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All models are wrong, but some are useful.

- George Box, 1979

Wikipedia
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2 schools of phylogeny reconstruction

• Distance based methods

wikipedia.org

metric
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Distance based methods

• Most distance metrics don’t fit a tree : giving rise to 
inconsistent trees (data and trees don’t agree)

• Difficult to rationally choose one tree over another ( 
is one tree better than another ? is one hypothesis 
better than another ? )

• Difficult to predict ancestral states ( what are the 
patterns of evolutionary change ? )
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2 schools of phylogeny reconstruction

• Character based methods

molgen.mpg.de

A B C D E
A X C D E
A X Y D E model
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Character based methods
• Explicitly model how the characters change

– easier to predict ancestral states
– model can be used to score candidate trees
– no trees are wrong, they can be better or worse 

than others in light of the data and model (score)
– a hierarchical clustering will still be generated : the 

inter cluster “distance”s are implicit

• Remember our stochastic processes for 
evolution ?
– Model P ( Xt = i | X0 = j )
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Can we model non genomic data ?

– Simply use a discrete character set to model 
phenotype(s) ( eg. meristic features : no of 
vertebra in spinal column : 1, 2, 3, 4, … )

– Define stochastic process with same 
number of states ( eg. Xt can take value of 
no of vertebra )
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Continuous data

• Continuous time, continuous value Markov 
process
– Wiener process / brownian motion

• Usually not done in practice, a better idea is to 
“discretize” the continuous quantity into a 
number of bins
– Model evolution over bin index
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Model based evolution
• Given the data

– Generate each possible tree
– Score each tree with the model
– Pick the tree whose “score” is the “best”

• Score for probabilistic models = Likelihood = P ( data 
| model )

• Best score for probabilistic models = Highest 
likelihood
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Parsimony
• Fewest substitutions to explain alignment data 

– Is min substitutions equivalent to Occam’s razor / 
minimal assumptions - unclear

• Build a tree where branch length = no of 
substitutions (how can it be > 1 ?) 

• Minimize sum of branch lengths
– No selection (could be modelled)
– Not all data may be parsimonious
– May be many equally parsimonious trees
– Ambiguous ancestral sequences for same tree
– Some (many!) character alignments not used
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Data 
Only 1 column is informative

Actual  tree
Not parsimonious

Ambiguous 
topology

Multiple most 
parsimonious 

trees

Ambiguous ancestry
Multiple ancestral 

sequences can explain 
data
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Some facts about parsimony

• Not a non parametric method ( doesn’t have a clear data 
dependent parametric structure )

• May be inconsistent ( may converge to wrong tree even with 
unlimited training data )

• Likelihood models (eg. ones where no observed change is 
preferred to change always) may be sufficient (but not 
necessary) to approximate parsimony 
sometimes (the likelihood model does more)

• Assumptions (difficult to make explicit)
– minimum evolution 
– independence across sites (weighted variant)
– agnostic to nature of change (weighted variant)

J C probabilities 
as a fn of time
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Maximum likelihood framework

• What are our random variables ? Which are 
observed ? How are they related ?

Typically, parameters of 
the CTMPs are assumed 
to be global

Each fork = 2 
independent CTMPs

Lineage specific 
modelling is restricted to 
different time intervals for 
the stoch processes 
(branch lengths)
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The model
• Topology : which rv gives rise to which rv

• Branch lengths : time intervals for which the 
stochastic processes run

• CTMP parameters : the evolutionary matrix –
could be specific for each branch, could be 
universal for the tree, or somewhere in 
between
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Meaning of the branch length
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Likelihood of a single site
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Likelihood of a single site
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Likelihood of a single site
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Quick reminder

eg. Jukes Cantor, 1969
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Likelihood of a single site



BIOL 6385, Computational Biology

Likelihood of a single site

Is the shortest distance from leaf 
to root long enough for this 
assumption ?

