Model based phylogenetics

Pradipta Ray, BIOL 6385 / BMEN 6389,

The University of Texas at Dallas

(some material based on content by PR in Eric Xing's 10-810 Carnegie Mellon class)

All models are wrong, but some are useful.

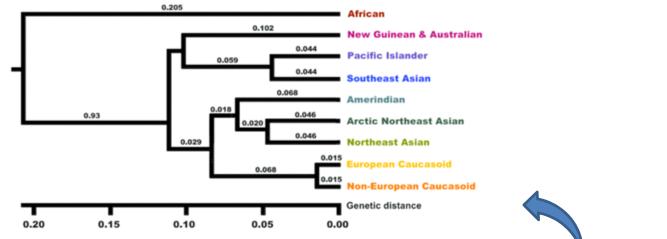
- George Box, 1979

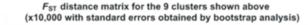
Wikipedia

2 schools of phylogeny reconstruction

• Distance based methods

Linkage tree for 9 population clusters showing genetic distances (*F*_{ST}) (Cavalli-Sforza *et al.*, 1994:80)





	AFR	NEC	EUC	NEA	ANE	AME	SEA	PAI	NGA
African	0.0								
Non-European Caucasian	1340.0 ± 301	0.0							
European Caucasian	1655.6 ± 416	154.7 ± 29	0.0						
Northeast Asian	1979.1 ± 452	640.4 ± 134	938.2 ± 217	0.0					
Arctic North- bast Asian	2008.5 ± 387	708.2 ± 160	746.7 ± 210	459.7 ± 98	0.0				
Amerindian	2261.4 ± 434	955.5 ± 204	1038.2 ± 276	746.5 ± 183	577.4 ± 89	0.0			
Southeast Asian	2206.3 ± 529	939.6 ± 262	1240.4 ± 339	630.5 ± 299	1039.4 ± 326	1341.7 ± 418	0.0		
Pacific slander	2505.4 ± 648	953.7 ± 230	1344.7 ± 354	723.8 ± 262	1181.2 ± 331	1740.7 ± 544	436.7 ± 87	0.0	
New Guinean and Australian	2472.0 ± 536	1179.1 ± 189	1345.7 ± 231	734.4 ± 118	1012.5 ± 257	1457.9 ± 283	1237.9 ± 277	808.7 ± 264	0.0

wikipedia.org

Distance based methods

- Most distance metrics don't fit a tree : giving rise to inconsistent trees (data and trees don't agree)
- Difficult to rationally choose one tree over another (is one tree better than another ? is one hypothesis better than another ?)
- Difficult to predict ancestral states (what are the patterns of evolutionary change ?)

2 schools of phylogeny reconstruction

Character based methods

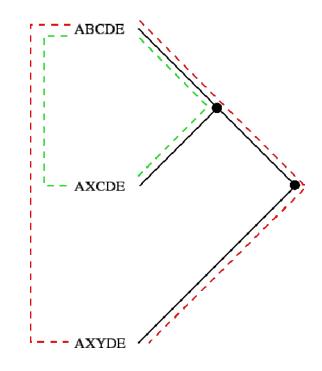


Figure: A Phylogenetic Tree

molgen.mpg.de

Character based methods

- Explicitly model how the characters change
 - easier to predict ancestral states
 - model can be used to score candidate trees
 - no trees are wrong, they can be better or worse than others in light of the data and model (score)
 - a hierarchical clustering will still be generated : the inter cluster "distance"s are implicit
- Remember our stochastic processes for evolution ?

- Model P ($X_t = i | X_0 = j$)

Can we model non genomic data ?

- Simply use a discrete character set to model phenotype(s) (eg. meristic features : no of vertebra in spinal column : 1, 2, 3, 4, ...)
- Define stochastic process with same number of states (eg. Xt can take value of no of vertebra)

Continuous data

- Continuous time, continuous value Markov process
 - Wiener process / brownian motion
- Usually not done in practice, a better idea is to "discretize" the continuous quantity into a number of bins
 - Model evolution over bin index

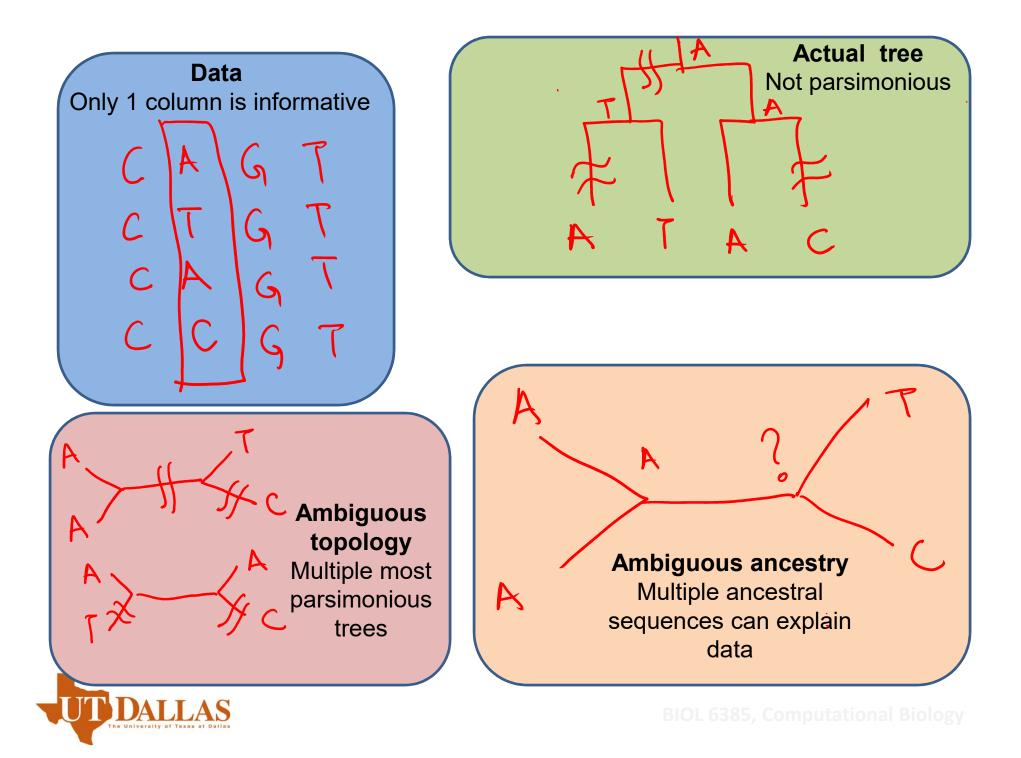
Model based evolution

- Given the data
 - -Generate each possible tree
 - -Score each tree with the model
 - Pick the tree whose "score" is the "best"
 - Score for probabilistic models = Likelihood = P (data | model)
 - Best score for probabilistic models = Highest likelihood

Parsimony

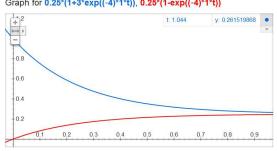
- Fewest substitutions to explain alignment data
 - Is min substitutions equivalent to Occam's razor / minimal assumptions - unclear
- Build a tree where branch length = no of substitutions (how can it be > 1 ?)
- Minimize sum of branch lengths
 - No selection (could be modelled)
 - Not all data may be parsimonious
 - May be many equally parsimonious trees
 - Ambiguous ancestral sequences for same tree

UDDALLASome (many!) character alignments not used



Some facts about parsimony

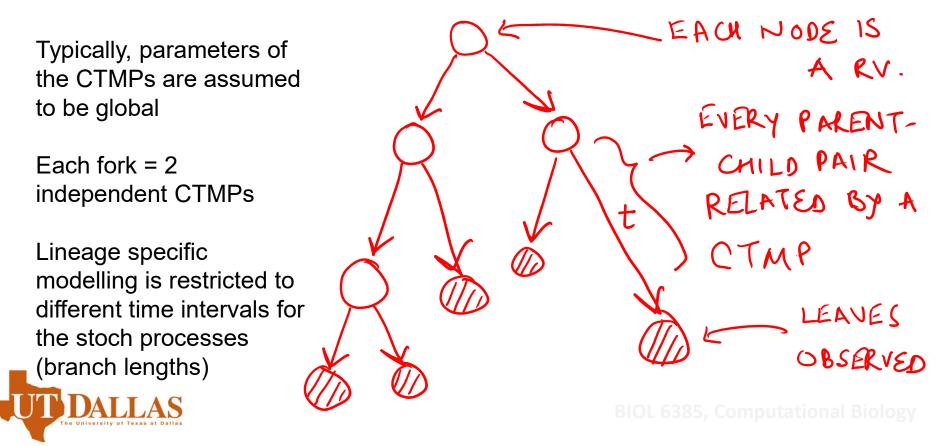
- Not a non parametric method (doesn't have a clear data dependent parametric structure)
- May be inconsistent (may converge to wrong tree even with unlimited training data)
- Likelihood models (eg. ones where no observed change is preferred to change always) may be sufficient (but not necessary) to approximate parsimony
 sometimes (the likelihood model does more)
- Assumptions (difficult to make explicit)
 - minimum evolution
 - independence across sites (weighted variant)
 - agnostic to nature of change (weighted variant)



J C probabilities as a fn of time

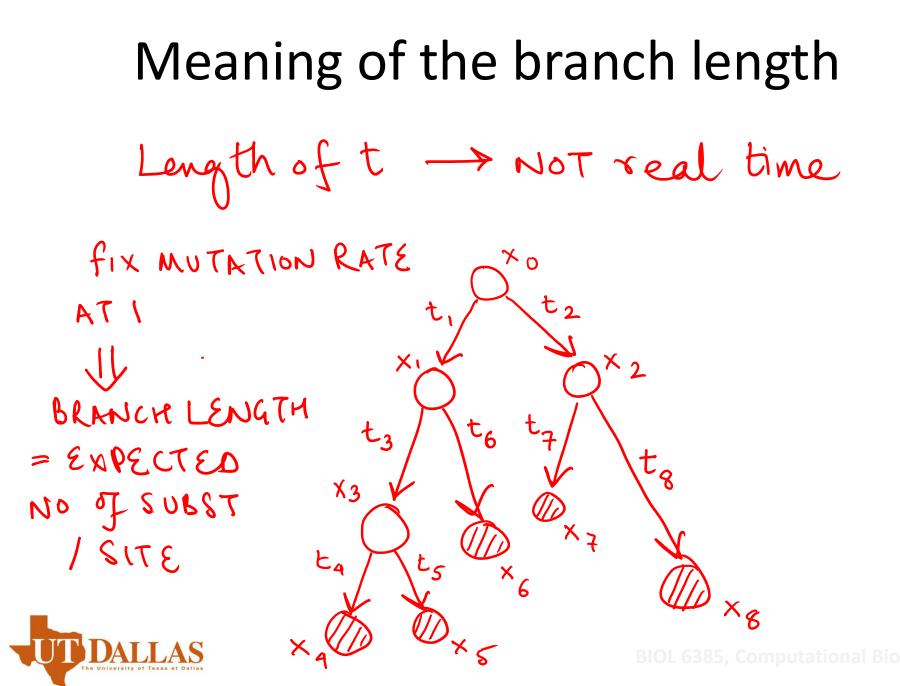
Maximum likelihood framework

• What are our random variables ? Which are observed ? How are they related ?



The model

- Topology : which rv gives rise to which rv
- Branch lengths : time intervals for which the stochastic processes run
- CTMP parameters : the evolutionary matrix could be specific for each branch, could be universal for the tree, or somewhere in between



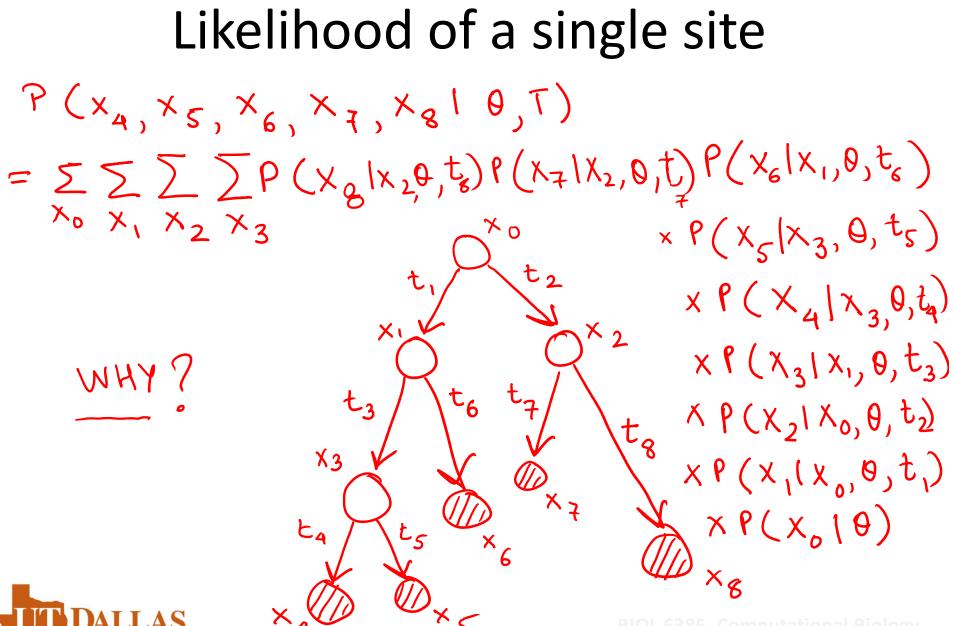
Likelihood of a single site

$$P(x_{4}, x_{5}, x_{6}, x_{7}, x_{8} \mid \theta, T)$$

$$= \sum \sum \sum P(x_{0}, x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8} \mid \theta, T)$$

$$\xrightarrow{x_{0}} x_{1} \times 2 \times 3 \xrightarrow{1} x_{0}$$

$$\xrightarrow{x_{0}} x_{1} \times 2 \xrightarrow{x_{0}} x_{1} \times$$



Likelihood of a single site $P(x_{4}, x_{5}, x_{6}, x_{7}, x_{8} | \theta, T)$ $= \sum_{x_0} \sum_{x_1} \sum_{x_2} P(x_g | x_2 \theta, t_s) P(x_7 | x_2, 0, t_s) P(x_6 | x_1, 0, t_s)$ $\times P(X_5|X_3, 0, t_5)$ $x P(X_4 | X_3, 0, t_4)$ $P(X_i | X_i, \theta, t_j)$ $\times P(\chi_3|\chi_1,0,t_3)$ $\equiv P(Y_{+}=\alpha | Y_{0}=\beta, \theta)_{t_{3}}$ $X P(X_2 | X_0, \theta, t_2)$ X3 XP(X,(X,,0,t,) CALCULATE EACH $x P(x, 1\theta)$ TERM USING E4 A CTMP

