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Some nomenclature on trees

* Binary (bifurcating) or multiway
(multifurcating)
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* A multiway split can be envisioned as a series

of binary splits AN /7§ h>0
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Recursively defining trees : subtrees

O
Trees can be \<\
defined in terms of , \
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Induced subtree
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 For a subset of nodes, the induced subtree is the
minimal set of edges and nodes to connect them
@ together, taken from the original tree
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Parameterizing a tree

* Topology : connectivity of the tree
— path between any two nodes is unique !
— topology unchanged by “squishing” a drawing of
the tree
* Length of edges : the geometry of the tree

— notion of “distance” between neighboring nodes

* Labels of nodes (?) : which nodes were not
born equal : identifying the ones we are

interested in
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Rooted trees

* “Rooting” : a notion of direction of flow

— in case of phylogenies, flow of time
* Root : a privileged node
* Direction flows outward from the root

* Rooted tree = Directed edges away from root
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Directed edges

* Directed edges away from root

= Rooting O
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Is this graph a rooted tree?

* Do atopological sorting on it, is there a
unique root ?

 Can we order all the nodes in the direction of
the edges, and be left with a single topmost

node ? O D
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Rooted tree nomenclature

root node

internal nodes +/ C\%

Parent / ancestor O O O
Child / descendant

\ leaf nodes

Siblings
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Ordered vs unordered branches

* |sthe order in which we represent the siblings
important ? 2n ways to draw for n interior nodes

(rooted)7 =
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 Which is different ?
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Proper vs improper trees

* Proper : each node has 0 or 2 children
(rooted), each node has 1 or 3 neighbors

(unrooted)
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Phylogeny / phylogenetic tree

* Taxon/taxa/operational taxonomic unit (OTU)

— unit of classification : species, subspecies, individual, etc

* Phylogeny = evolutionary
tree

— Hypothesis concerning e

evolutionary history of taxa




Molecular Phylogeny

* Molecular phylogeny = based on
models ( or distances based on
models) of molecular evolution
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Phylogenetic Trees
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* Edges = branches /<>\ LEN 6TH

* Interior nodes :
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* Branch length = edge
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Phylogenies have unordered

%’\ branches
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Phylogenetic trees are proper trees
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Improper phylogenies transformed to proper
ones

— Each node = Common ancestor of subset of species

— Unrooting \{% LIPS Q yrvz
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Most recent common ancestor

MRCA
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Rooting an unrooted tree

* Root at any branch

* Sometimes, we may not know (or may not

care) where the root is G\(”)""/E c\u;ya
A
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Counting edges

 For an unrooted tree on n leaves, we have

— n-2 internal nodes

 ( proof by induction, tree on 3 leaves has 1 internal
node, every additional leaf incorporated into a tree
adds one leaf and one internal node )

— 2n-3 edges [ no of nodes minus one |

* ( think of shrinking the tree one node and edge at a
time) & 8
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Counting labelled leaf, unlabelled
ancestor phylogenetic trees

* Topologically equivalent = a tree changed to another by
flipping neighbors, w/o breaking branches

* Foratreeof n-1leaves, 2n—5 branches : add nth leaf
to a branch : T(n) = T(n-1) X (2n = 5)
~T(3)=1
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No of unrooted trees : T(k)

(2k —5)!

T =250 o




Grows fast

* Felsenstein, Counting trees

TABLE 1. THE NUMBERS OF BOOTED TREES WITH i LABELLED TIPS AND WITH UNLABELLED INTERIOR
NODES. THE LEFT COLUMN COUNTS ALL TREES, THE RIGHT COLUMN ONLY BIFURCATING TREES.

