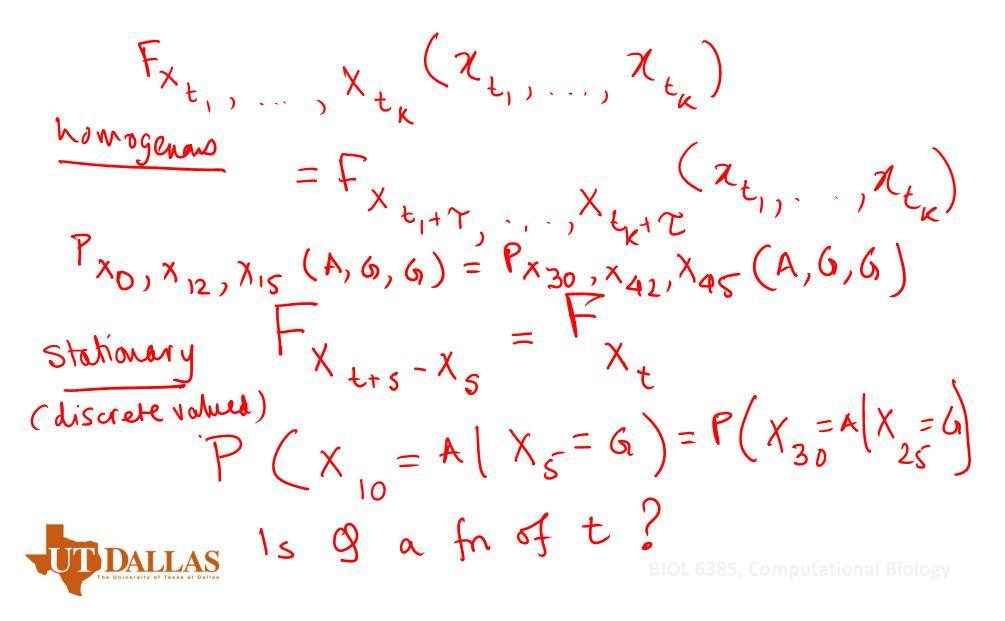
$$\{F_{x_t}(x) \text{ or } F(x,t) \mid t \in T\}$$

• Categories :

Examples of SPs :	Continuous Xt	Discrete Xt	
Continuous t			
Discrete t			mpi

mputational Biology

Stochastic process : what


- Notion of how a RV "evolves"
 - T may not be time, it may be complicated : like t = (x, y)
- Why isnt t just a parameter in the RV ?

$$F_{x}(x) \leftarrow g(x, \theta)$$

$$F_{x_{t}}(x) \leftarrow g(x, t, \theta)$$

Stationarity & homogeneity

But evolutionary parameters change with time !

- Selectional forces change with time for example
- Piecewise homogenous and stationary processes are still possible ! (over short evolutionary time)

Continuous time Markov Process

- Markov Chains and Continuous Time Markov Processes are both Markovian
 - Future is conditionally independent of the past, given the present

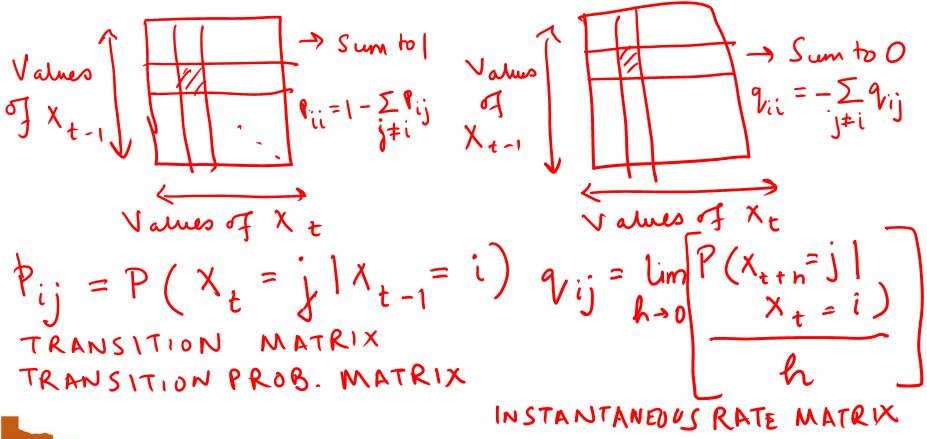
$$P(X_{t_{k+1}} = \pi_{t_{k+1}} | X_{t_{k}} = \pi_{t_{k}}, X_{t_{k-1}} = \pi_{t_{k-1}}, \dots, X_{t_{1}} = \pi_{t_{1}})$$