Quick reminder

eg. Jukes Cantor, 1969

$$Q = \begin{pmatrix} \ast & \frac{\mu}{4} & \frac{\mu}{4} & \frac{\mu}{4} \\ \frac{\mu}{4} & \ast & \frac{\mu}{4} & \frac{\mu}{4} \\ \frac{\mu}{4} & \frac{\mu}{4} & \ast & \frac{\mu}{4} \\ \frac{\mu}{4} & \frac{\mu}{4} & \frac{\mu}{4} & \ast \end{pmatrix}$$

$$P = \begin{pmatrix} \frac{1}{4} + \frac{3}{4}e^{-t\mu} & \frac{1}{4} - \frac{1}{4}e^{-t\mu} & \frac{1}{4} - \frac{1}{4}e^{-t\mu} & \frac{1}{4} - \frac{1}{4}e^{-t\mu} \\ \frac{1}{4} - \frac{1}{4}e^{-t\mu} & \frac{1}{4} + \frac{3}{4}e^{-t\mu} & \frac{1}{4} - \frac{1}{4}e^{-t\mu} & \frac{1}{4} - \frac{1}{4}e^{-t\mu} \\ \frac{1}{4} - \frac{1}{4}e^{-t\mu} & \frac{1}{4} - \frac{1}{4}e^{-t\mu} & \frac{1}{4} + \frac{3}{4}e^{-t\mu} & \frac{1}{4} - \frac{1}{4}e^{-t\mu} \\ \frac{1}{4} - \frac{1}{4}e^{-t\mu} & \frac{1}{4} - \frac{1}{4}e^{-t\mu} & \frac{1}{4} - \frac{1}{4}e^{-t\mu} & \frac{1}{4} - \frac{1}{4}e^{-t\mu} \end{pmatrix}$$

Likelihood of a single site

$$P(x_{4}, x_{5}, x_{6}, x_{7}, x_{8} \mid \theta, T)$$

$$= \sum \sum \sum P(x_{8} \mid x_{2}\theta, t_{8}) P(x_{7} \mid x_{2}, \theta, t_{9}) P(x_{6} \mid x_{1}, \theta, t_{6})$$

$$x_{0} \mid x_{1} \mid x_{2} \mid x_{3} \mid x_{1} \mid x_{2}, \theta, t_{9}) P(x_{6} \mid x_{1}, \theta, t_{6})$$

$$P(x_{0} = x) = T_{x} \quad x_{1} \quad x_{2} \quad x_{1} \quad x_{2} \quad x_{1} \mid x_{2} \mid x_{2} \mid x_{1}, \theta, t_{3})$$

$$P(x_{0} = x) = T_{x} \quad x_{1} \quad x_{2} \quad x_{1} \mid x_{2} \quad x_{1} \mid x_{2} \mid x_{2} \mid x_{1}, \theta, t_{3})$$

$$P(x_{0} = x) = T_{x} \quad x_{1} \quad x_{2} \quad x_{1} \mid x_{2} \mid x_{2} \mid x_{1}, \theta, t_{3})$$

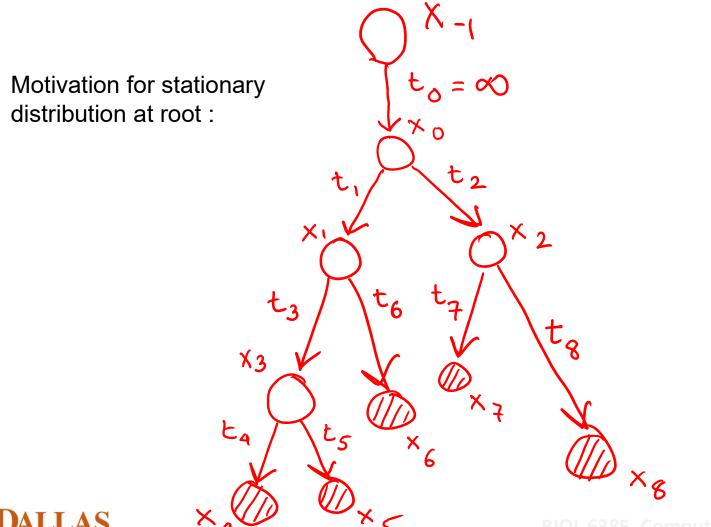
$$P(x_{0} = x) = T_{x} \quad x_{1} \quad x_{2} \quad x_{1} \mid x_{2} \mid x_{2} \mid x_{1} \mid x_{1}, \theta, t_{3})$$

$$P(x_{1} \mid x_{1}, \theta, t_{3}) \quad x_{1} \mid x_{2} \mid x_{3} \mid x_{1} \mid x_{2} \mid x_{3} \mid x_{1}, \theta, t_{3})$$

$$P(x_{1} \mid x_{1}, \theta, t_{3}) \quad x_{1} \mid x_{2} \mid x_{3} \mid x_{1} \mid x_{2} \mid x_{3} \mid x_{1} \mid x_{2} \mid x_{3} \mid x_{1} \mid x_{3} \mid x_{1} \mid x_{2} \mid x_{3} \mid x_{1} \mid x_{2} \mid x_{3} \mid x_{1} \mid x_{2} \mid x_{3} \mid x_{1} \mid x_{2} \mid x_{3} \mid x_{1} \mid x_{2} \mid x_{3} \mid x_{1} \mid x_{3} \mid x_{1} \mid x_{3} \mid x_{1} \mid x_{2} \mid x_{3} \mid x_{1} \mid x_{3} \mid x_{1} \mid x_{2} \mid x_{3} \mid x_{1} \mid x_{3} \mid x_{1} \mid x_{3} \mid x_{1} \mid x_{2} \mid x_{3} \mid x_{3}$$

Likelihood of a single site $P(x_{4}, x_{5}, x_{6}, x_{7}, x_{8} | 0, T)$ $= \sum \sum \sum P(x_g | x_2 \theta, t_s) P(x_7 | x_2, 0, t_s) P(x_6 | x_1, 0, t_s)$ Xo X, X2 X2 $\times P(X_5|X_3, 0, t_5)$ $\times P(X_4|X_3,0,t_q)$ $P(X_m = \propto) = \pi_{\alpha}$ $\times P(\chi_3|\chi_1,0,t_3)$ Is the shortest distance from leaf to root long enough for this $X P(X_1 X_0, \theta, t_2)$ assumption? X3 XP(X,(X,,0,t,) No! $x P(x, 1\theta)$ Ł4

Likelihood of a single site



Likelihood of a single site

$$P(x_{4}, x_{5}, x_{6}, x_{7}, x_{8} \mid \theta, T)$$

$$= \sum \sum \sum P(x_{8} \mid x_{2}\theta, t_{8})P(x_{7} \mid x_{2}, \theta, t_{7})P(x_{6} \mid x_{1}, \theta, t_{6})$$

$$x_{0} \mid x_{1} \mid x_{2} \mid x_{3} \quad x_{6} \quad x_{7} \mid x_{1} \mid x_{2}, \theta, t_{7})P(x_{6} \mid x_{1}, \theta, t_{6})$$

$$P(x_{0} = x) = T_{x} \quad x_{1} \quad x_{2} \quad x_{1} \quad x_{2} \quad x_{1} \mid x_{2} \quad x_{1} \mid x_{2} \mid x_{1}, \theta, t_{3})$$

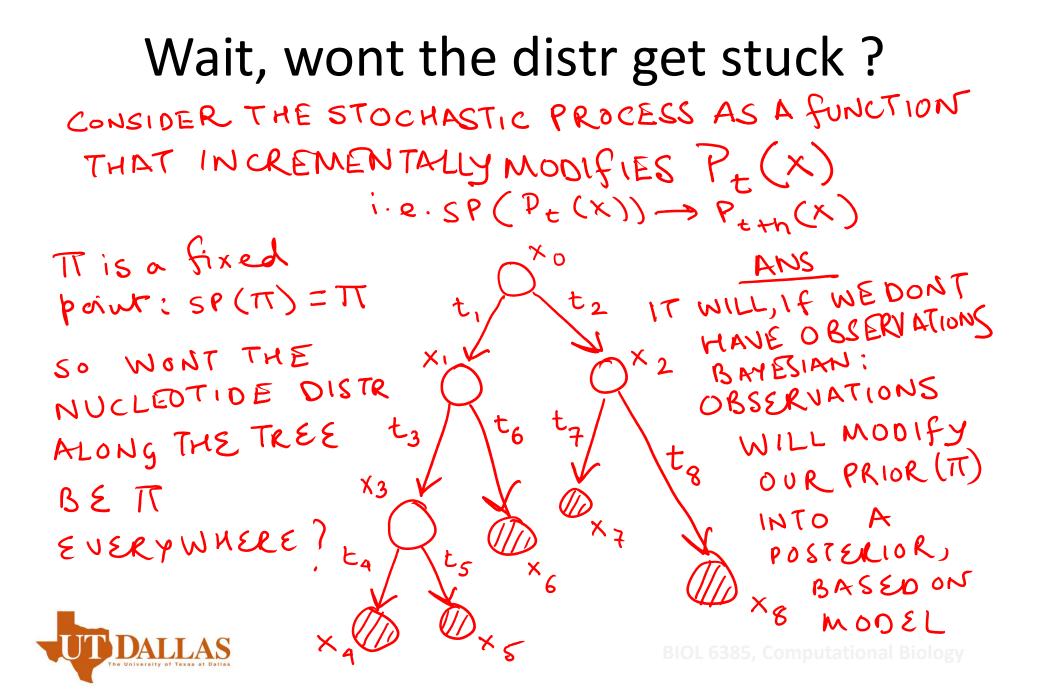
$$P(x_{0} = x) = T_{x} \quad x_{1} \quad x_{2} \quad x_{1} \mid x_{2} \quad x_{1} \mid x_{2} \mid x_{1}, \theta, t_{3})$$

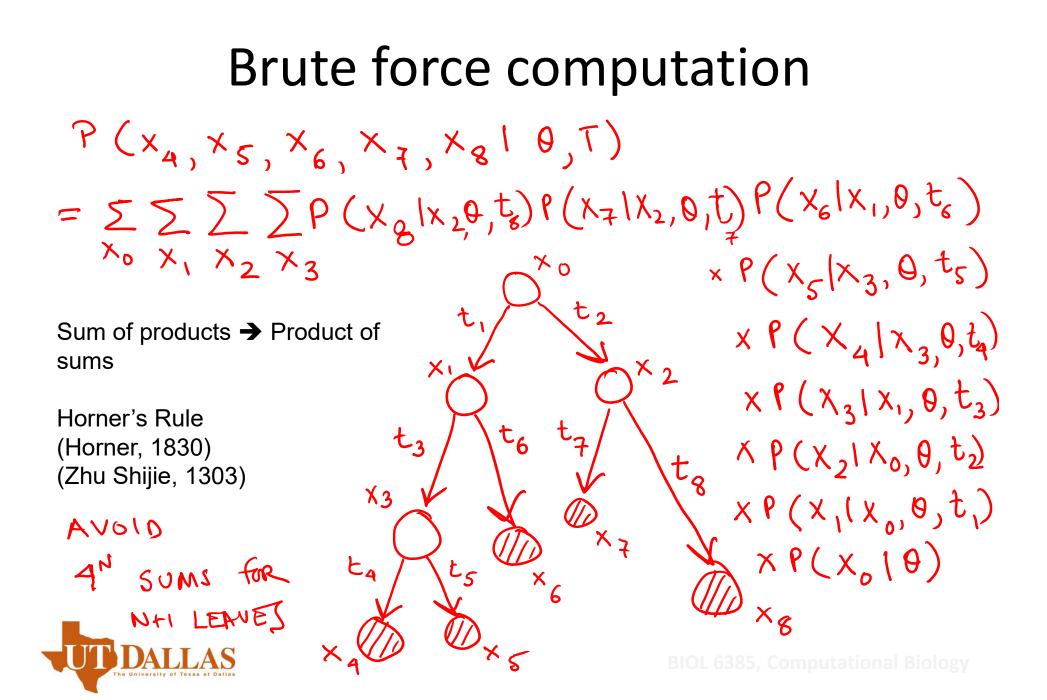
$$P(x_{0} = x) = T_{x} \quad x_{1} \quad x_{2} \quad x_{1} \mid x_{2} \quad x_{1} \mid x_{2} \mid x_{1}, \theta, t_{3})$$

$$P(x_{0} = x) = T_{x} \quad x_{1} \quad x_{2} \quad x_{1} \mid x_{2} \mid x_{2} \mid x_{1}, \theta, t_{3})$$

$$P(x_{0} = x) = T_{x} \quad x_{1} \quad x_{2} \quad x_{1} \mid x_{2} \mid x_{2} \mid x_{1}, \theta, t_{3})$$