n All trees Bifurcating trees
| 1 1
2 1 1
3 4 3
4 26 15
5 236 105
6 2,752 945
7 39,208 10,395
8 660,032 135,135
9 12,818,912 2,027,025
10 282,137,824 34,459,425
11 6,939,897 856 654,729,075
12 188,666,182,784 13,749,310,575
13 5,617,349,020,544 316,234,143,225
14 181,790,703,209,728 7.905,853,580,625
15 6,353,726,042,486,112 213,458,046,676,875
16 238,513,970,965,250,048 6,190,283,353,629,375
17 9,571,020,586,418,569,216 191,898,783,962,510,625
18 408,837 ,905,660,430,516,224 6,332,659,870,762,850,625
19 18,522,305,410,364,568,764,416 221,643,095,476,699,771,875
20 887,094,71'1,304,094, 583,095,296 8,200,794,532,637,891,559,375
21 44,782,218,857,751,551,087,214,592 319,830,986,772,877,770,8 15,625
22 2,376,61.3,641,928,796,906,249,519,1 04 13,113,070,457 687,988 ,603,440,625

e No of trees on 500 taxa~ 1 X 1071074
* No of atoms in observable universe ~ 10780




Minimum evolutionary hypothesis

* |n terms of topology : the star topology (not a
binary tree)

— onIy assumes a most recent common ancestor
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Resolution

* Resolution = process of figuring out topology = generating
more complicated evolutionary hypotheses

* Partial resolution = intermediate stage

=
N\
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Outgroups

* When studying a group, we may want a
control which is outside that group

Outgroup

orilla

* One way to root a tree

J@DALLAS

Outgroup

human

human
} chimpanzee
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chimpanzee



2 schools of phylogeny reconstruction

 Distance based methods

Linkage tree for 9 population clusters showing genetic distances (F,,)
(Cavalli-Sforza et al., 1994:80)

0.205

African

Mew Guinean & Australian
Pacific Islander
Southeast Asian
Amerindiamn

Arctic Nertheast Aslan

MNortheast Asian

0.015
0.068
0015
Non-European Caucasoid
ﬁ Genetic distance
0.20 0.15 0.10 0.05 0.00
Fgy distance matrix for the 9 clusters shown above .
(x10,000 with standard errors obtained by bootstrap analysis) metrIC
AFR NEC NMEA ANE AME SEA PAI NGA
African 00
|. I 0.0 ¢ 301 1]
1 £ 418 1547 ‘] 1]
Hortheast . P, R R
Askan 1979.1 £ 452 G404 2124 9382 2 1T 0.0
Aretic North- S0R 54 AT TOR 7 ¢ 180 TE8.T 2 210 155 7 ¢ 08
enst Aslan 200852 387 TOB2x 160 T48.T2 210 4597158
Amerindian M1 42434 05 T 1038.2 £ 2TE 46 i 89 10
Southaast 29063 £ 570 9396 & 267 12404 2339 E35:200 10304 & 106 13417 418 0.0
Aslan
DALLAS e o ——
25054648 953 T 2 2X 134T+384 T2I8:2 2 M1 2:3IN 1740.T & 544 437 = BT
Islander
it R Neow Quinsan MT202538 117912180 14572231 TiM4:M8 101252257 145702283 123792277 BOAT = 264 o

and Australian



2 schools of phylogeny reconstruction

e Character based methods

'~~~ ABCDE NS

ABCDE
AXCDE — AXCDE
AXYDE model
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Figure: A Phylogenetic Tree




What kind of data can we use ?

* Both genetic and phenotype based models of
evolution can be either character based or
distance based.
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Distance based methods

* How to infer evolutionary relationships on the
basis of some similarity measure ?

* Notion of a similarity

measure




Genetic distance

* Similar to alignment score

— how far away are two orthologous sequences in
sequence space ?

— alignment usually required (compare apple to
apple)
— one option : pairwise entropy measure

— similar to Doss = fraction of sites with
substitutions in pairwise alignment

J@DALLAS



Model based genetic distances

* Typically such simple measures cant capture
complicated evolutionary models ( which
model selection)

* However, in JC 69, all mutations are equally
likely : can we use Doss as distance measure ?

Purines A e

Pyrimidines C T

A o
FIGURE 3.1 One-parameter model of nucleotide substitution. The rate of substitu-
D A I I AS tion in each direction is a.