$$= P(X_{t_{k+1}} = \pi_{t_{k+1}} | X_{t_{k}} = \pi_{t_{k}})$$

$$E for t_{1} < t_{2} < t_{3} < \dots < t_{k-1} < t_{k} < t_{k+1}]$$

- Finite or countably infinite index
- Discrete valued
- Markovian

- Uncountably infinite index
- Discrete valued
- Markovian

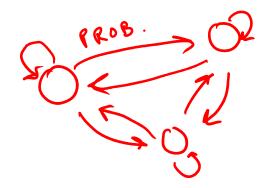


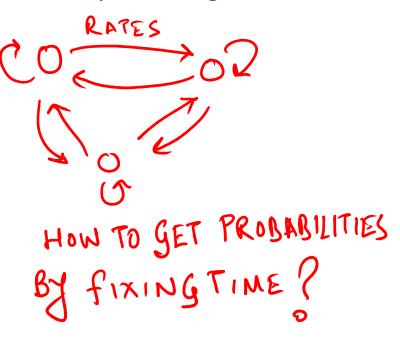
MC

Parameterization

СТМР

• Parameterization





State space diagram

• State space diagram

CTMP

Rates to probabilities

$$G = \int_{t}^{t} G = \begin{bmatrix} g_{ro} g_{o1} \\ g_{10} g_{11} \end{bmatrix} P(t) = \begin{bmatrix} P_{oo}(t) & f_{o1}(t) \\ P_{10}(t) & p_{11}(t) \end{bmatrix}$$

$$G = P_{t} G = \begin{bmatrix} P_{ro}(t) & P_{o1}(t) \\ P_{10}(t) & P_{11}(t) \end{bmatrix} \begin{bmatrix} g_{ro} & g_{o1} \\ g_{10} & g_{11} \end{bmatrix}$$

$$= \begin{bmatrix} P_{oo}(t) g_{oo} + P_{o1}(t) g_{10} & P_{oo}(t) g_{01} + P_{o1}(t) g_{11} \\ P_{10}(t) g_{ro} + P_{11}(t) g_{10} & P_{10}(t) g_{11} + P_{11}(t) g_{11} \end{bmatrix}$$

$$G = \begin{bmatrix} P_{oo}(t) g_{ro} + P_{01}(t) g_{10} & P_{00}(t) g_{10} + P_{01}(t) g_{11} \\ P_{10}(t) g_{ro} + P_{11}(t) g_{10} & P_{10}(t) g_{11} + P_{11}(t) g_{11} \end{bmatrix}$$

$$G = \begin{bmatrix} P_{oo}(t) [P(X_{t+n}=1 | X_t=0)] \\ P_{t} = Rate \text{ of } Change \text{ of } P(0 \rightarrow 1) \\ P_{t} = g = P_{t} \end{bmatrix}$$

Formulation

 $P(t) = P(t) \cdot Q$ Let, $P(t) = e^{g \cdot t}$ $P'(t) = g \cdot e^{g \cdot t}$ $P(t) = c_{k}e^{gt} = gP(t)$ BOUNDARY LOND.