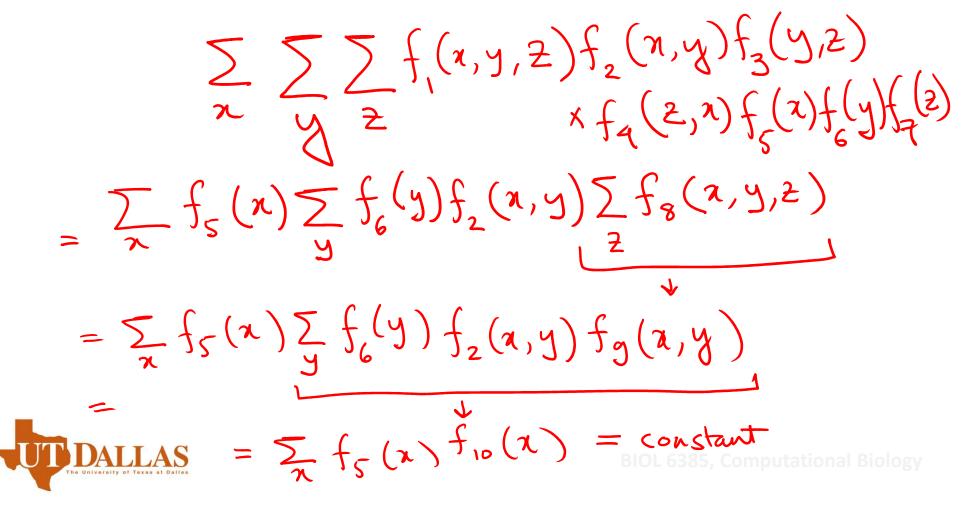
$$P(x_{0} \mid x_{1} \mid x_{1} \mid x_{2} \mid x_{1} \mid x_{2} \mid x_{2} \mid x_{1} \mid x_{2} \mid x_{2} \mid x_{1} \mid x_{2} \mid x_{2} \mid x_{2} \mid x_{1} \mid x_{2} \mid x_{2} \mid x_{1} \mid x_{2} \mid x$$





Horner's rule

Push terms as far to the left as possible



Felsenstein's pruning algo $P(x_{4}, x_{5}, x_{6}, x_{7}, x_{8} | \theta, T)$ $= \sum_{x_0} \sum_{x_1} \sum_{x_2} P(x_g | x_2 \phi, t_s) P(x_7 | x_2, 0, t_s) P(x_6 | x_1, 0, t_s)$ $\times P(X_5|X_3, 0, t_5)$ $= \sum_{X_0} P(x_0 | 0)$ $XP(X_4|X_3,0,t_4)$ $x P(X_{2}|X_{1}, 0, t_{3})$ $\times \sum_{i=1}^{n} P(x_i | x_{o}, 0, t_i) P(x_6 | x_i, 0, t_6)$ $X P(X_2 | X_0, \theta, t_2)$ $\times \sum_{2}^{X_{1}} P(X_{2}|X_{0},0,t_{2}) P(X_{7}|X_{2},0,t_{7}) P(X_{8}|X_{2},0,t_{8})$ xP(x,(x,,0,t,) $X \xrightarrow{X_2} P(X_3|X_1, \theta, t_3) P(X_5|X_3, \theta, t_5)$ $\times P(\chi_0 | \theta)$ $P(X_4|X_3, \theta, t_4)$

 $P(0|m) = \sum_{X_0} P(x_0|0)$ $\times \sum_{x_{1}}^{V} P((X_{1}|X_{0},0,t_{1})P((X_{6}|X_{1},0,t_{6})) \times \sum_{x_{1}}^{V} P((X_{2}|X_{0},0,t_{2})P((X_{4}|X_{2},0,t_{4})P((X_{6}|X_{2},0,t_{8})) \times \sum_{x_{2}}^{V} P((X_{3}|X_{1},0,t_{3})P((X_{5}|X_{3},0,t_{5})) \times \sum_{x_{3}}^{V} P((X_{3}|X_{1},0,t_{3})P((X_{5}|X_{3},0,t_{5})) \times P((X_{4}|X_{3},0,t_{4}))$ $f(x_i)$

$$P(0|m) = \sum_{X_0} P(x_0|0)$$

$$\times \sum_{X_1} P(x_1|x_0,0,t_1) P(x_6|X_1,0,t_6) \times f(X_1)$$

$$\times \sum_{X_1} P(x_2|x_0,0,t_2) P(x_4|x_2,0,t_3) P(x_6|X_2,0|t_8)$$

$$\times \sum_{X_2} Q(x_0)$$
BILLES

$$P(OIM) = \sum_{x_0} P(x_0 10) \times \mathcal{I}(x_0)$$

$$\times \sum_{x_1} P(x_1 | x_{0,0}, t_1) P(x_0 | x_1, 0, t_0) \times f(x_1)$$

$$h(x_0)$$

$$= \sum_{x_0} P(x_0 10) \mathcal{I}(x_0) h(x_0)$$

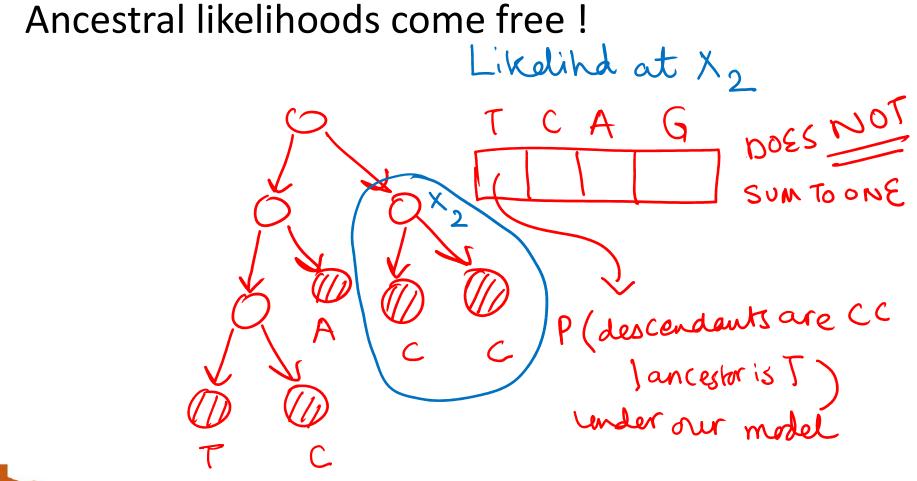
$$H(x_0) \mathcal{I}(x_0) h(x_0)$$

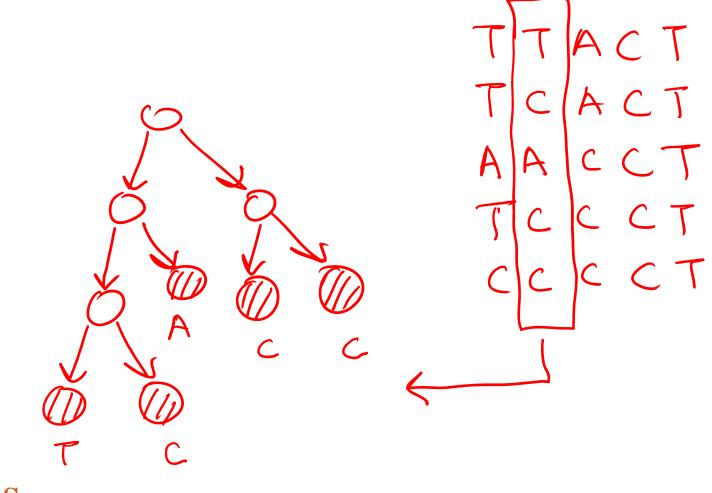
$$H(x_0) \mathcal{I}(x_0) h(x_0)$$

$$H(x_0) \mathcal{I}(x_0) h(x_0) \mathcal{I}(x_0) h(x_0)$$

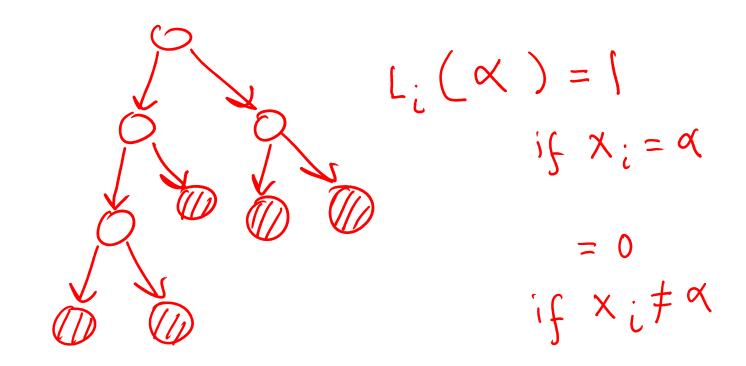
$$H(x_0) \mathcal{I}(x_0) h(x_0) \mathcal{I}(x_0) h(x_0)$$

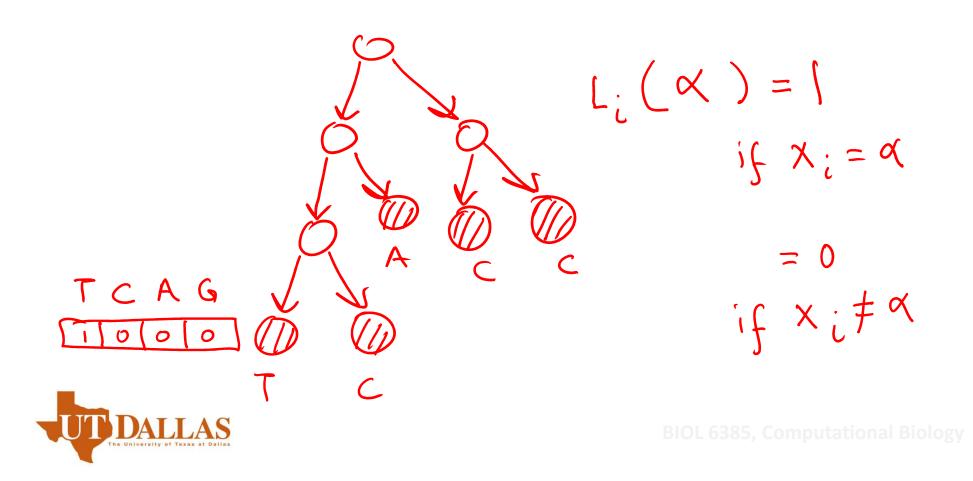
Handtracing the pruning algo

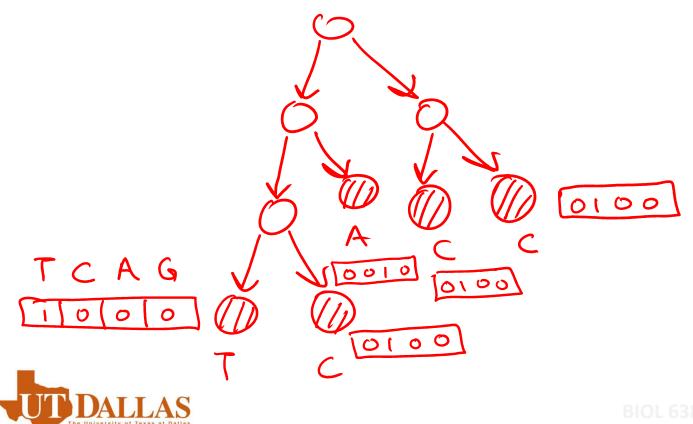




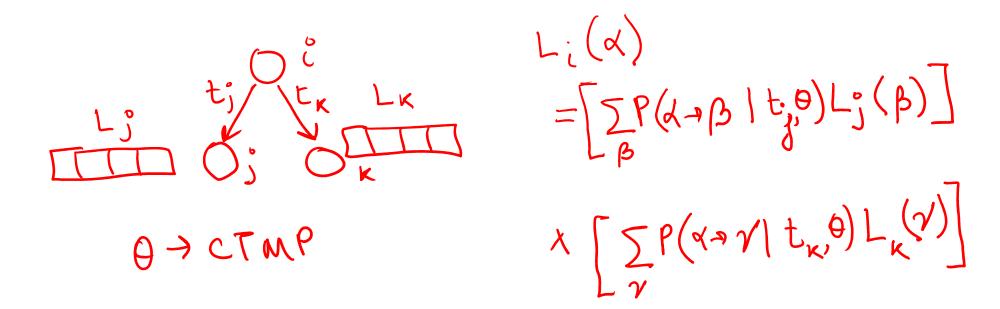
• At the observed leafs :



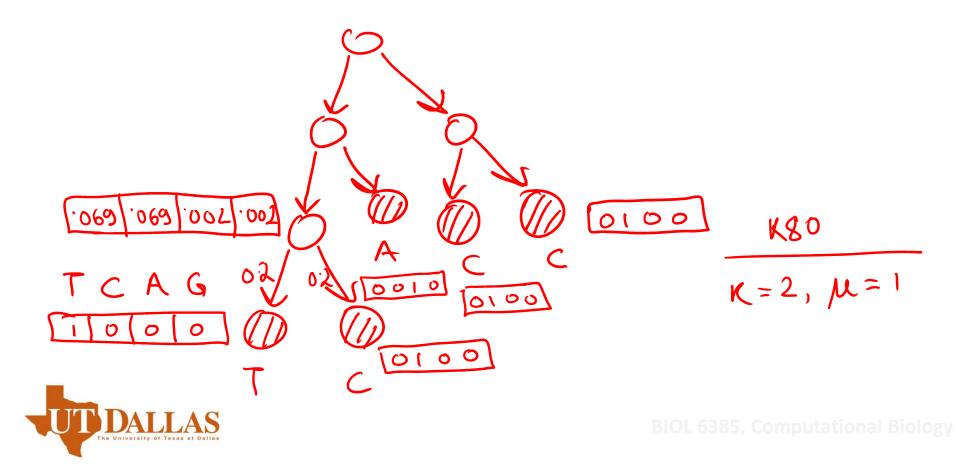




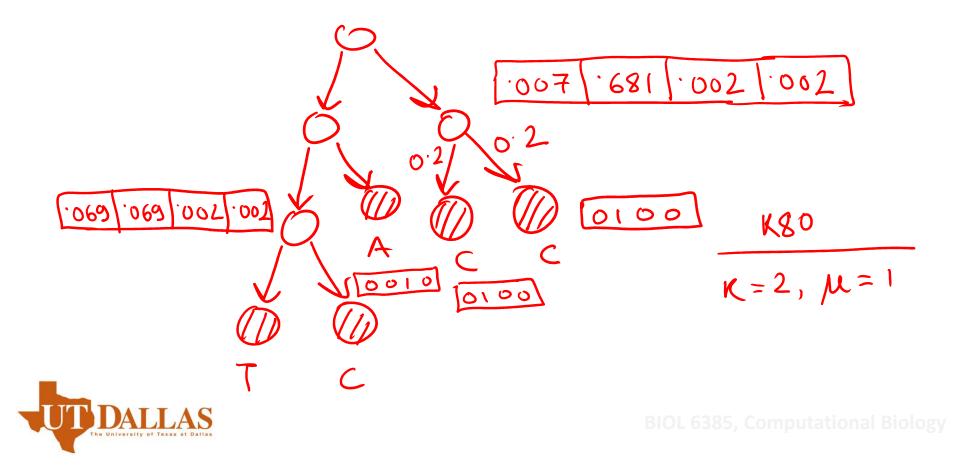
• For the interior nodes :