No !
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Likelihood of a single site

Motivation for stationary
distribution at root :



BIOL 6385, Computational Biology

Likelihood of a single site
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Wait, wont the distr get stuck ?
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Brute force computation

Sum of products  Product of 
sums

Horner’s Rule
(Horner, 1830)
(Zhu Shijie, 1303)
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Horner’s rule

• Push terms as far to the left as possible
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Felsenstein’s pruning algo
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Handtracing the pruning algo

Ancestral likelihoods come free !
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A recursive formulation
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A recursive formulation

• At the observed leafs :



BIOL 6385, Computational Biology

A recursive formulation
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A recursive formulation
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A recursive formulation

• For the interior nodes :
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A recursive formulation

• Applied at X3
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A recursive formulation

• Applied at X2
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A recursive formulation

• Applied at X1
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A recursive formulation

• Applied at X0 : the root. Where’s P ( D | M ) ?
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A recursive formulation

• At the root, factor in the stationary distr :
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Modelling ambiguity

• Easy to model ambiguity at leaf
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Handling gaps

• 3 unsatisfactory ways :
– Throw away gapped columns (underestimate 

mutation rate; lose lot of data)
– Treat the “-” as a fifth character / state in the 

stochastic process
• Same framework used to model nucleotide change and 

indel creation (estimation is hard)

– Treat gaps as hidden variables and marginalize
• Commonly used (underestimates mutation rate)
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What happens when you 
marginalize a leaf ?
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Predicting ancestral sequence
• Didn’t we just do that ?

– Only using data under that node, what if we want 
to use all the leaf nodes ?

– Use a ternary tree !
– Then pick nucleotide corr to max likelihood
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Joints and marginals

• Posterior decoding and Viterbi may give 
different results, remember ?
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ML trajectories & no of mutations

• ML trajectories are sometimes well defined :
– http://books.nips.cc/papers/files/nips22/NIPS200

9_0822.pdf
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A simpler problem
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The road to simulation
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Speeding up calculations

• Minimize floating point operations ( precision 
arithmetic )

• Pre calculate likelihoods on branches
• Pre calculate likelihoods on some patterns on 

subtrees
• Optimize ordering of sums
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Speeding up calculations

What is the optimal ordering
of the sums ?
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Likelihood of full alignment
• Likelihood of a multiple sites

– Simplest model  : independent sites, single model

– Independent sites, diff known models
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Estimation & inference
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Estimation
• Given the data

– Generate each possible tree
– Score each tree with the model
– Pick the tree whose “score” is the “best”

• Score for probabilistic models = Likelihood = P ( data 
| model )

• Best score for probabilistic models = Highest 
likelihood
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For maximum likelihood estimation
• Given the data

– Generate each possible tree
– Find P ( data | model ) :likelihd fn: for each tree
– Pick the tree with highest likelihd fn

– Typically find

for max likelihood parameters
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One snag

Topology space is discrete
How to take the derivatives ?
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Instead …
• Let us assume for now that the topology is 

known, and we want to optimize the CTMP 
parameters and branch lengths

• Multivariate optimization
– should we change them one at a time ? Or all at once ?

• Either way, we’ll need to try many parameter 
values : reason why closed form CTMP prob are 
reqd
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Line search and grid search

• Univariate optimization
– sample along the single dimension at regular 

intervals to pick highest / lowest scoring point

• Multivariate optimization
– sample along all dimensions at regular intervals to 

pick highest / lowest scoring point 
• Curse of dimensionality

Absolute astronomy
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Smarter way : gradient ascent

• Start in one position
– move in direction of steepest upward likelihood 

gradient

Absolute astronomy

Optimization: vast mathematical body of 
work
Basic underpinning : to reach the top of the 
hill quickly, climb the slope in the steepest 
direction always (or almost always )
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Gradient ascent

• Optimizing one variable at a time

Absolute astronomy



BIOL 6385, Computational Biology

The curse of gradient ascent

• Local maxima

Absolute astronomy
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Orbits and attractors

• Search procedure = dynamical system
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Why not …

• Why not figure out the boundaries of the 
attractor initially and dispense with the 
iterations ?
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Why not …

• Why not figure out the boundaries of the 
attractor initially and dispense with the 
iterations ?
– Because the likelihood landscape will change with 

the data ! And so will the attractors, and their 
boundaries !
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Avoiding local maxima

• Random restarts : run repeatedly with 
different initial guesses : sooner or later 
sample all attractors
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Avoiding local maxima
• Simulated annealing : Occasionally break the 

rules, and jump around in the space randomly 
: do this less often as search progresses and 
score improves

Jumps should be large enough 
to switch attractors , or frequent 
enough (in the beginning) to 
incrementally  move from one 
attractor to another

Simulated annealing + random restarts  possible
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What are our dimensions ?