Calculating P(t) $P(t) = e^{g \cdot t}$ $= I + g^t$ How about a closed form soln? Ewby do we care]

 $g = \frac{0}{\mu - \mu}$ $\begin{bmatrix} P'_{00}(t) P'_{01}(t) \\ P'_{00}(t) P'_{01}(t) \end{bmatrix} = \begin{bmatrix} P_{00}(t) P_{01}(t) \\ P_{10}(t) P'_{11}(t) \end{bmatrix}$ Γ-μ μ] μ -...

$$P'_{01}(t) = P_{00}(t) \cdot \mu + (-\mu)P_{01}(t)$$

$$= (1 - P_{01}(t)) \cdot \mu$$

$$+ (-\mu) P_{01}(t)$$

$$P'_{01}(t) + 2\mu P_{01}(t) = \mu \qquad \text{SINVLTANZOUS ESN}.$$

$$f'(x) + b(t)f(x) = q(t)$$
INTEGRATING
$$u(t) = e \qquad \text{S}b(t)dt \qquad \text{S}\mu(t) = e$$

$$F_{ACTOR} \qquad u(t) = e \qquad \text{S}b(t)dt$$

$$E_{ACTOR} \qquad \text{S}h(t) = e \qquad \text{S}h(t)dt$$

$$P_{o1}(t) = \int u(t) q(t) dt + c$$

$$u(t)$$

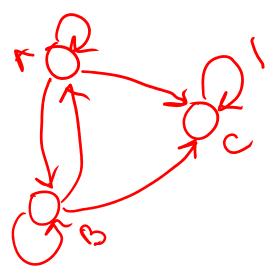
$$= \int e^{2\mu t} \mu dt + c$$

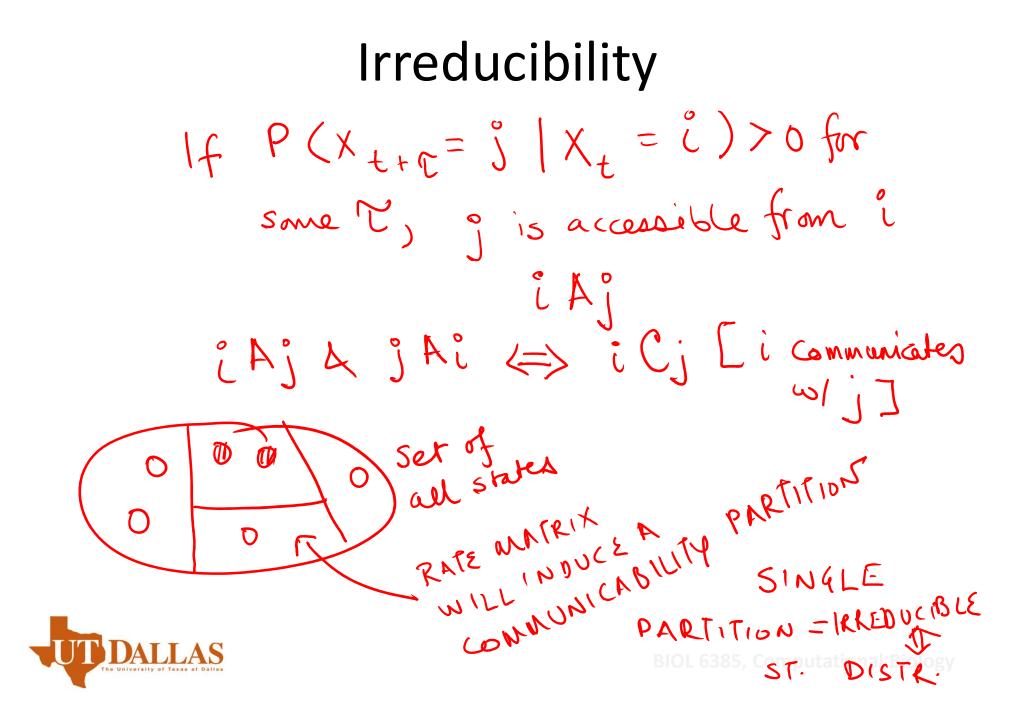
$$e^{2\mu t}$$

$$= \frac{1}{2} \int e^{2\mu t} d(2\mu t) + c$$

$$= (\frac{1}{2} e^{2\mu t} + c) / e^{2\mu t}$$

Boundary condition t = 0, $P_{0}(t) = 6$ $O = \frac{1}{2} + (\cdot)$ $C = -\frac{1}{2}$ How about t= 20 ?