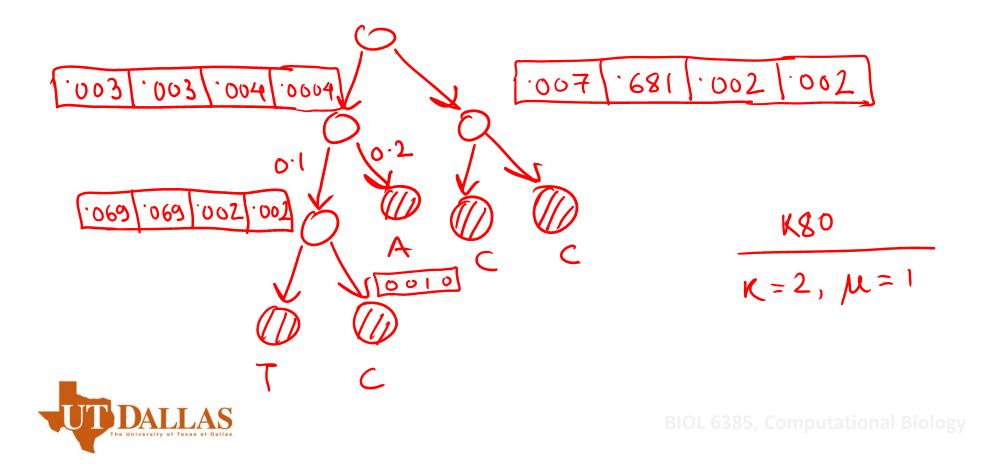
• Applied at X3



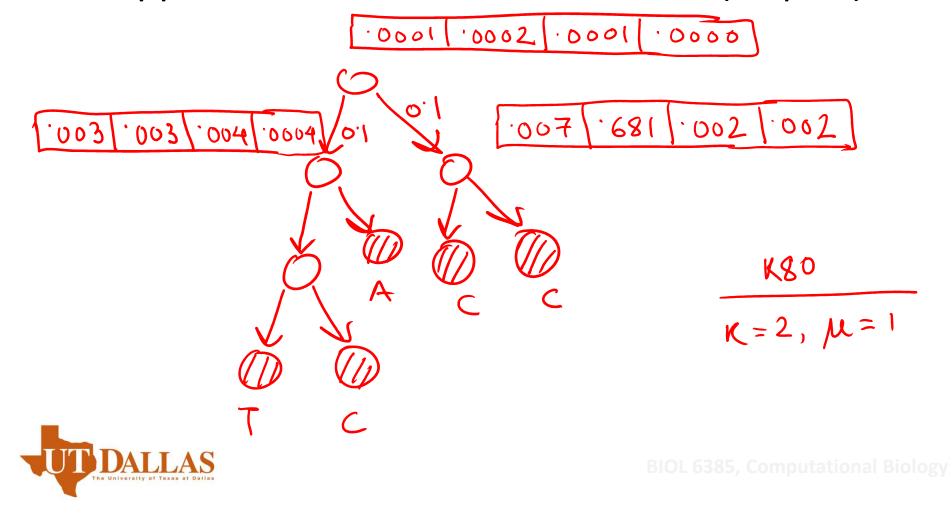
• Applied at X2



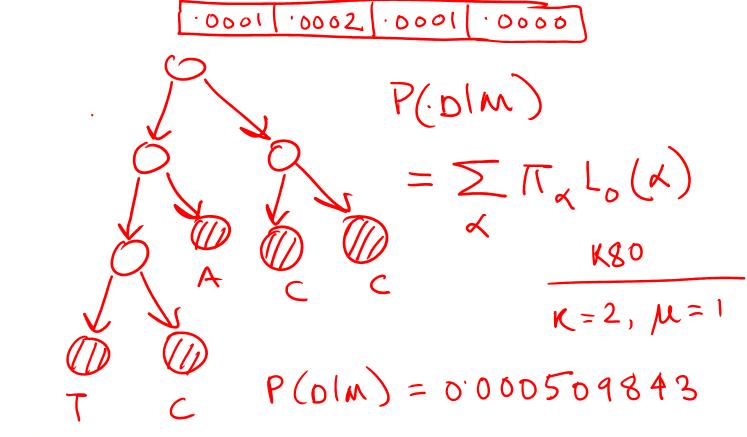
• Applied at X1



• Applied at X0 : the root. Where's P (D | M) ?

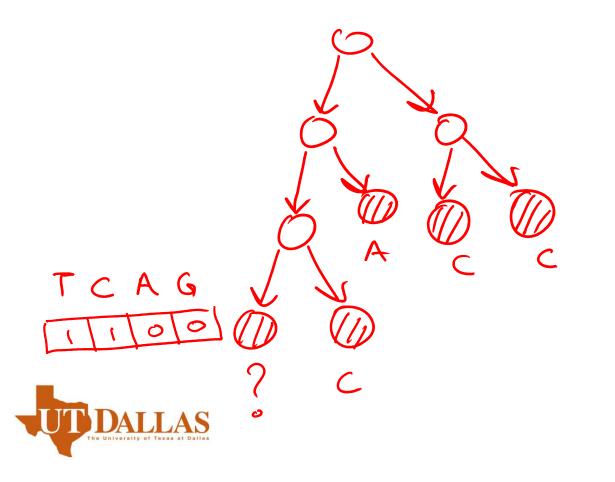


• At the root, factor in the stationary distr :



Modelling ambiguity

• Easy to model ambiguity at leaf



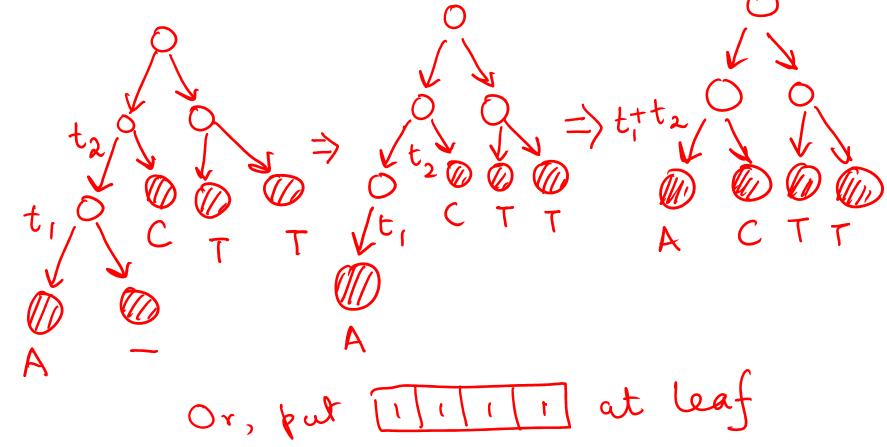
BIOL 6385, Computational Biology

1

Handling gaps

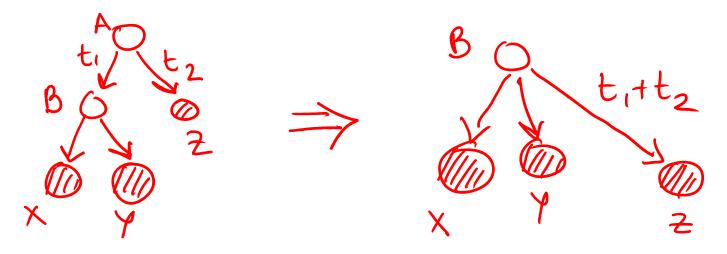
- 3 unsatisfactory ways :
 - Throw away gapped columns (underestimate mutation rate; lose lot of data)
 - Treat the "-" as a fifth character / state in the stochastic process
 - Same framework used to model nucleotide change and indel creation (estimation is hard)
 - Treat gaps as hidden variables and marginalize
 - Commonly used (underestimates mutation rate)

What happens when you marginalize a leaf?



Predicting ancestral sequence

- Didn't we just do that ?
 - Only using data under that node, what if we want to use all the leaf nodes ?



– Use a ternary tree !

– Then pick nucleotide corr to max likelihood

Joints and marginals

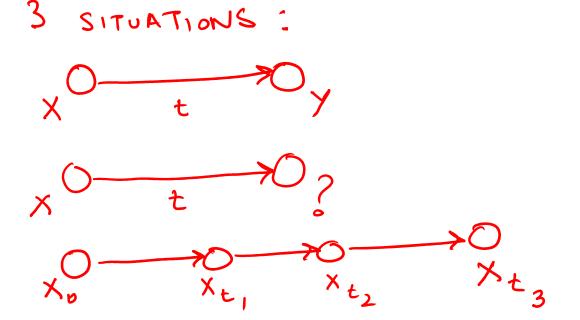
• Posterior decoding and Viterbi may give different results, remember ?

The most likely joint of (X0, X1, X2) may be diff. from. most likely X0, X1, 4 X2 marginally

Xo

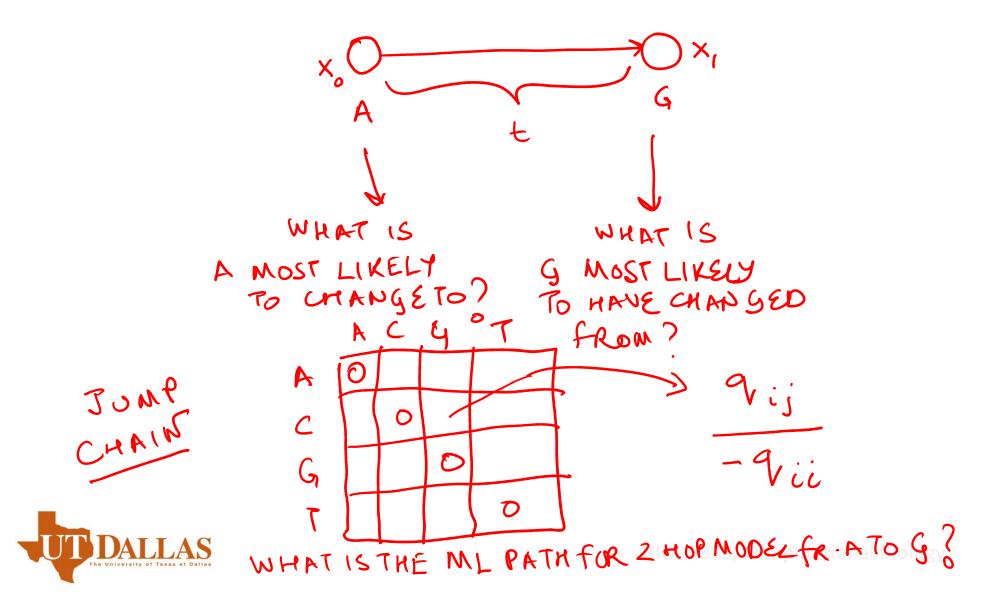
ML trajectories & no of mutations

No. J mutations in time t ⇒ Jc distance formulation (last class)



 ML trajectories are sometimes well defined :
 <u>http://books.nips.cc/papers/files/nips22/NIPS200</u> <u>9 0822.pdf</u>

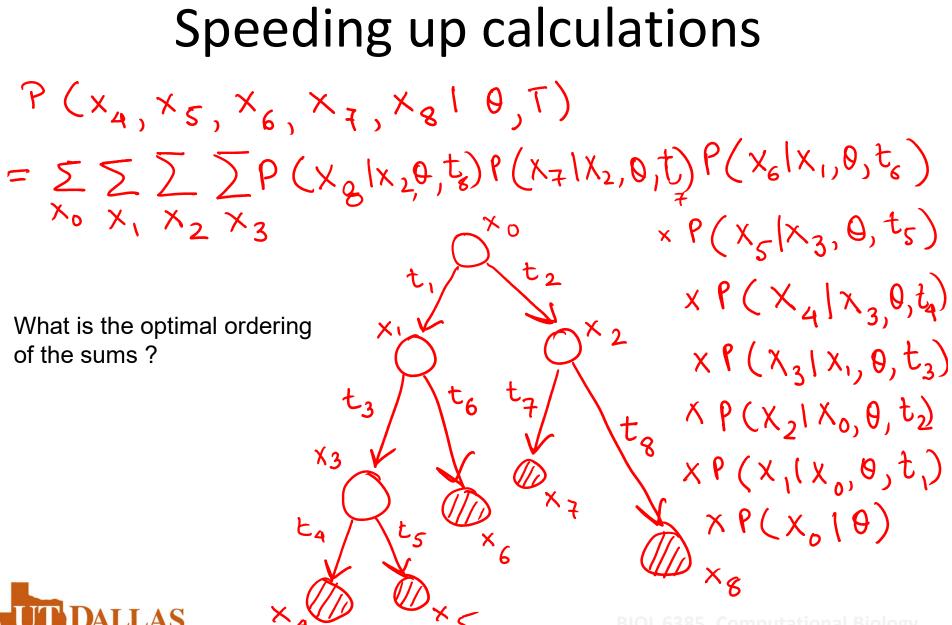
A simpler problem



The road to simulation

Speeding up calculations

- Minimize floating point operations (precision arithmetic)
- Pre calculate likelihoods on branches
- Pre calculate likelihoods on some patterns on subtrees
- Optimize ordering of sums