Correction for multiple substitutions

* A > T -2 C(multiple mutations when we see
one substitution)

* A>T -2 A (multiple mutations when we see

. . Copkbct {ok:
no substitution) (2 o¢ otz mulogioq ak
" Expected MC’Q’\ S\%Q)
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Metric

e Mathematical notion of “distance”

* Intuitive properties L F
ot o6
dlz,y) > 0  forz#y P)k/
dlz,y) = 0 forz=y oc >
dz,y) = dly,z) Vo P2> P\
d(z,y) < d(z,2)+d(y,z) Va,y,2 (triangle inequality) ﬁ‘{ A\ C

e Space in which x, y, z lives + metric definition
— Metric space

@,DALLAS



Additive metrics & ultrametrics

2

4 s /e 2
e Additive / tree metric 1 c\lo,/bo

2
— remember, route between 2 points on a tree is unique

o Ultrametric : diz,y) < maz (d(z,z2), dy,2))

ALL
LR ADO \T\NE m\,mc METRICS
\P\I ULTK? onrS
%U‘ E ML TRIC N
NooES

@DALL\Q( re should we d € set of metrics corr. to rooted trees ?



Tree metrics : 4 point condition

Ps C
* Consider every quartet of leaves >/<
0 D

in the tree

* 3 ways to split into two subsets of 2 nodes :
— AB & CD, AC & BD, AD & BC

 d(AB) + d(CD) < = max ( d(AC) + d(BD), d(AD) + d(BC) )
 d(AC) + d(BD) < =max ( d(AB) + d(CD), d(AD) + d(BC) )
@d]SAD)f d(BC) < = max ( d(AC) + d(BD), d(AB) + d(CD) )



4PC iff additivity

Ut = & (re)
Ur WD+ = X (~Ao) have
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Ultrametric = 3 point condition

d(z,y) < mar (d(z,2), d(y,z))

* Consider every triplet of w 2

leaves A, B, C X % .
K %

e d(AB) < = max (d(AC), d(BC)) ** ‘%

» d(BC) < = max ( d(AB), d(AC)) < (" O+ =

d(AC) < = max ( d(AB), d(BC) ) =" L+ 2)

o
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3 PC satisfied (hence 4 PC satisfied)

o & B

JAN
- O
,\ \\ B > /_’G
. O | ¢
\ﬁ FL—\' (EAL\A }gj)

J




A few changes to 3 PC matrix may
still be 3 PC matrix |
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Some changes to 3 PC matrix may
only satisfy 4 PC, not 3 PC
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Some changes to 4 PC matrix can
preserve 4 PC condition

QDC/JB\
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Some changes to 4 PC : only
triangle inequality satisfied

OO /49
440/,6
P} o BRE

AC »\—%D> moJ(< AS & €D )ND - e>¢7

) C@w\\n\fe/ Wbcms\s&eﬂr

bipds
VIPDALLAS heonde Wy F 2y &




So, what changed ?
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Arbitrary changes to the distance

~ matrix
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Comparison

Distance metrics

Stricter condition, set of matrices satisying this shrinks

—
Triangle inequality 4 point condition 3 point condition
/ distance metric / additive metric / ultrametric
Topology recovered, Fits unique unrooted Fits unique rooted,
branch lengths may (or one of its many clocked tree with
be inconsistent equivalent rooted) branch lengths

tree with unique

branch lengths Tree drawn, one point

Points may still be on tree (root) is
plotted in metric Tree may be drawn equidistant from all
space leaves

Mgl time greedy algorithm to reconstruct tree for all

ersity of Texas at




Clustering

e Partitioning some data points ( species or
individuals in our case ) based on some metric
or distance measure




Clustering is hard

e k-means is NP hard




Hierarchical clustering

 We may want to find such clusters at different

levels : all the way from the whole data set to
individual data points

 Notion of distance between clusters, between
data points, and inbetween both categories




Clustering €< —> Tree topology




Tree notation : the Newick format

/n\ ARTHUR. CAYLTY
VS '‘8sq

o.j"o \ ) . 0-2_) L, kC‘D;%) CD" o€ 0 ()) "o )
seooteo - (778, C, (0,E))

DALLAS

comma corresponds to an internal node, hence unrooted tree has one ternary node




Top down & bottom up

* Bottom up : Start with each element in its own
cluster. Join clusters unti is |eft.

U/
@ﬂ
o\

 Top down : Start with a single cluster of a

. e
elements. Split one cluster at each step until
n sters can be split further

A an 5
B > ()




Simple bottom-up hierarchical
clustering

e Start with every taxa in its own cluster
* Join the two nearest clusters at each step

* Recompute distance matrix

* Repeat until only one cluster is left

Distance between 2 clusters, cluster and an element
based on distance betw. elements :

— Max — link
<
— Min = link 4 ?