Solve $P_{01}(t) = \frac{1}{2} - \frac{1}{2}e^{-2\mu t}$ solve $P_{01}(t) = \frac{1}{2} - \frac{1}{2}e^{-2\mu t}$ solve $P_{01}(t) = 1 - P_{01}(t)$ voe alization voe alization voe wat fact $=\frac{1}{2}+\frac{1}{2}e^{-2\mu t}$


Burning your bridges

- Can we come back to the states we are in ?
 - ever ? [short term analysis]
 - with the same rate that we go out of it ? [long term analysis]

Detailed balance

- Is the "flow" of probability balanced ?
- Is the process time reversible ?

– Can we use Bayes Rule to flip the XO and Xt ?

 $= 7 \sum_{\chi} q_{\chi i}$ "Circulating back"

Long run probabilities

• Equilibrium probability : we expect to see such nucleotide probabilities in current species

$$\pi P(t) = \pi \qquad \pi_{i} = \lim_{t \to \infty} P(X_{t} = i)$$

$$\pi Q = 0 \qquad \pi_{j} Q_{j}^{\circ} = \sum_{i \neq j} \pi_{i} Q_{ij}^{\circ}$$

$$\sum \pi_{i} = j$$

$$T DALLAS \qquad SYMMETRY I$$

0

he University of Texas at

Sometimes, lesser is better

• Jukes Cantor '69

$$Q = \begin{pmatrix} * & \frac{\mu}{4} & \frac{\mu}{4} & \frac{\mu}{4} \\ \frac{\mu}{4} & * & \frac{\mu}{4} & \frac{\mu}{4} \\ \frac{\mu}{4} & \frac{\mu}{4} & * & \frac{\mu}{4} \\ \frac{\mu}{4} & \frac{\mu}{4} & \frac{\mu}{4} & * \end{pmatrix}$$

$$P = \begin{pmatrix} \frac{1}{4} + \frac{3}{4}e^{-t\mu} & \frac{1}{4} - \frac{1}{4}e^{-t\mu} & \frac{1}{4} - \frac{1}{4}e^{-t\mu} & \frac{1}{4} - \frac{1}{4}e^{-t\mu} \\ \frac{1}{4} - \frac{1}{4}e^{-t\mu} & \frac{1}{4} + \frac{3}{4}e^{-t\mu} & \frac{1}{4} - \frac{1}{4}e^{-t\mu} & \frac{1}{4} - \frac{1}{4}e^{-t\mu} \\ \frac{1}{4} - \frac{1}{4}e^{-t\mu} & \frac{1}{4} - \frac{1}{4}e^{-t\mu} & \frac{1}{4} + \frac{3}{4}e^{-t\mu} & \frac{1}{4} - \frac{1}{4}e^{-t\mu} \\ \frac{1}{4} - \frac{1}{4}e^{-t\mu} & \frac{1}{4} - \frac{1}{4}e^{-t\mu} & \frac{1}{4} - \frac{1}{4}e^{-t\mu} & \frac{1}{4} - \frac{1}{4}e^{-t\mu} \end{pmatrix}$$

Jukes, T.H. and C.R. Cantor. (1969) Evolution of Protein Molecules, pp. 21-132. Academic Press, New York.