Likelihood of full alignment

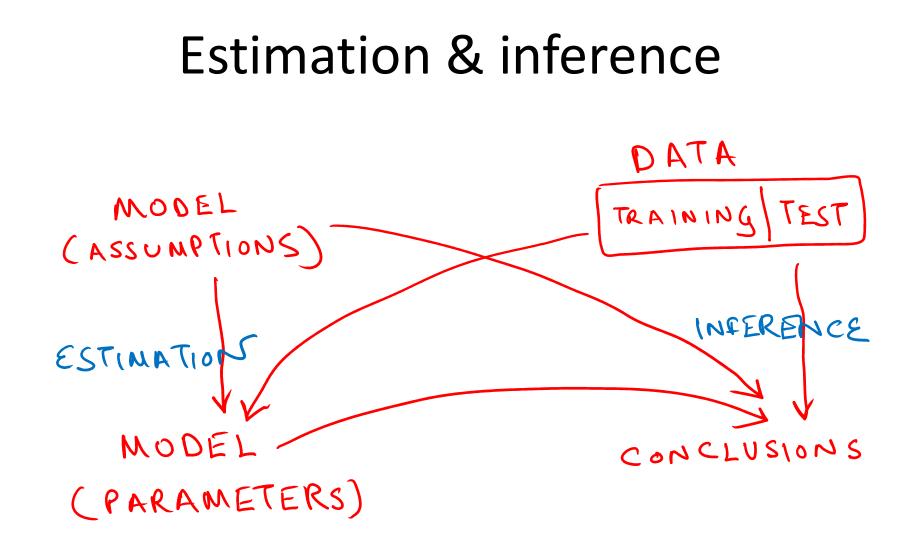
• Likelihood of a multiple sites

- Simplest model : independent sites, single model

$$P(AIM) = \pi P(A; IM)$$

$$i \qquad () PRUNING ALGO, ON ONE
ALIGNED SITE AT A TIME
- Independent sites, diff known models
$$= \pi P(A; IM;)$$

$$WHAT IF M; SARE UNKNOWN? COMING SOON...$$$$

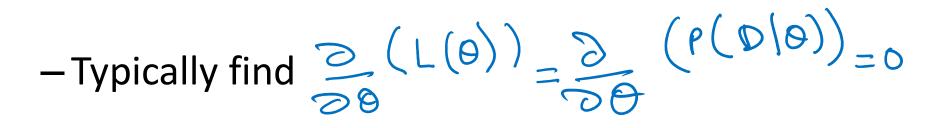


Estimation

- Given the data
 - -Generate each possible tree
 - -Score each tree with the model
 - Pick the tree whose "score" is the "best"
 - Score for probabilistic models = Likelihood = P (data | model)
 - Best score for probabilistic models = Highest likelihood

For maximum likelihood estimation

- Given the data
 - -Generate each possible tree
 - Find P (data | model) :likelihd fn: for each tree
 - Pick the tree with highest likelihd fn



for max likelihood parameters

One snag

Topology space is discrete How to take the derivatives ?

Instead ...

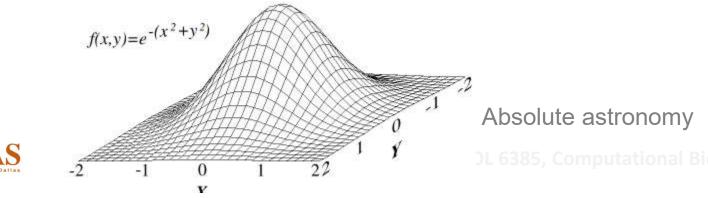
- Let us assume for now that the topology is known, and we want to optimize the CTMP parameters and branch lengths
- Multivariate optimization

– should we change them one at a time ? Or all at once ?

 Either way, we'll need to try many parameter values : reason why closed form CTMP prob are reqd

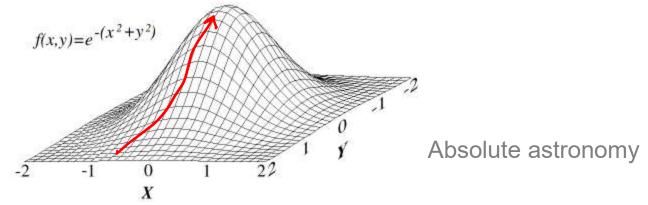
Line search and grid search

- Univariate optimization
 - sample along the single dimension at regular intervals to pick highest / lowest scoring point
- Multivariate optimization
 - sample along all dimensions at regular intervals to pick highest / lowest scoring point
 - Curse of dimensionality



Smarter way : gradient ascent

- Start in one position
 - move in direction of steepest upward likelihood gradient

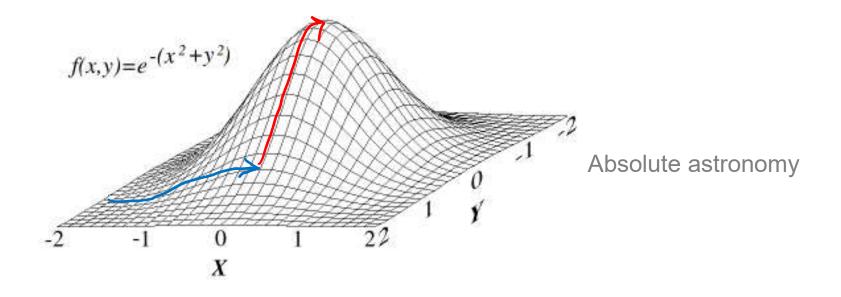


Optimization: vast mathematical body of work

Basic underpinning : to reach the top of the hill quickly, climb the slope in the steepest direction always (or almost always)

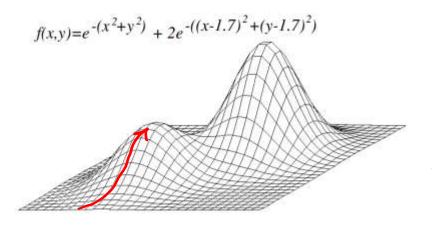
Gradient ascent

• Optimizing one variable at a time



The curse of gradient ascent

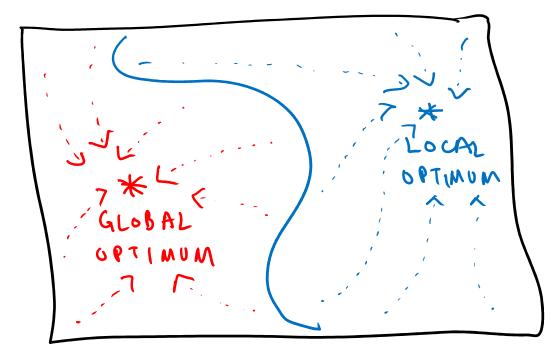
• Local maxima



Absolute astronomy

Orbits and attractors

• Search procedure = dynamical system



Why not ...

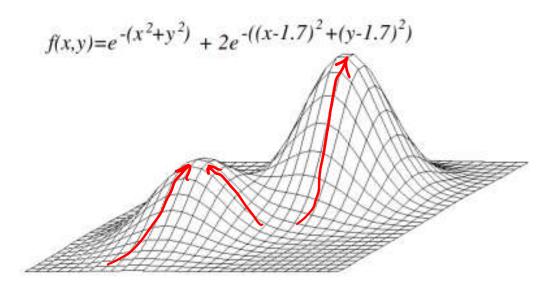
• Why not figure out the boundaries of the attractor initially and dispense with the iterations ?

Why not ...

- Why not figure out the boundaries of the attractor initially and dispense with the iterations ?
 - Because the likelihood landscape will change with the data ! And so will the attractors, and their boundaries !

Avoiding local maxima

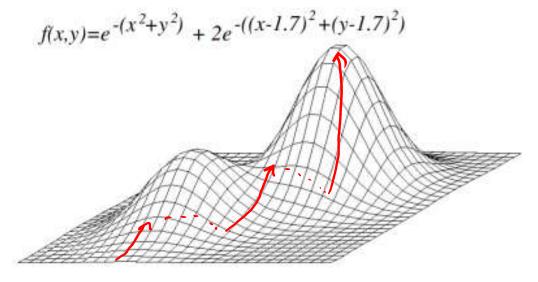
 Random restarts : run repeatedly with different initial guesses : sooner or later sample all attractors



Avoiding local maxima

Simulated annealing : Occasionally break the rules, and jump around in the space randomly : do this less often as search progresses and score improves

Jumps should be large enough to switch attractors , or frequent enough (in the beginning) to incrementally move from one attractor to another



Simulated annealing + random restarts possible

What are our dimensions ?

- Branch lengths for each branch
- Stochastic process parameters

 No meaningful way to reduce dimensionality easily

Learning topology

Problem of structure learning difficult and intractable problem - discrete space

- difficult to parameterize

Learning topology

- Given the data
 - -Generate each possible tree topology
 - Optimize branch lengths and CTMP parameters such that P(data|model) for that topology is the highest
 - Pick the topology parameter combination s.t.
 likelihood is highest

Can we really generate all topologies?

- No, but formal search strategies
 - Heuristic, but in general the longer we search the better the chance we find the global optimum
 - Better heuristics = less time to generate results of some determined quality level (model score)
 - Better heuristics = better quality results (model score) after searching for a fixed amount of time
 - Trade off

Our search space

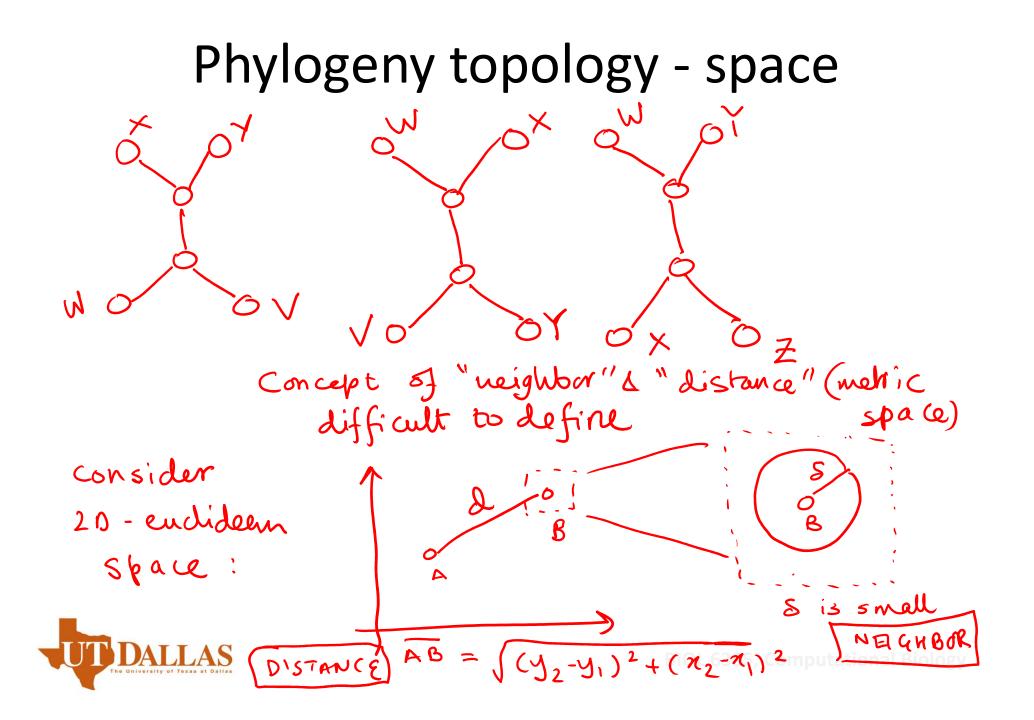
- Is it the space of all trees ?
 - Yes, but we have tools to optimize branch lengths, and evolutionary parameters efficiently
- Is it the space of all tree topologies ?
 - Yes, we heuristically sample tree topologies, since discrete topology – space is hard to optimize numerically

Random sampling

- Keep generating new topologies randomly and score them: remember the best score
- Doomed to repeat mistakes + most work is thrown away
 - goal should be to improve upon previously found high scoring topologies by incrementally changing the topology : discipline of search

Hill climbing

- Similar to gradient ascent : for discrete spaces
- At any point in topology-space, check the max likelihood score of all neighbors and move in direction of biggest increase of likelihood

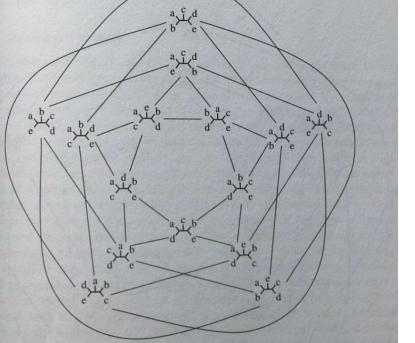


Wait, didn't we already study distances in phylogeny ?

- Over taxa, yes
- Over trees, no

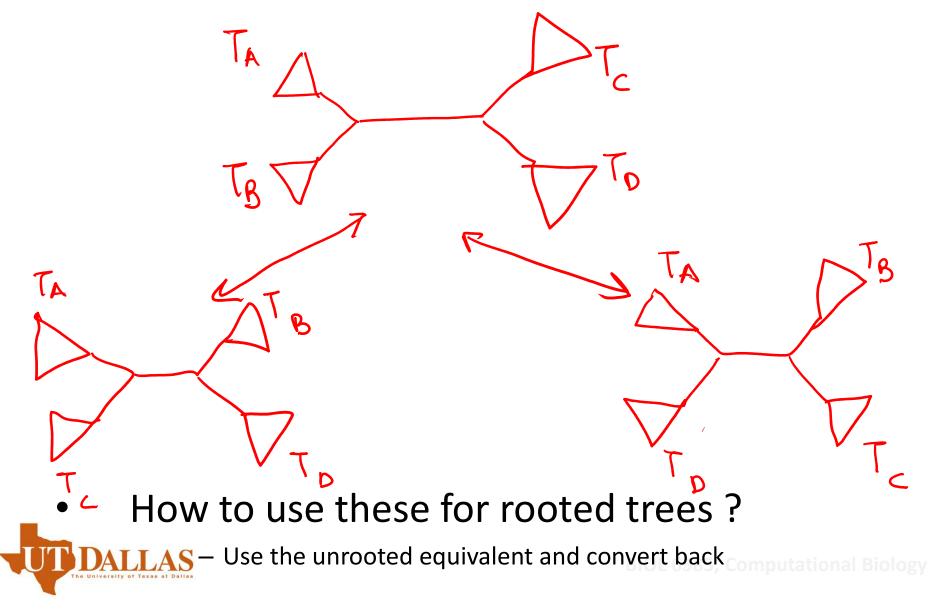
What does tree space look like ?