JALAAS |ink




Distance between clusters

* For single elements, consider them to be in
their own cluster, then compute :

— max link ’W\“* &-CZ"HLQQ
P,
— min link VV\V\ A (i, \QS

— avg link Z—& (l“\d )

lx\\\(\ LJ)
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Input / output of hierarchical
clustering

* |nput : a metric, the
data points /
heatmap

* QOutput : tree
relation of the
clusters, if possible
branch lengths of
tree (if further
possible a root)

DALLAS
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— ubifs
jfts2 i
ugetlbfs

[ configfs

minix

sysv

ufs

affs

hpfs

isE:fs

squashfs
bf
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ugetlbfs
configfs
minix
sysv

omfs -
adfs
gnx4 -

bfs

freevufs -



Lets build some trees ...




UPGMA

* Unweighted pair-group method with
arithmetic mean

* |n our language : bottom up hierarchical
clustering with average-link distance between
clusters

* Gives a clocked (hence rooted) tree ! (how ?)

@DALLAS



UPGMA

— See a beautiful handtrace here :

http://www.southampton.ac.uk/~relu06/teaching/
upgma/

— However, UPGMA is clocked : lineage specific
evolutionary rates ( if 3 PCis violated ) cant be

e



Neighbor joining

Make each taxa a tree of one species

* At each step identify 2 trees which are the most
similar to each other AND further apart from the rest

e Make a new ancestral node and connect these 2
trees to it with different branch lengths

— Accounts for lineage specific evolutionary rates : makes an
unclocked tree : so rooting is arbitrary if performed

* Update distance matrix

@Q}Mﬂt&s’\tﬂ two trees are left, then connect them



Neighbor joining




Neighbor joining

e Notion of how different from the rest of the leaves

one element s : Z_d- / (o - 2)




Neighbor joining

* Joining the two trees :

, .
L
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Neighbor joining
* |f ith andjth trees were joined, then the
distance from the new ancestor to any other

remaining tree k is updated, and the original 2
trees are removed from the distance matrix :

OTQ’
/«»\ &A,K: L&LK#AJ‘K—AQ/Q‘
TL‘ fT’

J

* Originally, when each tree has single element,
pha distances matrix are just distances betw taxa

The University of Texas at Dallas




Neighbor joining

e Another beautiful handtrace :

— http://www.cbs.dtu.dk/dtucourse/cookbooks/gor
m/27615/molevol.powerpoints/MolEvolClass05.p

pt
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Bottom up hierarchical clustering

e Decisions :

— how to identify neighbors and merge them
together into a single tree / cluster

— how to assign branch lengths

— how to update the distance matrix once merging
two clusters is performed

@DALLAS



In practice ...

e Most distance matrices don’t follow 3PC or
4PC

— Converting an arbitrary distance matrix to 3PC or
4PC is difficult and may change the nature of
relationships unfaithfully

— Forcing a hierarchical clustering on a non —
conforming matrix leads to wrong branch lengths
and / or topology

* Squared error = sum of squares of difference between
distance matrix and distance on tree for each taxon pair

@ DALLAS



Then, what ?

* Pick any tree ( 11 ) — you may start with NJ tree

* Calculate squared error between the original
distance matrix and distances on the tree

* Change the tree slightly : if the squared error
decreases, keep the changes
— Keep doing this step till no more improvement

How to change a tree “slightly” ? (coming up next class)

J@DALLAS



Notion of a “better” tree

* Distance methods do not provide a rational
notion of whether one tree is better than the
other

— Most distance methods produce one tree
— Comparing trees across methods is difficult

e Minimum evolution : minimal sum of branch
lengths is better

— Premise may not be true for distant species

@ DALLAS



Figuring out the ancestral state

* How to figure out the
ancestral state ? !

— going from phenotype
to distance is

relatively easy (define ? ?

a metric) o o
— going from distance to

phenotype is dlfflcult (




To the rescue ...

e Character based methods

'~~~ ABCDE NS

ABCDE |
AXCDE sy |
AXYDE model |

|
s
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Figure: A Phylogenetic Tree
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