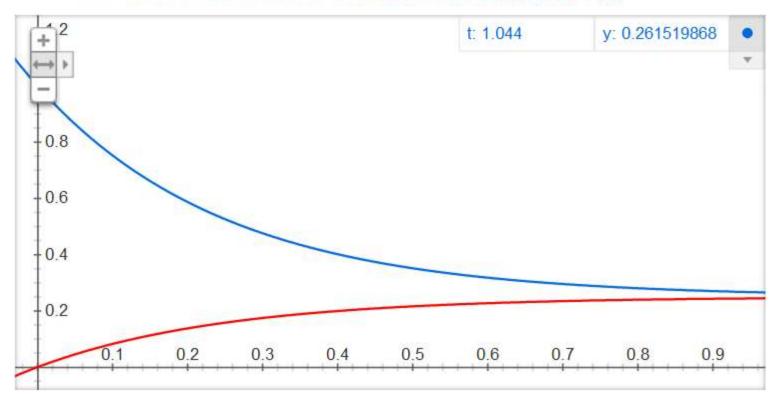
Confounding factor

- mu and t
 - higher time, lower mutation rate
 - lower time, higher mutation rate

$$P_{ij}(\nu) = \begin{cases} \frac{1}{4} + \frac{3}{4}e^{-4\nu/3} & \text{if } i = j\\ \frac{1}{4} - \frac{1}{4}e^{-4\nu/3} & \text{if } i \neq j \end{cases}$$

Using symmetry

Are A, T, G, C s interchangable ?
– then the equilibrium probabilities are 0.25


 How many functions of t and mu are there anyway ? (shrink the matrix for simultaneous eqns)

$$P_{ij}(\nu) = \begin{cases} \frac{1}{4} + \frac{3}{4}e^{-4\nu/3} & \text{if } i = j\\ \frac{1}{4} - \frac{1}{4}e^{-4\nu/3} & \text{if } i \neq j \end{cases}$$

The nature of transition probabilities

Graph for 0.25*(1+3*exp((-4)*1*t)), 0.25*(1-exp((-4)*1*t))

What are the equilibrium frequencies ?
 DALLAS
BIOL 6385, Compu

Transitions vs transversions

- Purine (A, G)
- Pyrimidine (C, T)
- Transition : purine to purine, or pyrimidine to pyrimidine
- 2 / 3 SNP are transitions

Kimura '80

• Purines vs pyrimidines

$$Q = \begin{pmatrix} * & \kappa & 1 & 1 \\ \kappa & * & 1 & 1 \\ 1 & 1 & * & \kappa \\ 1 & 1 & \kappa & * \end{pmatrix} \times \mathcal{M}$$

Kimura, M. (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16, 111-120.

Felsenstein '81

Equilibrium frequencies modelled

$$Q = \begin{pmatrix} * & \pi_C & \pi_A & \pi_G \\ \pi_T & * & \pi_A & \pi_G \\ \pi_T & \pi_C & * & \pi_G \\ \pi_T & \pi_C & \pi_A & * \end{pmatrix}$$

$$P_{ij}(\nu) = \begin{cases} \pi_i + (1 - \pi_i) e^{-\beta\nu} & \text{if } i = j \\ \pi_j \left(1 - e^{-\beta\nu}\right) & \text{if } i \neq j \end{cases}$$

$$\beta = 1/(1 - \pi_A^2 - \pi_C^2 - \pi_G^2 - \pi_T^2)$$

Felsenstein, J. (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. Journal of Molecular Evolution, 17, 368-376.