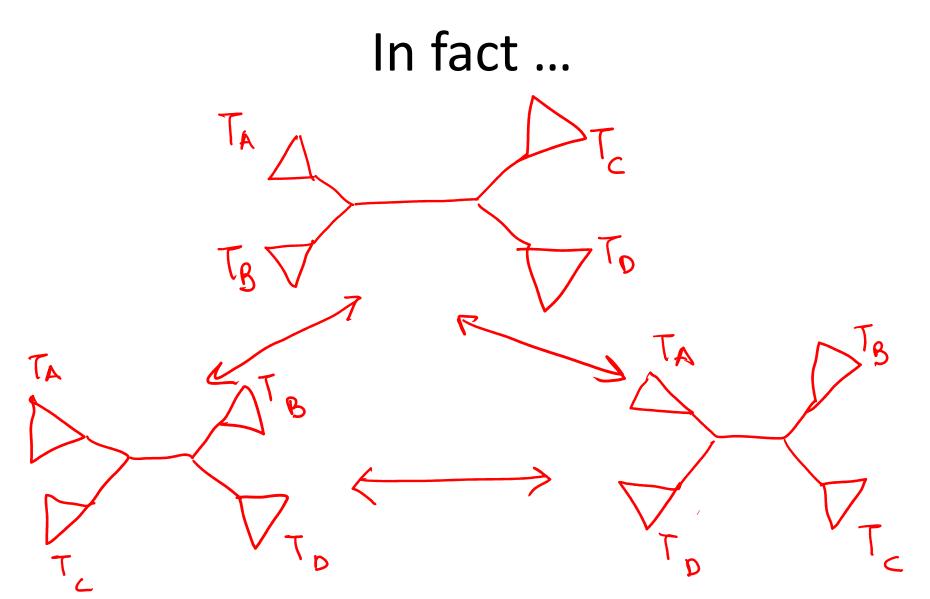
Edges represent neighbors (wait, who are neighbors?)

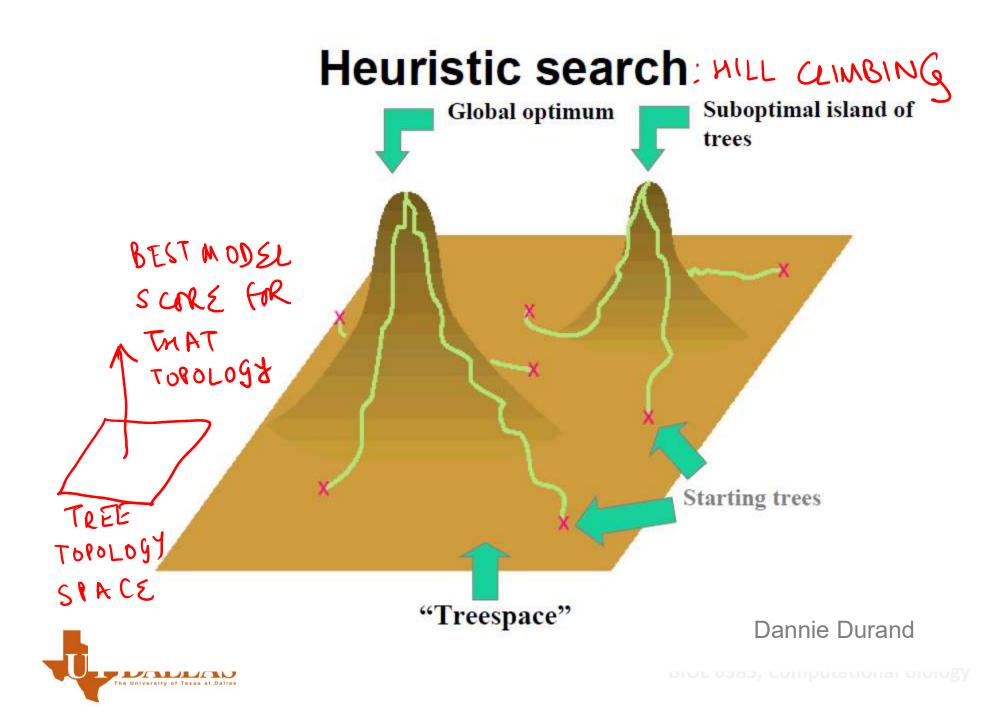


- Z Yang
- x is a neighbor of y = y can be built by changing x in a small way

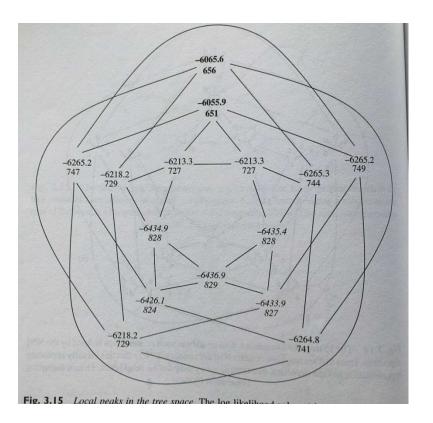
Nearest neighbor interchange







Local and global optima in topology - space



Traditional AI search

... techniques (like admissible heuristics and A*) doesn't work

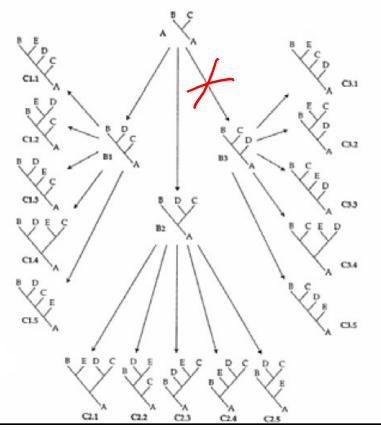
Difficult to estimate how far away we are from our goal (best model score)

Branch and bound

• Rule out ("prune") or de prioritize some parts of the search space : similar to MSA ?

Wait, this isnt our tree space !

This is okay, since each point in our original space is reachable in this space !



385, Computational Biology

In practice ...

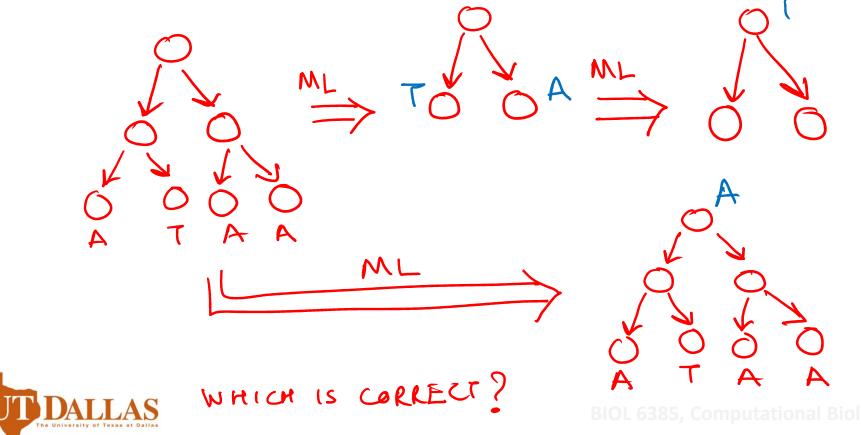
- Instead of a formal search, we often use :
 - known tree topologies
 - based on trees constructed using distance based methods
- Consider this as a very strong prior over the topologies

Search : take home

- Search longer = better results
- Better heuristics & better strategy = better results
- Usually no guarantees = may get stuck in local optimum
- All points in search space should be potentially reachable by our strategy

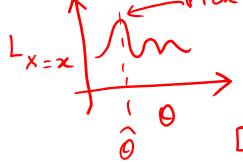
Using inferred results

 In the next step of an analysis : what are the pitfalls ?



- BETTER IDEA: TREAT O AS A R.V. - FINDITS DISTRIBUTIONS
- ERRORS ACCUMULATE
- SOME DATA

- EVERYTIME WE PICK A SINGLE Q, WE "FORGET"

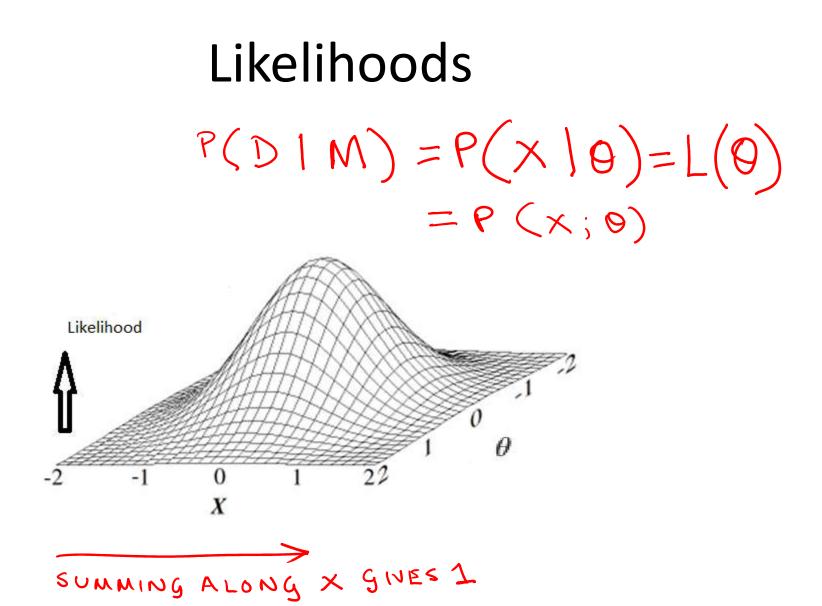


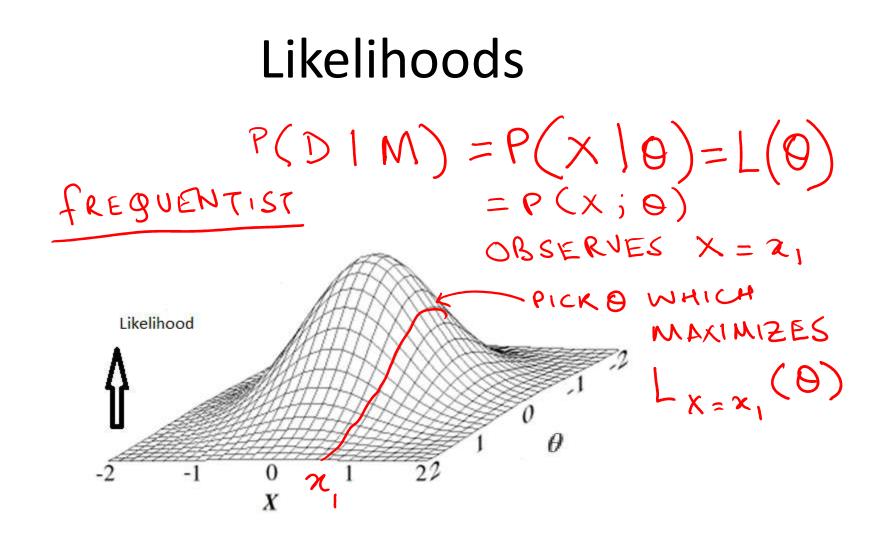
WHAT IS THE CHANCE THAT WE PICKED THE RIGHT 0? WHOLE THEORY: PAC-LEARNING]

Ball of uncertainty

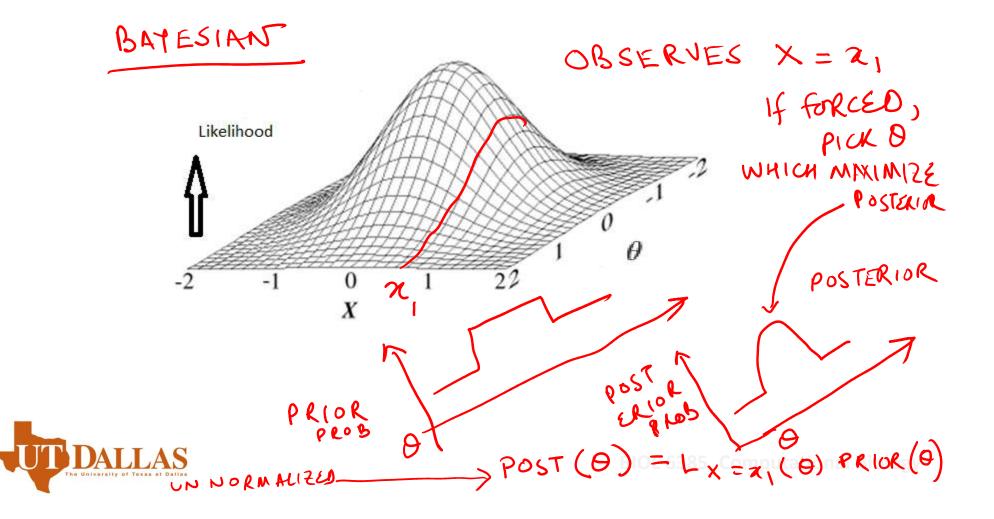
Bayesians and frequentists

- Frequentists
 - parameters are unknown constants : find the constant that maximizes the likelihood
- Bayesians
 - parameters are themselves rv s : find the distribution of the parameters