• Branch lengths for each branch
• Stochastic process parameters

• No meaningful way to reduce dimensionality 
easily
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Learning topology

Problem of structure learning
difficult and intractable problem

- discrete space
- difficult to parameterize
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Learning topology
• Given the data

– Generate each possible tree topology
– Optimize branch lengths and CTMP parameters 

such that P(data|model) for that topology is 
the highest

– Pick the topology – parameter combination s.t. 
likelihood is highest
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Can we really generate all topologies? 

• No, but formal search strategies
– Heuristic, but in general the longer we search the 

better the chance we find the global optimum
– Better heuristics = less time to generate results of 

some determined quality level (model score)
– Better heuristics = better quality results (model 

score) after searching for a fixed amount of time
– Trade - off
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Our search space

• Is it the space of all trees ?
– Yes, but we have tools to optimize branch lengths, 

and evolutionary parameters efficiently

• Is it the space of all tree topologies ?
– Yes, we heuristically sample tree topologies, since 

discrete topology – space is hard to optimize 
numerically



BIOL 6385, Computational Biology

Random sampling

• Keep generating new topologies randomly and 
score them: remember the best score

• Doomed to repeat mistakes + most work is 
thrown away
– goal should be to improve upon previously found 

high scoring topologies by incrementally changing 
the topology : discipline of search
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Hill climbing

• Similar to gradient ascent : for discrete spaces

• At any point in topology-space, check the max 
likelihood score of all neighbors and move in 
direction of biggest increase of likelihood
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Phylogeny topology - space
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Wait, didn’t we already study 
distances in phylogeny ?

• Over taxa, yes
• Over trees, no
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What does tree space look like ?
• Edges represent neighbors ( wait, who are 

neighbors?)

• x is a neighbor of y = y can be built by changing x in a 
small way

Z Yang
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Nearest neighbor interchange

• How to use these for rooted trees ?
– Use the unrooted equivalent and convert back
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In fact …
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Dannie Durand
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Local and global optima in 
topology - space

Z Yang
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Traditional AI search

… techniques (like admissible heuristics and 
A*) doesn’t work

Difficult to estimate how far away we are from 
our goal ( best model score )
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Branch and bound

• Rule out (“prune”) or de prioritize some parts 
of the search space : similar to MSA ?

Wait, this isnt our tree 
space !

This is okay, since 
each point in our 
original space is 
reachable in this 
space !
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In practice …

• Instead of a formal search, we often use :
– known tree topologies 

• based on trees constructed using distance based 
methods

• Consider this as a very strong prior over the 
topologies
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Search : take home

• Search longer = better results
• Better heuristics & better strategy = better 

results
• Usually no guarantees = may get stuck in local 

optimum
• All points in search space should be 

potentially reachable by our strategy
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Using inferred results

• In the next step of an analysis : what are the 
pitfalls ?
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Ball of uncertainty
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Bayesians and frequentists

• Frequentists
– parameters are unknown constants : find the 

constant that maximizes the likelihood

• Bayesians
– parameters are themselves rv s : find the 

distribution of the parameters
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Likelihoods
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Likelihoods
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Likelihoods
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Bayesian networks
• Think of a sequential generative process : r. v.  

X0 gives rise to X1, X2, … ; maybe in 
collaboration with other Xi s

• Each of these in turn give rise to more RVs

Judea Pearl

wikipedia
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Bayesian networks

• The process of RVs “giving rise” to another RV 
can be captured by local conditional 
distributions ( shown by tables – discrete 
support, or function – continuous support )

Loops not allowed !
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Representing our phylogeny as BN
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Bayesian trees : priors on parameters
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Comparing methods

• Identifiability
– Are parameters confounded given the observed data ?