HKY 85

• K80 + F81 $P_{AC}(\nu, \kappa, \pi) = \pi_{C} \left(1.0 - e^{-\beta\nu}\right)$ $Q = \begin{pmatrix} * & \kappa \pi_{C} & \pi_{A} & \pi_{G} \\ \kappa \pi_{T} & * & \pi_{A} & \pi_{G} \\ \pi_{T} & \pi_{C} & * & \kappa \pi_{G} \\ \pi_{T} & \pi_{C} & \kappa \pi_{A} & * \end{pmatrix}$ $P_{AT}(\nu, \kappa, \pi) = \pi_{T} \left(1.0 - e^{-\beta\nu}\right)$ $P_{AG}(\nu, \kappa, \pi) = \left[\pi_{G} \left(\pi_{A} + \pi_{G} + (\pi_{C} + \pi_{T})e^{-\beta\nu}\right) - \pi_{G}e^{-(1 + (\pi_{A} + \pi_{G})(\kappa - 1.0))\beta\nu}\right] / (\pi_{A} + \pi_{G})$ $P_{AA}(\nu, \kappa, \pi) = \left[\pi_{A} \left(\pi_{A} + \pi_{G} + (\pi_{C} + \pi_{T})e^{-\beta\nu}\right) + \pi_{G}e^{-(1 + (\pi_{A} + \pi_{G})(\kappa - 1.0))\beta\nu}\right] / (\pi_{A} + \pi_{G})$

$$\beta = \frac{1}{2(\pi_A + \pi_G)(\pi_C + \pi_T) + 2\kappa[(\pi_A \pi_G) + (\pi_C \pi_T)]}$$

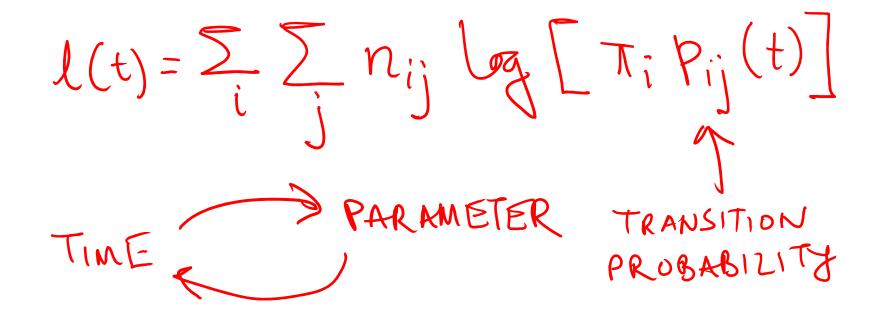
Hasegawa, M., H. Kishino, and T. Yano. (1985) Dating of human-ape splitting by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution, 22, 160-174.

Generalized time reversible (GTR)

$$Q = \begin{pmatrix} -(x_1 + x_2 + x_3) & \frac{\pi_1 x_1}{\pi_2} & \frac{\pi_1 x_2}{\pi_3} & \frac{\pi_1 x_3}{\pi_4} \\ x_1 & -(\frac{\pi_1 x_1}{\pi_2} + x_4 + x_5) & \frac{\pi_2 x_4}{\pi_3} & \frac{\pi_2 x_5}{\pi_4} \\ x_2 & x_4 & -(\frac{\pi_1 x_2}{\pi_3} + \frac{\pi_2 x_4}{\pi_3} + x_6) & \frac{\pi_3 x_6}{\pi_4} \\ x_3 & x_5 & x_6 & -(\frac{\pi_1 x_3}{\pi_4} + \frac{\pi_2 x_5}{\pi_4} + \frac{\pi_3 x_6}{\pi_4}) \end{pmatrix}$$

Time vs real time

- Is the "t" real time ?
- How can we figure out the scale of change in real time ?
 - Coming up, when we study phylogenies


Modelling higher granularity genomic entities

- Proteins
 - Dayhoff and other models
- Codons
 - Synonymous vs non synonymous change

Empirical models

• Empirical models may not have a "rate matrix"