Likelihoods $P(x, \theta) = P(x|\theta) \cdot P(\theta)$

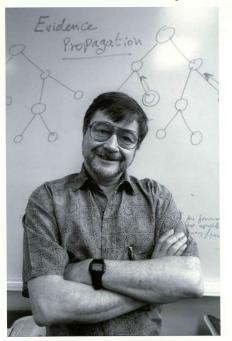


Judea Pear

Think of a sequential generative process : r. v.
 X0 gives rise to X1, X2, ... ; maybe in collaboration with other Xi s

• Each of these in turn give rise to more RVs

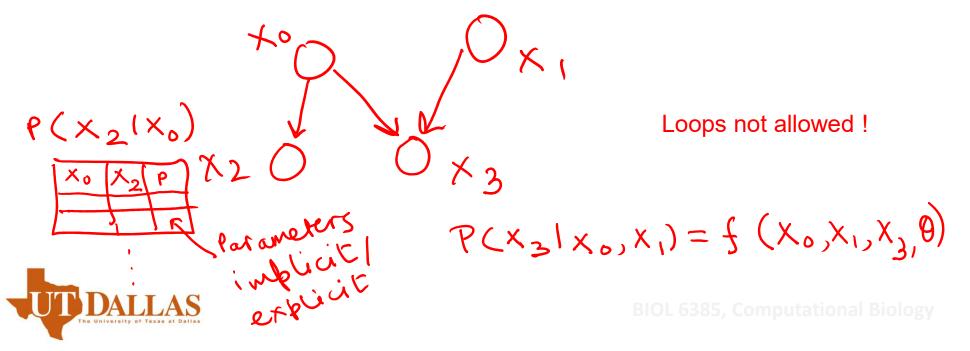
wikipedia



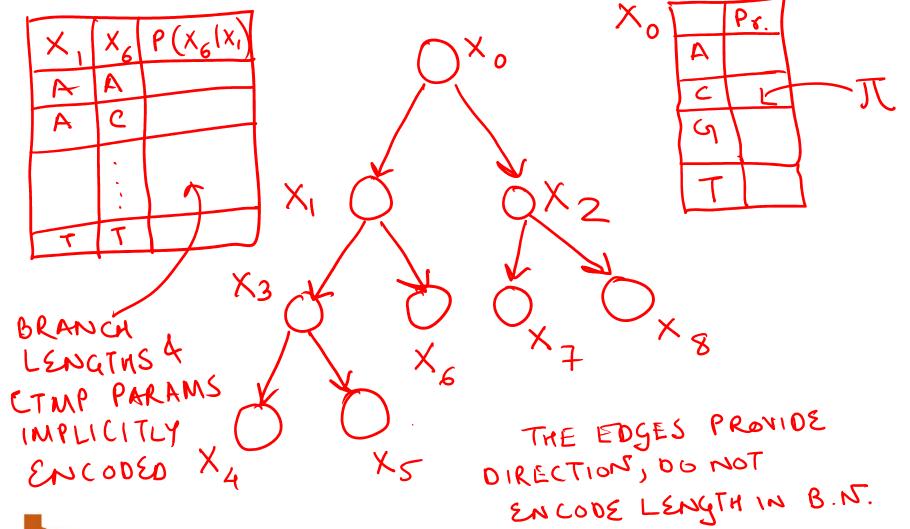
Xo

Bayesian networks

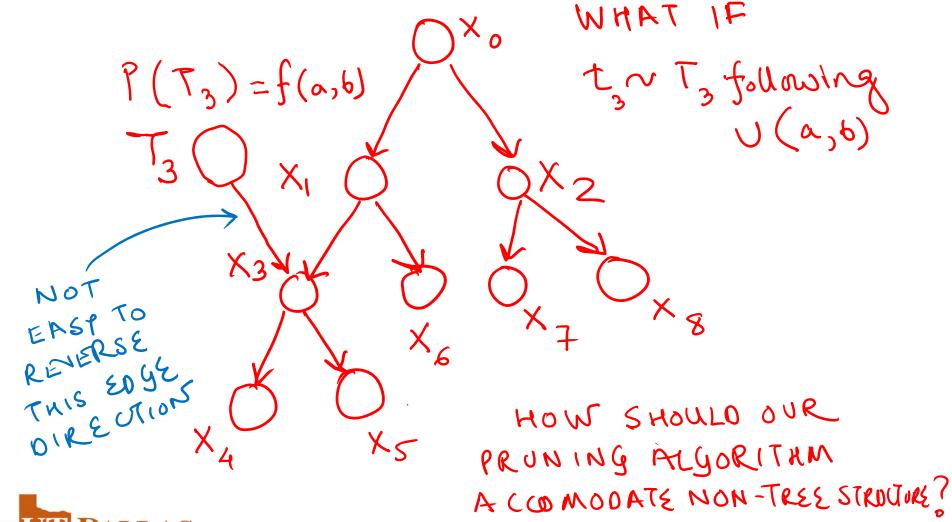
 The process of RVs "giving rise" to another RV can be captured by local conditional distributions (shown by tables – discrete support, or function – continuous support)



Representing our phylogeny as BN



Bayesian trees : priors on parameters



Comparing methods

- Identifiability
 - Are parameters confounded given the observed data ?
- Consistency
 - Does it converge to the right tree as data set increases ?
- Efficiency
 - Is the variance low ? For unbiased estimators, bounded by Cramer Rao bound
- Robustness
 - Does performance degrade smoothly when model assumptions are violated ?

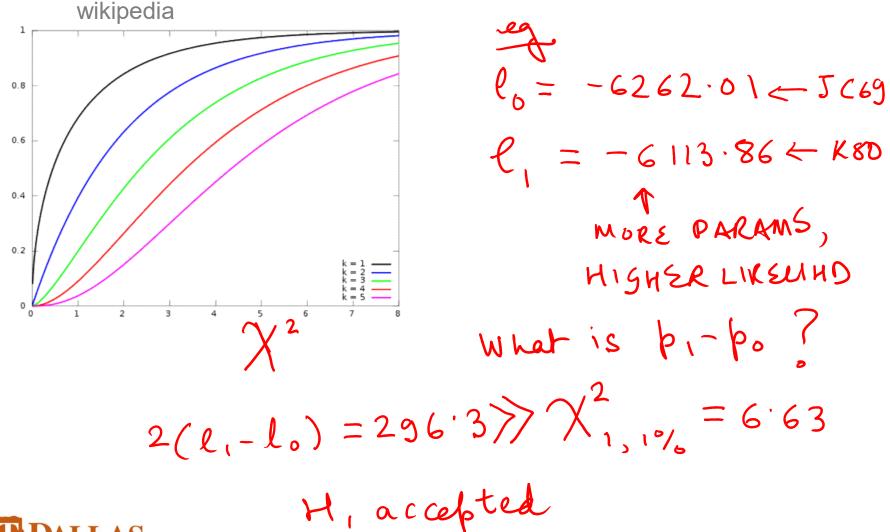
Comparing trees

- How different are two trees ?
- Which one is better in the light of the data ?
 - Were the two reconstructed using the same model (assumptions) ?
 - Comparing trees based on the same model
 - Comparing trees across models

- Under the same model : same likelihood fn
- Which one has higher likelihood (or log likelihd) ? (z = -311)A A A (z = -57.3)(z = -57.3)

- Likelihd ratio test : 2 models
 - Ho : null hypothesis
 - H1 : alternative hypothesis
 - typically Ho is a special case of H1

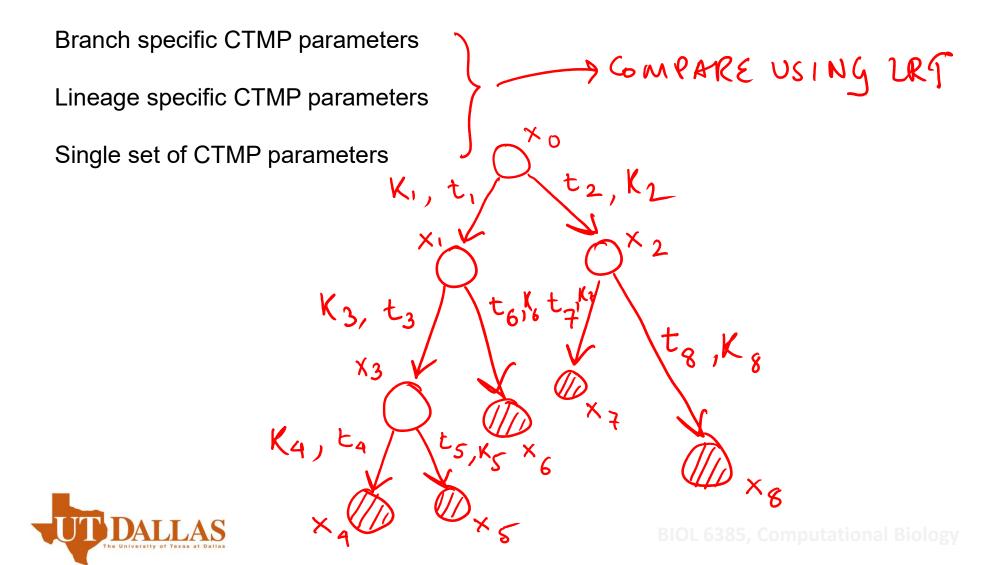
e.g.
$$JC69$$
 is a special case of K80 with
 $H_0 \rightarrow P_0$ parameters, $\int_{100}^{100} \log \text{LikeLIHD}$
 $H_1 \rightarrow P_1$ parameters $\int_{100}^{100} \text{ML PARAMETERS}$
 $2(L_1 - L_0) \sim \chi^2$
 $approx$. $P_1 - P_0$



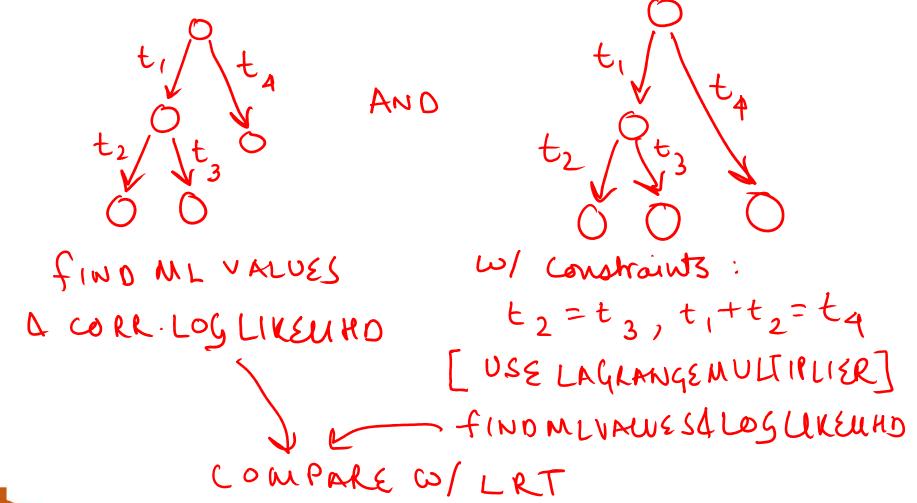
- What if models are non nested ?
- Aikake Information Criterion : whose AIC is better = - 2 log(L) + 2 p
 P ~ ~ f params
- Bayesian Information Criterion : whose BIC is better = - 2 log(L) + log(n) p

n > data set size

Testing differential selection



Testing the molecular clock



Can we really test for the molecular clock ?

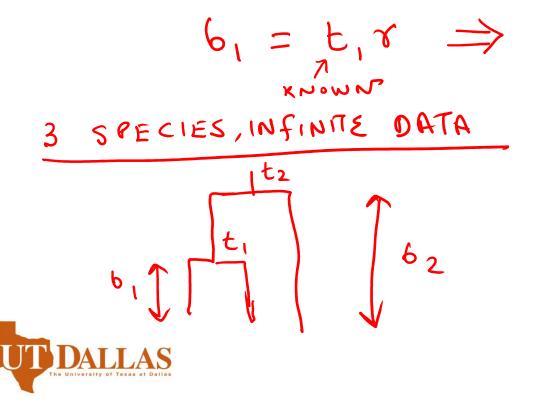
- We test that the root is equidistant from all the leaves
 - A weaker assertion than that of the molecular clock. Why ?

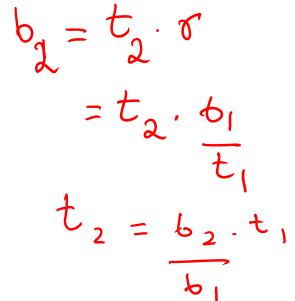
Can we really test for the molecular clock ?

- We test that the root is equidistant from all the leaves
 - A weaker assertion than that of the molecular clock. Why ?
 - Mutation rates could be different in precisely the same or compensatory ways along each lineage, and this would still hold
 - We can only assert total amount of mutation from start of clock is same in all lineages

Calibration with real time

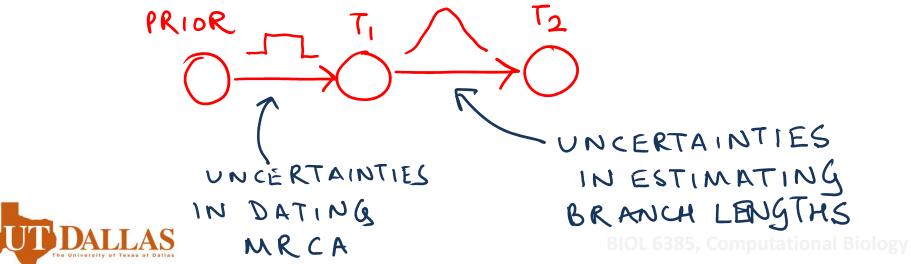
 If molecular clock hypothesis holds : branch length = expected no of substitutions should be linear to real time





Uncertainty in calibration

- Inaccurate branch lengths
- Molecular dating of fossils come with error bars
- Common ancestor or not determined by character data : how to determine how far it is from MRCA ?



