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Far side, Larson
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Brief early timeline

1735 : Linnaeus 
Classification of living (and 

non-living) things

1859: Darwin 
Theory of evolution and 

natural selection

1865: Mendel
Laws of  Inheritance , 

rediscovered 1900

Saltationism

Biometric school

Speciation is the 
result of abrupt 
large genetic 
changes

Continuous 
genetic variation 
underlies 
continuous 
phenome

1809: Lamarck 
First theory of transmutation 

of species
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Later chronological developments

• George Nuttal mixed sera and antisera from different 
species to determine “blood relationships”:
– More closely related species exhibit stronger cross-

reactions between sera and antisera

• Morgan and fruit flies
– Chromosomes, laws of heredity and trait propagation, 

recombination and cross over
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Double helix

• In 1953, James Watson and Francis Crick 
proposed the double-helix model of DNA 
structure
– Based on X ray diffraction performed by Rosalind 

Franklin

• Mechanism of genetic transfer revealed

wikipedia.org
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Human evolution

• Humans were thought to be monophylletic, 
and only distantly related to the great apes

• Sarich & Wilson (1967) cross reacted serum 
albumin between primates
– Humans, gorilla and chimpanzee were genetically 

equidistant from the orang-utan
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Sequencing explosion

• Real “explosion” of information on molecular 
evolution since the advent of PCR: (1983)
– Nucleotide could now be sequenced based on PCR 
 cloning  chromatography / die based 
sequencing

• Can sequence DNA from samples thousands 
of years old (ancient DNA analysis : 
Neanderthal and Woolly Mammoth genome)
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No of sequenced genomes

• Wikipedia article size of “List of sequenced 
eukaryotic genomes”
– Not a perfect correlation, but still …

wikipedia.org
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http://evolution.berkel
ey.edu/evosite/
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Natural selection

• Small discrete genetic changes causes 
organisms to be different at the individual 
level

• Natural selection : Some changes are more 
important for survival or lineage propagation 
based on environmental and other factors : 
fitness fn selects some traits over others

http://evolution.berkel
ey.edu/evosite/
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Speciation
• Differences in accumulated genetic changes in 

sub-populations can cause them to become 
reproductively isolated : causing speciation

• Can be influenced by different kinds of 
environmental factors 
– physical isolation of populations due to geological events
– quickly changing environment (eg extinction of another 

species) changing the nature of selectional forces
– faster mutation rate due to positive selection or 

environmental factors like radiation
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DNA
• Genetic material 

arranged in several 
double stranded 
chromosomes in the 
nucleus of each cell

• Combined genetic 
material is called the 
genome
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Component nucleic acids
DNA complement

RNA complement

Transcription / 
rev transcription
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-“Ome”s

• Study of evolution
– how the genome 

changes over 
generations & 
species

– how such changes 
affect successive 
“ome”s

Stability increases across 
environment, condition, 
cell type, organism, etc

Another layer : epigenome : 
inherited traits which cannot be fully 
explained by the genome

Farber & Lusis, Adv in 
Genetics, Vol 60

Pattern breaking
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Broad fields of study

How is the genome 
organized and function 

in one species ?

Genomics
Mathematical tools to 

model genetic 
evolutionary  change, 
clustering  of diversity, 
calibration of change

Phylo - genetics /genomics

What changes take 
place at  a certain locus 

in populations of a 
species?

Classical & pop. genetics

How do we go from 
genetics of individuals 

to complex phenotypes 
?

Quantitative genetics

Comparative 
genomics

Complex traits, 
non-Mendelian 
inheritance

Genome wide studies Evolution of complex traits
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Evolution as an optimization 
process

• Gaming the “fitness function”
• Risks of over playing the system
• Reversibility of evolution ?

www.edge.org
Fitness landscapes, S. Brand
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Phylogenetics

• How single nucleotides and other genomic 
entities change over time
– Substitution matrices

• Cluster a group of genes or organisms based 
on their similarity to each other [ alignment 
answers a related question ]

• Analyze the nature of such changes
• Calibrate the rate of change
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Evolution as a stochastic process

• Forces of optimization (selection) compete 
with completely random forces to shape our 
genomes

http://evolution.berkel
ey.edu/evosite/
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Substitution
• What are the rates at which 

nucleotides / AAs / codons 
change into each other ?