Codon table

• Synonymous & non synonymous mutations

		_			Seconed	Positi	on			
		U		с		А		G		
		code	Amino Acid	code	Amino Acid	code	Amino Acid	code	Amino Acid	
ſ	U	UUU	phe	UCU	ser	UAU	tyr	UGU	cys	U
		UUC		UCC		UAC		UGC		С
		UUA	leu	UCA		UAA	STOP	UGA	STOP	A
		UUG		UCG		UAG	STOP	UGG	trp	G
	с	CUU	leu	CCU	pro	CAU	his	CGU	arg	U
I		CUC		CCC		CAC		CGC		С
		CUA		CCA		CAA	gln	CGA		Α
		CUG		CCG		CAG		CGG		G
ſ	A	AUU	ile	ACU	thr	AAU	asn	AGU	ser	U
I		AUC		ACC		AAC		AGC		С
I		AUA		ACA		AAA	lys	AGA	arg	Α
		AUG	met	ACG		AAG		AGG		G
ſ	G	GUU	val G	GCU	ala	GAU	asp	GGU	gly	U
		GUC		GCC		GAC		GGC		С
		GUA		GCA		GAA	glu	GGA		Α
V		GUG		GCG		GAG		GGG		G

Goldman & Yang, 1994

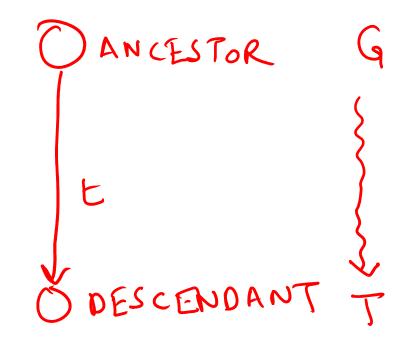
 Bottom up modelling : 9_{ij} = 0 [itjdifferby 2 or 3 codon positiono] = T; [differ by I syn. tranversion] = KT. [differ by 1 syn, transition] = WT. [differ by 1 non.syn. transversion] = WKT. [differ by 1 non.syn. transition]

Selection

• Most generally :

- Biasing model to one form of change over another

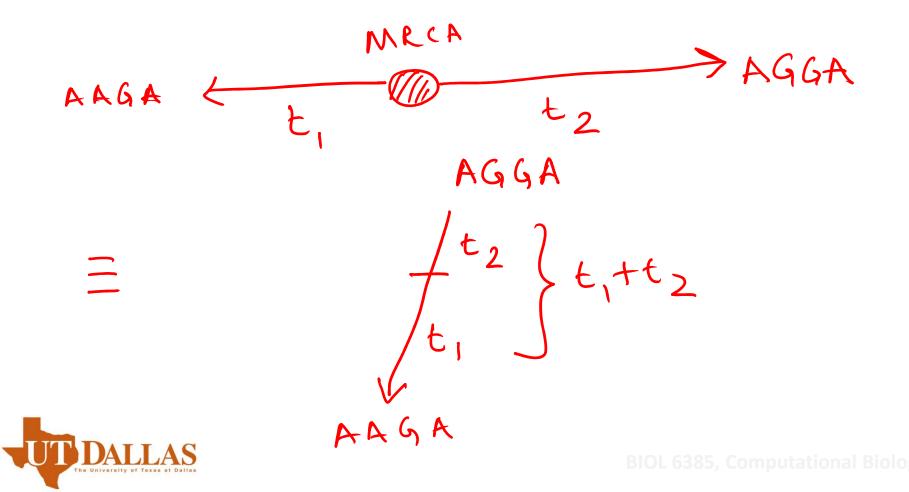
- Happens at every level :
 - Nucleotide (Transition vs transversion)
 - Nucleotide in the context of a Codon (Synonymous vs non synonymous)
 - Codon (some classes of amino acids may be interchangable)



Selection

 We will talk more about selection and how it shapes our genomes after we study evolutionary trees

Modelling a lineage


• What's the catch ?

Modelling two extant species MRCA [MOST RECENT COMMON AN CESTOR] E2 AAGA AGGA

Modelling two extant species

Why can we do this ?

- Is it because they are :
 - Markovian ?
 - Or because they are memoryless ?
 - Or because they are time reversible ?

All together now ...

- Why just model a single lineage and forces acting on it ?
- Why not take into account all the species that branched off from that lineage ?
 - The more the merrier, in statistics
 - Which is where phylogenies come in !

Acknowledgements

- Eric Xing
- Howard Seltman