• Consistency
– Does it converge to the right tree as data set increases ?

• Efficiency
– Is the variance low ? For unbiased estimators, bounded by 

Cramer Rao bound

• Robustness
– Does performance degrade smoothly when model 

assumptions are violated ?
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Comparing trees

• How different are two trees ?

• Which one is better in the light of the data ?
– Were the two reconstructed using the same 

model (assumptions) ? 
• Comparing trees based on the same model
• Comparing trees across models
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Which tree is better ?

• Under the same model : same likelihood fn

• Which one has higher likelihood ( or log 
likelihd) ?
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Which tree is better ?

• Likelihd ratio test : 2 models 
– Ho : null hypothesis
– H1 : alternative hypothesis
– typically Ho is a special case of H1
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Which tree is better ?
wikipedia
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Which tree is better ?

• What if models are non nested ?

• Aikake Information Criterion : whose AIC is 
better = - 2 log(L) + 2 p

• Bayesian Information Criterion : whose BIC is 
better = - 2 log(L) + log(n) p
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Testing differential selection

Branch specific CTMP parameters

Lineage specific CTMP parameters

Single set of CTMP parameters
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Testing the molecular clock
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Can we really test for the 
molecular clock ?

• We test that the root is equidistant from all 
the leaves
– A weaker assertion than that of the molecular 

clock. Why ?
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Can we really test for the 
molecular clock ?

• We test that the root is equidistant from all 
the leaves
– A weaker assertion than that of the molecular 

clock. Why ?

– Mutation rates could be different in precisely the 
same or compensatory ways along each lineage, 
and this would still hold

• We can only assert total amount of mutation from start 
of clock is same in all lineages
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Calibration with real time

• If molecular clock hypothesis holds : branch 
length = expected no of substitutions should 
be linear to real time
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Uncertainty in calibration
• Inaccurate branch lengths 
• Molecular dating of fossils come with error 

bars
• Common ancestor or not – determined by 

character data : how to determine how far it is 
from MRCA ?
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Accounting for multiple models

• Are all the characters generated by the same 
evolutionary model ?

wikipedia
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Modelling variation : horizontally

• Along the genome, is there spatial correlation 
in evolutionary parameters (say, mutation 
rates) ?
– If yes, markov model
– If no, mixture model
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Modelling variation : horizontally

• Phylogenetic HMMs

Siepel & Haussler, JCB, 2004
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Modelling spacers, repeats, conserved 
regions and other evolutionary events
• PhastCons : 2 state phylogenetic HMM 

modelling evolutionary rates for conserved 
and non conserved sites
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Modelling variation : vertically

• In the phylogeny, is there correlation in 
evolutionary parameters inside subtrees ?
– If yes, model a mixture of phylogenies : mixture 

components drawn from another phylogeny
– If no, model a mixture of phylogenies : mixture 

components drawn independently

Ray et al, PloS CB, 2008



BIOL 6385, Computational Biology

MSA – phylogeny co-construction
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Practical tree building

Warnow Lab,
Science, 2009
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Controversies and the NFL theorem
• If there is no “wrong” model, merely better or 

worse models in the light of a data set
– how do we falsify an evolutionary hypothesis ? 

Isnt that a cornerstone of the scientific process ?

• Typically, in the light of some data, we say one 
theory is better than the other
– higher score : better fit
– explains more data : more general
– typically traded off
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Controversies and the NFL theorem
• No free lunch theorems : complicated 

mathematical theorems
– in the case of statistical learning, one key tenet

• If you don’t assume anything about a data set, the only 
thing you can learn about the data set is the set itself

– Assumptions about the data = learning bias

• Take home message : never cherry pick 
examples
– there is a vast repository of evolutionary data : 

cherrypicking can always bolster any model
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The real phylogenetic tree

• It’s a jungle out there !

Allelic variation should
be modelled for a 
clearer insight into
evolutionary 
dynamics

Dannie Durand
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