• Can we calculate the 
probability of an A turning 
into a G over a time period of 
t ?

• What kind of assumptions can 
we make about such 
stochastic processes ?

library.caltech.edu
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Systematics

• Cladistics / taxonomy : do 
organisms / genomic entities (like 
duplicated genes) grouped 
together based on genomic 
similarity reflect shared 
evolutionary history ?

• How to build dendrograms based 
on pairwise (or otherwise) 
differences ?

wikipedia.org

Saw et al, Stand Gen Sci 6:1
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Nature of genomic changes

• Are the changes just random (neutral) ? Are 
they based on selectional forces acting on the 
genome ? How to quantify ?

• Neutral Theory (Kimura) : Vast majority of 
changes are neutral
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Calibration of genomic changes

• Controversial assumption in evolutionary 
theory
– Mutations (typically mostly neutral ones) in some 

genomic sequences and proteins take place at 
regular clock-like intervals 

– Can be calibrated against fossil record : using 
stratigraphy, radiocarbon dating, molecular clock

http://evolution.berkel
ey.edu/evosite/
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Asexual reproduction

• Children are clones of parents
• Genetic diversity

– errors during cloning (mutation)
– lateral gene transfer

• conjugation – direct transfer of genetic material 
between individuals

• transformation – uptake of exogenous DNA
• transduction – transfer of genetic material between 

individuals through 3rd party (like virus)
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Sexual reproduction
• Individual has 2 copies of each chromosome : 

one from each parent (homologous chr)
• 2 genders : haploid, diploid and ploidy 

reduction
• Other complicated mechanisms

biologycorner.com
ccsbio



BIOL 6385, Computational Biology

Germ line and soma
• DNA needed for 

homeostasis, metabolism, 
producing offspring

• Composition of DNA can 
change : changes to DNA in 
the germ line are 
transmitted to offspring

• Non-germ line evolution : 
evolution of cancer

wormbook.org
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Alleles

• One of many variants 
of a genetic locus

• Organism, wrt an 
allele :
– hemizygous : only one 

copy of chromosome
– homozygous : both copies 

have same allele
– heterozygous : copies 

have different alleles

Rozaini Othman
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Haplotype vs genotype

• When we know the allelic composition of 
multiple alleles in an individual, can we 
partially reconstruct the chromosomes ?

Zhou and Wang BMC Bioinformatics 2007 8:484
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Added aspects of sexual 
reproduction

• Sexual selection : gender specific selective 
forces on top of existing environmental 
selective forces ( co – evolution )

• Sex determination : Sex chromosome 

Male Female

Sex chromosome 
(pair config)

XY XX

Sex chromosome 
(pair config)

WW ZW

Haplodiploidy
(total no of chr)

N 2N
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Changing nucleotide composition

Point mutation

Translocation

Insertion

Duplication

Deletion

wikipedia.org
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Recombination
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Okay, lets get to the math !
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Substitution models

• At the simplest level, we study how a single 
nucleotide changes over time

• We build genome wide models of evolution in 
a bottom – up manner based on this. 

• Alternatively, directly model evolution of 
higher granularity genomic units (like codons).
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Stochastic process

• Formulation : set of indexed random variables

• Categories :
Examples of 

SPs :
Continuous Xt Discrete

Xt

Continuous t

Discrete t
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Stochastic process : what

• Notion of how a RV “evolves”
– T may not be time, it may be complicated : like t = 

(x, y)

• Why isnt t just a parameter in the RV ?
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Stationarity & homogeneity
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But evolutionary parameters 
change with time !