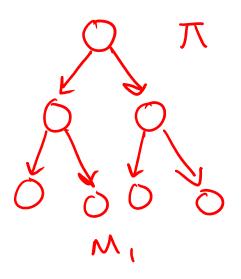
Accounting for multiple models

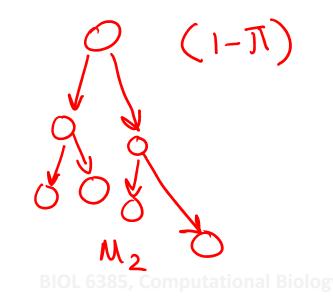
	• • • • • • • • • • • • • •		
Q5E940 BOVIN	MPREDRATWESNYFLKIIOLLDDYPKCFIVGADNYGEKOMOOIRMSLEGK-AVYLMGKHIMMRKAIRGHLENNPALE	76	
RLAO HUMAN	MPREDRATWKSNYFLKIIQLLDDYPKCFIVGADNVGSKOMOQIRMSLRGK-AVVLMGKNTMMRKAIRGHLENNPALE	76	
RLA0 MOUSE	MPREDRATWKSNYFLKIIOLLDDYPKCFIVGADNVG8KOMOOIRMSLRGK-AVVLMGKNTMMRKAIRGHLENNPALE	76	wikipedia
RLAO RAT	MPREDRATWKSNYFLKIIQLLDDYPKCFIVGADNVGSKOMOQIRMSLRGK-AVVLMGKNTMMRKAIRGHLENNPALE	76	wikipeula
RLA0 CHICK	MPREDRATWKSNYFMKIIQLLDDYPKCFVVGADNVCBKOMOQIRMSLRGK-AVVLMGKNTMMRKAIRGHLENNPALE	76	•
RLAO RANSY	MPREDRATWKSNYFLKIQLLDDYPKCFIVGADNVGBKOMOQIRMSLRGK-AVVLMGKNTMMRKAIRGHLENNSALE	76	
Q7ZUG3 BRARE	MPREDRATWKSNYFLKIIOLLODYPKCFIVGADNVGBKOMOTIRLSLRGK-AVVLMGKNTMMRKAIRGHLENN-PALE	76	
RLAO ICTPU	MPREDRATWKSNYFLKIQLLNDYPKCFIVGABNYGSKOMOTIRLSLRGK-AIVLMGKNTMMRKAIRGHLENNPALE	76	
RLA0 DROME	MVRENKAAWKAQYFIKVVELFDEFPKCFIVGADNVCSKOMONIRTSLRGL-AVVLMGKNTMMRKAIRGHLENNPQLE	76	
RLAO DICDI	MSGAG-SKRKKLFIEKATKLFTTYDKMIVAEADFVGBSQLQKIRKSIRGI-GAVLMGKKTMIRKVIRDLADSK-PELD	75	
Q54LP0 DICDI	MSGAG-SKRKNYFIEKATKLETTYDKMIYAEADFYGSSOLOKIRKSIRGI-GAVLMGRKTMIRKYIRDLADSKPELD	75	
RLA0 PLAF8	MAKLSKQQKKQMYIEKLSSLIQQYSKILIVHVDNVG8NQMASVRKSLRGK ATILMGKNTRIRTALKKNLQAV-PQIE	76	
RLA0_SULAC	HIGLAVIIIKKIAKWKVDEVAELIEKLKIHKIIIIANIEGFPADKLHEIEKKLRGK-ADIKVTKHNLFNIALKNAGYDTK	79	
RLA0 SULTO	MRIMAVITQERKIAXWKIEEVKELEQKLREYHTIIIANIEGFPADKLHDIRKKMRGM-AEIKVTKNTLFGIAAKNAGLDVS	80	
RLA0_SULSO	MKRLALALKORKVASWKLEEVKELTELIKNSNTILIGNLEGFPADKLHEIRKKLRGK-ATIKVTKHTLFKIAAKNAGIDIE	80	
RLAO AERPE	MSVVSLVGQMYKREKPIPEWKTLMLRELEELFSKHRVVLFADLTGEPEFVVQRVRKKLWKK-YPMMVAKKRIILRAMKAAGLELDDN	86	
RLAO PYRAE	-MMLAIGKRRYARTRQYPARKAKIYSEATELLQKYPYYFLFDLHGLSHRILHEYRYRLKRY-GAIKIIKPELFKIAFTKAYGGIPAK	85	
RLAO METAC	MAEERHHTEHIPOWKKDEIENIKELIOSHKVFGMVGIEGILATKMOKIRRDLKDV-AVLKVSRHTLTERALNOLGETIP	78	
RLAO METMA	MAEERHHTEHIPQWKKDEIENIKELIQSHKVFGMVRIEGILATKIQKIRRDLKDV-AVLKVSRHTLTERALNQLGESIP	78	
RLA0 ARCFU	MAAVRGSPPEYKVRAVEEIKRMISSKPVVAIVSFRNVPAGOMOXIRREFROK-AEIKVVKHTLLERALDALGGDYL	75	
RLAO_METKA	MAYKAK <mark>GOPPSG</mark> YE <mark>PKYAEWK</mark> RREYKELKELMDEYENYGLYDLEGIPAPOLOEIRAKLRERDTIIRMSRHTLMRIALEEKLDER-PELE	88	
RLAO_METTH	MAHVAEWKKKEVQELHDLIKGYEVVGIANLADIPAROLOKMEQTLEDS-ALIEMSKKTLISLALEKAGRELENVD	74	
RLAO METTL	MITAESEHKIAPWKIEEYNKLKELLKNGQIVALVDMMEVPAROLOEIRDKIR-OTMILKMSRHILIERAIKEVAEETONPEFA	82	
RLAO_METVA		82	
RLAO_METJA		81	
RLA0_PYRAB	MAHVAEWKKKEVEELANLIKSYPVIALVDVSSMPAYPLSQMRRLIRENGGLLRVSRHTLIELAIKKAAQELGKPELE	77	
RLA0 PYRHO		77	
RLA0_PYRFU		77	
RLA0 PYRKO		76	
	MSAESERKTETIPEWKQEEVDATVEMIESYESYGYYNIAGIPSROLODMERDLHGT-AELRYSRHTLLERALDDYDDGLE	79	
RLA0_HALVO	MSESEVRQTEVIPQWKREEVDELVDFIESYESVGVAGIPSROLOSMRRELHGS-AAVRMSRHTLVNRALDEVNDGFE	79	
RLA0_HALSA		79	
RLA0_THEAC		72	
	MRKINDKKKEIVSELAQDITKSKAVAIVDIKGVRIROMODIRAKNRDK-VKIKVVKKTLLFKALDSINDEKLT	72	
RLA0_PICTO		72	
ruler	110		

• Are all the characters generated by the same evolutionary model ?

Modelling variation : horizontally

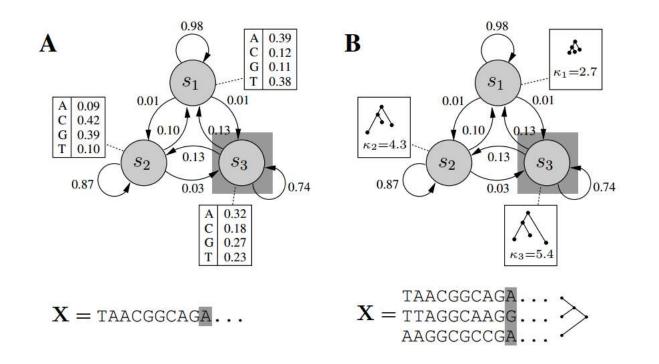
- Along the genome, is there spatial correlation in evolutionary parameters (say, mutation rates) ?
 - If yes, markov model
 - If no, mixture model





Modelling variation : horizontally

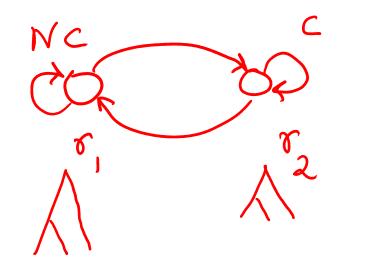
• Phylogenetic HMMs



Siepel & Haussler, JCB, 2004 July

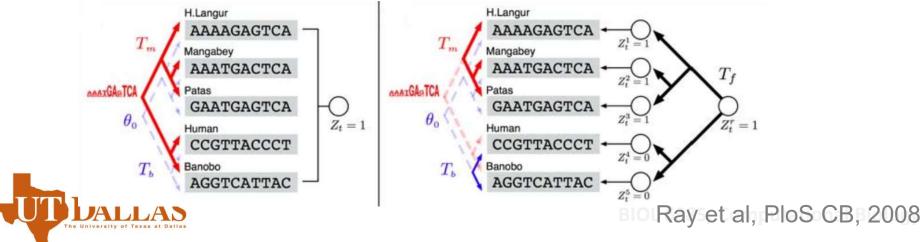
Modelling spacers, repeats, conserved regions and other evolutionary events

 PhastCons : 2 state phylogenetic HMM modelling evolutionary rates for conserved and non conserved sites

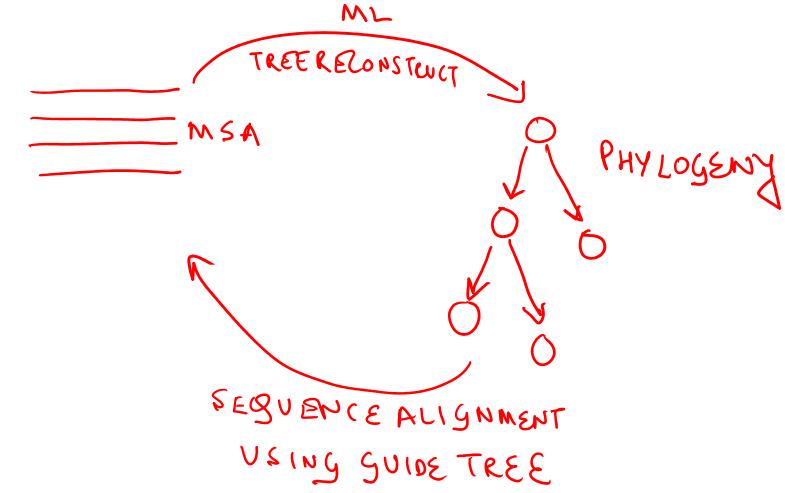


Modelling variation : vertically

- In the phylogeny, is there correlation in evolutionary parameters inside subtrees ?
 - If yes, model a mixture of phylogenies : mixture components drawn from another phylogeny
 - If no, model a mixture of phylogenies : mixture components drawn independently

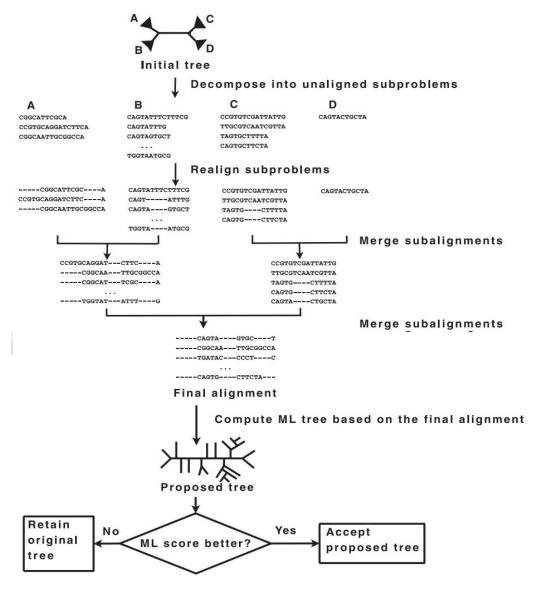


MSA – phylogeny co-construction



Practical tree building

Warnow Lab, Science, 2009



Controversies and the NFL theorem

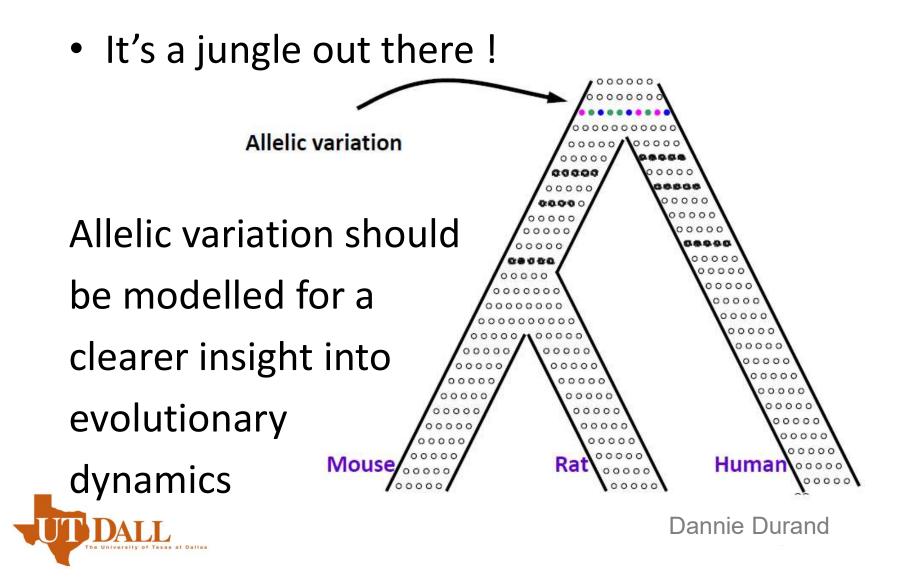
- If there is no "wrong" model, merely better or worse models in the light of a data set
 - how do we falsify an evolutionary hypothesis ? Isnt that a cornerstone of the scientific process ?
- Typically, in the light of some data, we say one theory is better than the other
 - higher score : better fit
 - explains more data : more general
 - typically traded off

Controversies and the NFL theorem

- No free lunch theorems : complicated mathematical theorems
 - in the case of statistical learning, one key tenet
 - If you don't assume anything about a data set, the only thing you can learn about the data set is the set itself

 Assumptions about the data = learning bias
- Take home message : never cherry pick examples
 - there is a vast repository of evolutionary data : cherrypicking can always bolster any model

The real phylogenetic tree



Acknowledgements

- Eric Xing
- Dannie Durand