• Selectional forces change with time for 
example

• Piecewise homogenous and stationary 
processes are still possible ! ( over short 
evolutionary time )
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• Markov Chains and Continuous Time Markov 
Processes are both Markovian
– Future is conditionally independent of the past, 

given the present

Continuous time Markov Process
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MC

• Finite or countably infinite 
index

• Discrete valued

• Markovian

CTMP

• Uncountably infinite index

• Discrete valued

• Markovian
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MC

• Parameterization

CTMP

• Parameterization
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MC

• State space diagram

CTMP

• State space diagram
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Rates to probabilities
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Formulation
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Calculating P(t)



BIOL 6385, Computational Biology



BIOL 6385, Computational Biology



BIOL 6385, Computational Biology



BIOL 6385, Computational Biology



BIOL 6385, Computational Biology



BIOL 6385, Computational Biology

Burning your bridges

• Can we come back to the states we are in ?
– ever ? [ short term analysis ]
– with the same rate that we go out of it ? [ long 

term analysis ]
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Irreducibility
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Detailed balance

• Is the “flow” of probability balanced ?
• Is the process time reversible ?

– Can we use Bayes Rule to flip the X0 and Xt ?
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Long run probabilities

• Equilibrium probability : we expect to see such 
nucleotide probabilities in current species
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Sometimes, lesser is better

• Jukes Cantor ‘69

Jukes, T.H. and C.R. Cantor. (1969) 
Evolution of Protein Molecules, pp. 21-132. 
Academic Press, New York.
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Confounding factor

• mu and t
– higher time, lower mutation rate
– lower time, higher mutation rate
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Using symmetry

• Are A, T, G, C s interchangable ?
– then the equilibrium probabilities are 0.25

• How many functions of t and mu are there 
anyway ? ( shrink the matrix for simultaneous 
eqns )
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The nature of transition 
probabilities

• What are the equilibrium frequencies ?
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Transitions vs transversions

• Purine ( A, G )

• Pyrimidine ( C, T )

• Transition : purine to purine, or pyrimidine to 
pyrimidine

• 2 / 3 SNP are transitions
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Kimura ‘80

• Purines vs pyrimidines

Kimura, M. (1980) A simple method for 
estimating evolutionary rates of base 
substitutions through comparative studies 
of nucleotide sequences. Journal of 
Molecular Evolution, 16, 111-120.
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Felsenstein ‘81

• Equilibrium frequencies modelled

Felsenstein, J. (1981) Evolutionary trees 
from DNA sequences: a maximum 
likelihood approach. Journal of Molecular 
Evolution, 17, 368-376.
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HKY 85

• K80 + F81

Hasegawa, M., H. Kishino, and T. Yano. 
(1985) Dating of human-ape splitting by a 
molecular clock of mitochondrial DNA. 
Journal of Molecular Evolution, 22, 160-
174.
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Generalized time reversible (GTR)
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Time vs real time

• Is the “t” real time ? 

• How can we figure out the scale of change in 
real time ?
– Coming up, when we study phylogenies
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Modelling higher granularity 
genomic entities

• Proteins
– Dayhoff and other models

• Codons
– Synonymous vs non synonymous change
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Empirical models

• Empirical models may not have a “rate matrix”
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Codon table

• Synonymous & non synonymous mutations
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Goldman & Yang, 1994

• Bottom up modelling :
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Selection

• Most generally :
– Biasing model to one form of change over another

• Happens at every level :
– Nucleotide ( Transition vs transversion )
– Nucleotide in the context of a Codon ( 

Synonymous vs non synonymous )
– Codon ( some classes of amino acids may be 

interchangable )
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Selection

• We will talk more about selection and how it 
shapes our genomes after we study 
evolutionary trees
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Modelling a lineage

• What’s the catch ?
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Modelling two extant species



BIOL 6385, Computational Biology

Modelling two extant species
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Why can we do this ?

• Is it because they are :
– Markovian ?

– Or because they are memoryless ?

– Or because they are time reversible ?
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All together now …

• Why just model a single lineage and forces 
acting on it ?

• Why not take into account all the species that 
branched off from that lineage ? 
– The more the merrier, in statistics
– Which is where phylogenies come in !
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